首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A novel facultatively alkaliphilic bacterium that grows on a chemically defined medium containing n-alkanes as the sole carbon source was isolated from soil. The isolate was obligately aerobic, non-motile, gram-positive, and formed metachromatic granules. It was not acidfast and did not form endospores. The cell wall contained meso-diaminopimelic acid, arabinose, and galactose; the glycan moiety of the cell wall contained acetyl residues. The bacterium was catalase-positive, oxidasenegative, and the G+C content of DNA was 70.8 mol%. According to these tests, the isolate was assigned to the genus Corynebacterium. The bacterium grew well between pH 6.2 to 10.2 and the doubling time in this pH range was 4–6 h. For the growth of the isolate, added Na+ in the culture medium stimulated growth, but was not indispensable at both pH 7.2 and pH 10.2. In addition to hydrocarbons, the isolate was able to grow on a chemically defined medium containing acetate, glucose, or fructose as the sole carbon source. Analysis of reduced minus oxidized difference spectra of whole cells showed that the bacterium only possessed less than one tenth the amount of total cytochromes as compared with Bacillus alcalophilus. The above results sugest that the bacterium has characteristics different than those of the alkaliphilic Bacillus previously described.  相似文献   

2.
A total of 17 facultatively lithoautotrophic strains of Nitrobacter were investigated. They all were found to be related on the species level by DNA hybridizations. The G+C content of DNA ranged between 58.9 and 59.9 mol %. The isolates originated from divers environments. The cells were 0.5–0.8×1.2–2.0 m in size and motile by one polar to subpolar flagellum. Cell-division normally occurred by budding. Polar caps of intracytoplasmic membranes as well as carboxysomes were present. The cells tended to excrete extracellular polymers forming aggregates or biofilms. Heterotrophic growth was slower than mixotrophic but often faster than litoautotrophic growth. In the presence of nitrite and organic substances the organisms often showed diphasic growth. First nitrite and then the organic material was oxidized. In the absence of oxygen growth was possible by dissimilatory nitrate reduction. Nitrite, nitric and nitrous oxide as well as ammonia were formed. Depending on growth conditions the generation times varied from 12 to 140 h. The new Nitrobacter spec. may be one of the most abundant nitrite-oxidizing bacteria in soils, fresh waters and natural as well as artificial stones. For this organism the name Nitrobacter vulgaris is proposed.The type strain is filed with the culture collection of the Institut für Allgemeine Botanik, Universität Hamburg, FRG.  相似文献   

3.
A new species of halophilic anoxygenic purple bacteria of the genus Rhodospirillum is described. The new organism, isolated from water/sediment of the Dead Sea, was vibrio-shaped and an obligate halophile. Growth was best at 12% NaCl, with only weak growth occurring at 6% or 21% NaCl. Growth occurred at Mg2+ concentrations up to 1 M but optimal growth was obtained at 0.05–0.1 M Mg2+. Bromide was well tolerated as an alternative anion to chloride. The new organism is an obligate phototroph, growing photoheterotrophically in media containing yeast extract and acetate or a few other organic compounds. Growth of the Dead Sea Rhodospirillum species under optimal culture conditions was slow (minimum td 20 h). Cells contained bacteriochlorophyll a and carotenoids of the spirilloxanthin series and mass cultures were pink in color. Absorption spectra revealed the presence of a B875 (light-harvesting I) but no B800/B850 (light-harvesting II) photopigment complex. The new organism shares a number of properties with the previously described halophilic phototrophic bacterium Rhodospirillum salinarum and was shown to be related to this phototroph by 16S rRNA sequencing. However, because of its salinity requirements, photosynthetic properties, and isolation from the Dead Sea, the new phototroph is proposed as a new species of the genus Rhodospirillum, R. sodomense.  相似文献   

4.
A novel bacterium, strain BMP-1(T), was isolated from a continuous wastewater treatment culture system operating with a bacterial consortium. Cells of the isolate were Gram-variable, aerobic, moderately halotolerant, motile and endospore-forming rods. Strain BMP-1(T) grew chemolithoautotrophically by oxidation of thiosulfate to sulfate with a growth yield of 1.07 g protein mol(-1) of thiosulfate consumed. DNA G+C content was 43.8 mol%. Its cell wall had peptidoglycan based on m-diaminopimelic acid, and the major component of fatty acid was C(15 : 0). The 16S rRNA gene analysis showed that strain belongs to the genus Bacillus, sharing a 99.5% of sequence similarity with Bacillus jeotgali CCM 7133(T). DNA-DNA hybridization between the isolate of this study and this strain was 44%. Thus, the inclusion of strain BMP-1(T) in the genus Bacillus is suggested as a novel species and the name Bacillus thioparus sp. nov. (Type strain BMP-1(T)=BM-B-436(T)=CECT 7196(T)) is proposed. The sequence of the 16S rRNA gene has been deposited in GenBank with accession number DQ371431.  相似文献   

5.
A moderately thermophilic, facultatively chemolithoautotrophic thiobacillus isolated from a thermal sulphur spring is described. It differs from all other species currently known to be in culture. It grows lithoautotrophically on thiosulphate, trithionate or tetrathionate, which are oxidized to sulphate. Batch cultures on thiosulphate do not produce tetrathionate, but do precipitate elemental sulphur during growth. In autotrophic chemostat cultures the organism produces yields on thiosulphate, trithionate and tetrathionate that are among the highest observed for a Thiobacillus. Autotrophic cultures contain ribulose bisphosphate carboxylase. Heterotrophic growth has been observed only on complex media such as yeast extract and nutrient broth. It is capable of autotrophic growth and denitrification under anaerobic conditions with thiosulphate and nitrate. It grows between 30 to 55° C, and pH 7 to 9, with best growth at about 43°C and pH 7.6. It contains ubiquinone Q-8, and its DNA contains 65.7 mol% G+C. The organism is formally described and named as Thiobacillus aquaesulis.Now the Department of Biological Sciences  相似文献   

6.
A bacterial strain designated JA-1, related to Janthinobacterium lividum, was isolated from glacier ice samples from the island Spitsbergen in the Arctic. The strain was tested for phenotypic traits and the most prominent appeared to be the dark red brown to black pigmentation different from the violet pigment of Janthinobacterium, Chromobacterium and Iodobacter. Phylogenetic analysis based on 16S rRNA gene sequences and DNA–DNA hybridization tests showed that strain JA-1 belongs to the genus Janthinobacterium but represents a novel lineage distinct from the two known species of this genus, J. lividum and Janthinobacterium agaricidamnosum. The DNA G + C content of strain JA-1 was determined to be 62.3 mol %. The isolate is a psychrotrophic Gram negative bacterium, rod-shaped with rounded ends, containing intracellular inclusions and one polar flagellum. On the basis of the presented results strain JA-1 is proposed as the type strain of a novel species of the genus Janthinobacterium, for which the name Janthinobacterium svalbardensis sp. nov. is proposed (JA-1T = DSM 25734, ZIM B637).  相似文献   

7.
A Gram-negative bacterium designated AC-74(T) was isolated from a highly alkaline groundwater environment (pH 11.4). This organism formed rod-shaped cells, is strictly aerobic, catalase and oxidase positive, tolerates up to 3.0% NaCl, has an optimum growth temperature of 30 degrees C, but no growth occurs at 10 or 40 degrees C, and an optimum pH value of 8.0, but no growth occurs at pH 7.0 or 11.3. The predominant fatty acids are iso-15:0, iso-17:1 omega9c and 16:1 omega7c and or iso-15:2OH. The G+C content of DNA was 43.5mol%. The phylogenetic analyses of the sequences of the 16s RNA genes indicated that strain AC-74(T) belongs to the family "Flexibacteriaceae" and is phylogenetically equidistant ( approximately 94.5%) from the majority of the species of the genus Algoriphagus and from the genus Hongiella. Based on the phylogenetic analyses and distinct phenotypic characteristics, we are of the opinion that strain AC-74(T), represents a new species of the novel genus for which we propose the name Chimaereicella alkaliphila gen. nov., sp. nov.  相似文献   

8.
A novel alkaliphilic heliobacterium was isolated from microbial mats of a low-salt alkaline Siberian soda lake. Cells of the new organism were tightly coiled when grown in coculture with a rod-shaped bacterium, but grew as short filaments when finally obtained in pure culture. The new phototroph, designated strain BT-H1, produced bacteriochlorophyll g and a neurosporene-like pigment, and lacked internal photosynthetic membranes. Similar to other heliobacteria, strain BT-H1 grew photoheterotrophically on a limited range of organic compounds including acetate and pyruvate. Sulfide was oxidized to elemental sulfur and polysulfides under photoheterotrophic conditions; however, photoautotrophic growth was not observed. Cultures of strain BT-H1 were alkaliphilic, growing optimally at pH 9, and unlike other heliobacteria, they grew optimally at a temperature of 25 °C rather than at 40 °C or above. Analysis of the 16S rRNA gene sequence of the new organism showed that it groups within the heliobacterial clade. However, its branching order was phylogenetically basal to all previously investigated species of heliobacteria. The G+C content of the DNA of strain BT-H1 (44.9 mol%) was also quite distinct from that of other heliobacteria. This unique assemblage of properties implicates strain BT-H1 as a new genus and species of the heliobacteria, Heliorestis daurensis, named for its unusual morphology (“restis” is Latin for “rope”) and for the Daur Steppe in Russia in which these soda lakes are located. Received: 15 March 1999 / Accepted: 25 June 1999  相似文献   

9.
Abstract Highly purified preparations of inner, i.e. cytoplasmic and intracytoplasmic, membranes and outer membranes were isolated from Nitrobacter hamburgensis strain X14 by sucrose density-gradient centrifugation of cell-free extracts. The two membrane fractions differed markedly in morphology, density, and protein composition as determined by polyacrylamide gel electrophoresis. The inner membrane fraction was enriched in NADH oxidase and nitrite oxidase activity. It contained four major protein bands of apparent M rs of 28 000, 32 000, 70 000, and 116000. The outer membrane fraction was characterized by the presence of 2-keto-3-deoxyoctonate and contained two major proteins of apparent M rs of 13 000 and 50 000. There was no evidence for differences between cytoplasmic and intracytoplasmic membranes.  相似文献   

10.
Two obligately anaerobic sulfidogenic bacterial strains were isolated from the full-scale Thiopaq bioreactor in Lelystad (The Netherlands) removing H2S from biogas under oxygen-limiting and moderately haloalkaline conditions. Strain HSRB-L represents a dominant culturable sulfate-reducing bacterium in the reactor. It utilizes formate, H2 (with acetate as C-source) and lactate as e-donors, and sulfate, thiosulfate and sulfite as e-acceptors. It is haloalkalitolerant, with a pH range for lithotrophic growth from 7.5 to 9.7 (optimum at 8.5–9) and a salt range from 0.1 to 1.75 M total Na+ (optimum at 0.6 M). The strain is a member of the genus Desulfonatronum and is proposed as a novel species D. alkalitolerans. The second strain, strain HTRB-L1, represents a dominant thiosulfate/sulfur reducer in the reactor. It is an obligate anaerobe utilizing formate and H2 (with acetate as C-source), lactate, pyruvate and fumarate as e-donors, and thiosulfate (incomplete reduction), sulfur, arsenate and fumarate as e-acceptors. With lactate as e-donor it also grows as an ammonifyer in the presence of nitrate and nitrite. HTRB-L1 is haloalkalitolerant, with a pH range for lithotrophic growth from 7.1 to 9.7 (optimum at 8.5) and a salt range from 0.6 to 1.5 M total Na+ (optimum at 0.6 M). Phylogenetic analysis showed that strain HTRB-L1 is a novel species within the genus Sulfurospirillum (Epsilonproteobacteria) for which a name Sulfurospirillum alkalitolerans is proposed.  相似文献   

11.
An anaerobic, dehalogenating, sulfate-reducing bacterium, strain DCB-1, is described and nutritionally characterized. The bacterium is a Gram-negative, nonmotile, non-sporeforming large rod with an unusual morphological feature which resembles a collar. The microorganism reductively dehalogenates meta substituted halobenzoates and also reduces sulfate, sulfite and thiosulfate as electron acceptors. The bacterium requires nicotinamide, 1,4-naphthoquinone and thiamine for optimal growth in a defined medium. The microorganism can grow autotrophically on H2:CO2 with sulfate or thiosulfate as terminal electron acceptors. It can also grow heterotrophically with pyruvate, several methoxybenzoates, formate plus sulfate or benzoate plus sulfate. It ferments pyruvate to acetate and lactate in the absence of other electron acceptors. The bacterium is inhibited by MoO inf4 sup2- or SeO inf4 sup2- as well as tetracycline, chloramphenicol, kanamycin or streptomycin. Cytochrome c3 and desulfoviridin have been purified from cells grown in defined medium. 16S rRNA sequence analysis indicates the organism is a new genus of sulfate-reducing bacteria in the delta subdivision of the class Proteobacteria. We propose that the strain be named Desulfomonile tiedjei.Non-standard abbreviations PIPES piperazine-N,N-bis[2-ethanesulfonic acid] - MES 2-[N-morpholino]ethanesulfonic acid - TES N-tris[hydroxymethyl]methyl-2-aminoethanesulfonic acid - HQNO 2-N-heptyl-4-hydroxy-quinoline-N-oxide - CCCP carbonyl-cyanide-m-chlorophenylhydrazine - CM carboxymethyl  相似文献   

12.
A hydrogen-oxidizing bacterium strain AH-24 was isolated, which was classified in the genus Hydrogenophaga, based on the 16S rRNA gene sequence. The isolate possessed a typical yellow pigment of Hydrogenophaga species. Its closest relative was Hydrogenophaga pseudoflava, but the assimilation profile of sugar compounds resembled that of no species of Hydrogenophaga. The optimum temperature and pH for autotrophic growth were, respectively, 33-35 degrees C and 7.0. Most hydrogenase activity (benzyl viologen reducing activity) was localized in the membrane fraction (MF), but NAD(P)-reducing hydrogenase activity was detected in neither the membrane nor the soluble fractions. Cytochromes b561 and c551 were present in MF; both were reduced when hydrogen was supplied to the oxidized MF, suggesting involvement in respiratory H2 oxidation as electron carriers. Cytochrome b561 was inferred to function as the redox partner of the membrane-bound hydrogenase.  相似文献   

13.
A morphologically distinct heliobacterium, strain HH, was isolated from Lake El Hamra, a soda lake in the Wadi El Natroun region of northwest Egypt. Strain HH consisted of ring-shaped cells that remained attached after cell division to yield coils of various lengths. Strain HH showed several of the physiological properties of known heliobacteria and grouped in the Heliorestis clade by virtue of its phylogeny and alkaliphily. The closest relative of strain HH was the filamentous alkaliphilic heliobacterium Heliorestis daurensis. However, genomic DNA:DNA hybridization results clearly indicated that strain HH was a distinct species of Heliorestis. Based on its unique phenotypic and genetic properties we describe strain HH here as a new species of the genus Heliorestis, H. convoluta sp. nov.Dedicated to Prof. Dr. Norbert Pfennig on the occasion of his 80th birthday.  相似文献   

14.
A new mesophilic, irregular coccoid methanogen isolated from a river sediment is described. Hydrogen plus carbon dioxide or formate served as substrates for methanogenesis in a mineral salt medium. For growth acetate is strictly required. Elevated levels of sodium chloride were not required and were inhibitory at concentrations above 1.5% (w/v). The optimal growth temperature was at 45°C. The DNA base ratio was 48.6±1 mol% G+C. The polar lipid pattern and the polyamine content were similar to that found in several Methanoculleus species. The new isolate CB-1 was assigned as Methanoculleus oldenburgensis (DSM 6216).  相似文献   

15.
Thermo-acidophilic prokaryotes isolated from geothermal sites in Yellowstone National Park were identified as novel α-Proteobacteria, distantly related (~93% 16S rRNA gene identity) to the mesophilic acidophile Acidisphaera rubrifaciens. One of these isolates (Y008) was shown to be more thermophilic than all previously characterized acidophilic proteobacteria, with a temperature optimum for growth between 50 and 55°C and a temperature maximum of 65°C. Growth was observed in media maintained at pH between 1.75 and 3.0 and was fastest at pH between 2.5 and 3.0. The G + C content of Y008 was 71.8±0.9 mol%. The acidophile was able to grow heterotrophically on a range of organic substrates, including various monosaccharides, alcohols and amino acids and phenol, though growth on single organic compounds required the provision of one or more growth factors. The isolate oxidized sulfur to sulfuric acid in media containing yeast extract, but was not capable of autotrophic growth with sulfur as energy source. Growth occurred under aerobic conditions and also in the absence of oxygen via anaerobic respiration using ferric iron as terminal electron acceptor. Based on these genotypic and phenotypic traits, it is proposed that Y008 represents the type species of Acidicaldus organivorus, gen. nov., sp. nov.  相似文献   

16.
The new mesophilic, chemolithoautotrophic, moderately halophilic, sulfate-reducing bacterium strain 11-6, could grow at a NaCl concentration in the medium of 30–230 g/l, with an optimum at 80–100 g/l. Cells were vibrios motile at the early stages of growth. Lactate, pyruvate, malate, fumarate, succinate, propionate, butyrate, crotonate, ethanol, alanine, formate, and H2/CO2 were used in sulfate reduction. Butyrate was degraded completely, without acetate accumulation. In butyrate-grown cells, a high activity of CO dehydrogenase was detected. Additional growth factors were not required. Autotrophic growth occurred, in the presence of sulfate, on H2/CO2 or formate without other electron donors. Fermentation of pyruvate and fumarate was possible in the absence of sulfate. Apart from sulfate, sulfite, thiosulfate, and elemental sulfur were able to serve as electron acceptors. The optimal growth temperature was 37°C; the optimum pH was 7.2. Desulfoviridin was not detected. Menaquinone MK-7 was present. The DNA G+C content was 55.2 mol %. Phylogenetically, the bacterium represented a separate branch within the cluster formed by representatives of the family Desulfohalobiaceae in the class Deltaproteobacteria. The bacterium was assigned to a new genus and species, Desulfovermiculus halophilus gen. nov., sp. nov. The type strain is 11-6T (= VKM B-2364), isolated from the highly mineralized formation water of an oil field.  相似文献   

17.
A novel aerobic, Gram-negative, non-pigmented bacterium, GCM72(T), was isolated from the alkaline, low-saline ikaite columns in the Ikka Fjord, SW Greenland. Strain GCM72(T) is a motile, non-pigmented, amylase- and protease-producing, oxidase-positive, and catalase-negative bacterium, showing optimal growth at pH 9.2-10.0, at 15 degrees C, and at 3% (w/v) NaCl. Major fatty acids were C(12:0) 3-OH (12.2+/-0.1%), C(16:00) (18.0+/-0.1%), C(18:1)omega7c (10.7+/-0.5%), and summed feature 3 comprising C(16:1)omega7c and/or iso-C(15:0) 2-OH (36.3+/-0.7%). Phylogenetic analysis based on 16S rRNA gene sequences showed that isolate GCM72(T) was most closely related to Rheinheimera baltica and Alishewanella fetalis of the gamma-Proteobacteria with a 93% sequence similarity to both. The G+C content of DNA isolated from GCM72(T) was 49.9mol% and DNA-DNA hybridization between GCM72T and R. baltica was 9.5%. Fatty acid analysis and G+C content supports a relationship primarily to R. baltica, but several different features, such as a negative catalase-response and optimal growth at low temperature and high pH, together with the large phylogenetic distance and low DNA similarity to its closest relatives, lead us to propose a new genus, Arsukibacterium, gen. nov., with the new species Arsukibacterium ikkense sp. nov. (type strain is GCM72(T)).  相似文献   

18.
A mesophilic, aerobic oxalic acid utilizing yellow-pigmented bacterium has been isolated from litter of oxalate producing plants in the region of Izmir (Turkey). It is motile by means of 1-3 polar flagella. Optimal growth occurred between 25-30 degrees C at pH 6.9. The G+C content of DNA is 62-64 mol % (Tm). Based on its morphological and biochemical features the organism belongs to the genus Pseudomonas, but differs from all the previously described species. The taxonomic relationships among strains described as or previously tentatively assigned to the genus Pseudomonas were investigated using numerical classification, DNA base composition and DNA-DNA hybridization. 16S rDNA sequences were determined for the strain TA17. On the basis of 16S rDNA sequence comparisons, physiological and biochemical characteristics, it is proposed to classify TA17T in a new genus and species for which the name Oxalicibacterium flavum gen. nov., sp. nov. is proposed. The type strain is TA17T (= NEU98T, = LMG 21571T).  相似文献   

19.
Sulfate-reducing bacteria with oval to rod-shaped cells (strains AcRS1, AcRS2) and vibrio-shaped cells (strains AcRM3, AcRM4, AcRM5) differing by size were isolated from anaerobic marine sediment with acetate as the only electron donor. A vibrio-shaped type (strain AcKo) was also isolated from freshwater sediment. Two strains (AcRS1, AcRM3) used ethanol and pyruvate in addition to acetate, and one strain (AcRS1) grew autotrophically with H2, sulfate and CO2. Higher fatty acids or lactate were never utilized. All isolates were able to grow in ammonia-free medium in the presence of N2. Nitrogenase activity under such conditions was demonstrated by the acetylene reduction test. The facultatively lithoautotrophic strain (AcRS1), a strain (AcRS2) with unusually large cells (2×5 m), and a vibrio-shaped strain (AcRM3) are described as new Desulfobacter species, D. hydrogenophilus, D. latus, and D. curvatus, respectively.  相似文献   

20.
A chemolithoautotrophic sulfur-oxidizing bacterium (SOB) strain ALCO 1 capable of growing at both near-neutral and extremely alkaline pH was isolated from hypersaline soda lakes in S-W Siberia (Altai, Russia). Strain ALCO 1 represents a novel separate branch within the halothiobacilli in the Gammaproteobacteria, which, so far, contained only neutro-halophilic SOB. On the basis of its unique phenotypic properties and distant phylogeny, strain ALCO 1 is proposed as a new genus and species Thioalkalibacter halophilus gen. nov. sp. nov. ALCO 1 was able to grow within a broad range of salinity (0.5–3.5 M of total sodium) with an optimum at around 1 M Na+, and pH (7.2–10.2, pHopt at around 8.5). Na+ was required for sulfur-dependent respiration in ALCO 1. The neutral (NaCl)-grown chemostat culture had a much lower maximum growth rate (μmax), respiratory activity and total cytochrome c content than its alkaline-grown counterpart. The specific concentration of osmolytes (ectoine and glycine-betaine) produced at neutral pH and 3 M NaCl was roughly two times higher than at pH 10 in soda. Altogether, strain ALCO 1 represents an interesting chemolithoautotrophic model organism for comparative investigations of bacterial adaptations to high salinity and pH. Nucleotide sequence accession number: The GenBank/EMBL accession number of the 16S rRNA gene sequence of strain ALCO1T is EU124668.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号