首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
Short-chain fatty acids (SCFA), produced by colonic bacterial flora fermentation of dietary carbohydrates, promote colonic Na absorption through mechanisms not well understood. We hypothesized that SCFA promote increased expression of apical membrane Na/H exchange (NHE), serving as luminal physiological cues for regulating colonic Na absorptive capacity. Studies were performed in human colonic C2/bbe (C2) monolayers and in vivo. In C2 cells exposed to butyrate, acetate, proprionate, or the poorly metabolized SCFA isobutyrate, apical membrane NHE3 activity and protein expression increased in a time- and concentration-dependent manner, whereas no changes were observed for NHE2. In contrast, no significant changes in brush-border hydrolase or villin expression were noted. Analogous to the in vitro findings, rats fed the soluble fiber pectin exhibited a time-dependent increase in colonic NHE3, but not NHE2, protein, mRNA, and brush-border activity. These changes were region-specific, as no changes were observed in the ileum. We conclude that luminal SCFA are important physiological cues for regulating colonic Na absorptive function, allowing the colon to adapt to chronic changes in dietary carbohydrate and Na loads.  相似文献   

2.
A high sodium intake increases the capacity of the medullary thick ascending limb (MTAL) to absorb HCO(3)(-). Here, we examined the role of the apical NHE3 and basolateral NHE1 Na(+)/H(+) exchangers in this adaptation. MTALs from rats drinking H(2)O or 0.28 M NaCl for 5-7 days were perfused in vitro. High sodium intake increased HCO(3)(-) absorption rate by 60%. The increased HCO(3)(-) absorptive capacity was mediated by an increase in apical NHE3 activity. Inhibiting basolateral NHE1 with bath amiloride eliminated 60% of the adaptive increase in HCO(3)(-) absorption. Thus the majority of the increase in NHE3 activity was dependent on NHE1. A high sodium intake increased basolateral Na(+)/H(+) exchange activity by 89% in association with an increase in NHE1 expression. High sodium intake increased apical Na(+)/H(+) exchange activity by 30% under conditions in which basolateral Na(+)/H(+) exchange was inhibited but did not change NHE3 abundance. These results suggest that high sodium intake increases HCO(3)(-) absorptive capacity in the MTAL through 1) an adaptive increase in basolateral NHE1 activity that results secondarily in an increase in apical NHE3 activity; and 2) an adaptive increase in NHE3 activity, independent of NHE1 activity. These studies support a role for NHE1 in the long-term regulation of renal tubule function and suggest that the regulatory interaction whereby NHE1 enhances the activity of NHE3 in the MTAL plays a role in the chronic regulation of HCO(3)(-) absorption. The adaptive increases in Na(+)/H(+) exchange activity and HCO(3)(-) absorption in the MTAL may play a role in enabling the kidneys to regulate acid-base balance during changes in sodium and volume balance.  相似文献   

3.
4.
Electroneutral Na absorption occurs in the intestine via sodium-hydrogen exchanger (NHE) isoforms NHE2 and NHE3. Bicarbonate and butyrate both stimulate electroneutral Na absorption through NHE. Bicarbonate- but not butyrate-dependent Na absorption is inhibited by cholera toxin (CT). Long-term exposure to butyrate also influences expression of apical membrane proteins in epithelial cells. These studies investigated the effects of short- and long-term in vivo exposure to butyrate on apical membrane NHE and mRNA, protein expression, and activity in rat ileal epithelium that had been exposed to CT. Ileal loops were exposed to CT in vivo for 5 h and apical membrane vesicles were isolated. 22Na uptake was measured by using the inhibitor HOE694 to identify NHE2 and NHE3 activity, and Western blot analyses were performed. CT reduced total NHE activity by 70% in apical membrane vesicles with inhibition of both NHE2 and NHE3. Reduced NHE3 activity and protein expression remained low following removal of CT but increased to control values following incubation of the ileal loop with butyrate for 2 h. In parallel there was a 40% decrease in CT-induced increase in cAMP content. In contrast, NHE2 activity partially increased following removal of CT and was further increased to control levels by butyrate. NHE2 protein expression did not parallel its activity. Neither NHE2 nor NHE3 mRNA content were affected by CT or butyrate. These results indicate that CT has varying effects on the two apical NHE isoforms, inhibiting NHE2 activity without altering its protein expression and reducing both NHE3 activity and protein expression. Butyrate restores both CT-inhibited NHE2 and NHE3 activities to normal levels but via different mechanisms.  相似文献   

5.
Sodium/proton exchangers [Na(+)/H(+) (NHEs)] play an important role in salt and water absorption from the intestinal tract. To investigate the contribution of the apical membrane NHEs, NHE2 and NHE3, to electroneutral NaCl absorption, we measured radioisotopic Na(+) and Cl(-) flux across isolated jejuna from wild-type [NHE(+)], NHE2 knockout [NHE2(-)], and NHE3 knockout [NHE3(-)] mice. Under basal conditions, NHE(+) and NHE2(-) jejuna had similar rates of net Na(+) (approximately 6 microeq/cm(2) x h) and Cl(-) (approximately 3 microeq/cm(2) x h) absorption. In contrast, NHE3(-) jejuna had reduced net Na(+) absorption (approximately 2 microeq/cm(2) x h) but absorbed Cl(-) at rates similar to NHE(+) and NHE2(-) jejuna. Treatment with 100 microM 5-(N-ethyl-N-isopropyl) amiloride (EIPA) completely inhibited net Na(+) and Cl(-) absorption in all genotypes. Studies of the Na(+) absorptive flux (J) indicated that J in NHE(+) jejunum was not sensitive to 1 microM EIPA, whereas J in NHE3(-) jejunum was equally sensitive to 1 and 100 microM EIPA. Treatment with forskolin/IBMX to increase intracellular cAMP (cAMP(i)) abolished net NaCl absorption and stimulated electrogenic Cl(-) secretion in all three genotypes. Quantitative RT-PCR of epithelia from NHE2(-) and NHE3(-) jejuna did not reveal differences in mRNA expression of NHE3 and NHE2, respectively, when compared with jejunal epithelia from NHE(+) siblings. We conclude that 1) NHE3 is the dominant NHE involved in small intestinal Na(+) absorption; 2) an amiloride-sensitive Na(+) transporter partially compensates for Na(+) absorption in NHE3(-) jejunum; 3) cAMP(i) stimulation abolishes net Na(+) absorption in NHE(+), NHE2(-), and NHE3(-) jejunum; and 4) electroneutral Cl(-) absorption is not directly dependent on either NHE2 or NHE3.  相似文献   

6.
We examined the regulation of theNa+/H+exchangers (NHEs) NHE2 and NHE3 by expressing them in human intestinalC2/bbe cells, which spontaneously differentiate and have little basalapical NHE activity. Unidirectional apical membrane22Na+influxes were measured in NHE2-transfected (C2N2) and NHE3-transfected (C2N3) cells under basal and stimulated conditions, and their activities were distinguished as the HOE-642-sensitive and -insensitive components of5-(N,N-dimethyl)amiloride-inhibitableflux. Both C2N2 and C2N3 cells exhibited increased apical membrane NHEactivity under non-acid-loaded conditions compared with nontransfected control cells. NHE2 was inhibited by 8-(4-chlorophenylthio)adenosine 3',5'-cyclic monophosphate and thapsigargin, was stimulatedby serum, and was unaffected by cGMP- and protein kinase C-dependent pathways. In contrast, NHE3 was inhibited by all regulatory pathways examined. Under acid-loaded conditions (which increase apical Na+ influx), NHE2 and NHE3exhibited similar patterns of regulation, suggesting that the secondmessenger effects observed were not secondary to effects on cell pH.Thus, in contrast to their expression in nonepithelial cells, NHE2 andNHE3 expressed in an epithelial cell line behave similarly toendogenously expressed intestinal apical membrane NHEs. We concludethat physiological regulation and function of epithelium-specific NHEsare dependent on tissue-specific factors and/or conditionalrequirements.

  相似文献   

7.
Diarrhea associated with inflammatory bowel diseases has traditionally been attributed to stimulated secretion. The purpose of this study was to determine whether chronic stimulation of intestinal mucosa by interferon-gamma (IFN-gamma) affects expression and function of the apical membrane Na(+)/H(+) exchangers NHE2 and NHE3 in rat intestine and Caco-2/bbe (C2) cells. Confluent C2 cells expressing NHE2 and NHE3 were treated with IFN-gamma for 2, 24, and 48 h. Adult rats were injected with IFN-gamma intraperitoneally for 12 and 48 h. NHE2 and NHE3 activities were measured by unidirectional (22)Na influx across C2 cells and in rat brush-border membrane vesicles. NHE protein and mRNA were assessed by Western and Northern blotting. IFN-gamma treatment of C2 monolayers caused a >50% reduction in NHE2 and NHE3 activities and protein expression. In rats, region-specific, time- and dose-dependent reductions of NHE2 and NHE3 activities, protein expression, and mRNA were observed after exposure to IFN-gamma. Chronic exposure of intestinal epithelial cells to IFN-gamma results in selective downregulation of NHE2 and NHE3 expression and activity, a potential cause of inflammation-associated diarrhea.  相似文献   

8.
The purpose of the present study was to determine the effect of angiotensin II (A-II) on membrane expression of Na+/H+ exchange isoforms NHE3 and NHE2 in the rat renal cortex. A-II (500 ng/kg per min) was chronically infused into the Sprague-Dawley rats by miniosmotic pump for 7 days. Arterial pressure and circulating plasma A-II level were significantly increased in A-II rats as compared to control rats. pH-dependent uptake of 22Na+ study in the presence of 50 microM HOE-694 revealed that Na+ uptake mediated by NHE3 was increased approximately 88% in the brush border membrane from renal cortex of A-II-treated rats. Western blotting showed that A-II increased NHE3 immunoreactive protein levels in the brush border membrane of the proximal tubules by 31%. Northern blotting revealed that A-II increased NHE3 mRNA abundance in the renal cortex by 42%. A-II treatment did not alter brush border NHE2 protein abundance in the renal proximal tubules. In conclusion, chronic A-II treatment increases NHE3-mediated Na+ uptake by stimulating NHE3 mRNA and protein content.  相似文献   

9.
Aldosterone-induced intestinal Na(+) absorption is mediated by increased activities of apical membrane Na(+)/H(+) exchange (aNHE3) and basolateral membrane Na(+)-K(+)-ATPase (BLM-Na(+)-K(+)-ATPase) activities. Because the processes coordinating these events were not well understood, we investigated human intestinal Caco-2BBE cells where aldosterone increases within 2-4 h of aNHE3 and alpha-subunit of BLM-Na(+)-K(+)-ATPase, but not total abundance of these proteins. Although aldosterone activated Akt2 and serum glucorticoid kinase-1 (SGK-1), the latter through stimulation of phosphatidylinositol 3-kinase (PI3K), only the SGK-1 pathway mediated its effects on Na(+)-K(+)-ATPase. Ouabain inhibition of the early increase in aldosterone-induced Na(+)-K(+)-ATPase activation blocked most of the apical NHE3 insertion, possibly by inhibiting Na(+)-K(+)-ATPase-induced changes in intracellular sodium concentration ([Na](i)). Over the next 6-48 h, further increases in aNHE3 and BLM-Na(+)-K(+)-ATPase activity and total protein expression were observed to be largely mediated by aldosterone-activated SGK-1 pathway. Aldosterone-induced increases in NHE3 mRNA, for instance, could be inhibited by RNA silencing of SGK-1, but not Akt2. Additionally, aldosterone-induced increases in NHE3 promoter activity were blocked by silencing SGK-1 as well as pharmacological inhibition of PI3K. In conclusion, aldosterone-stimulated intestinal Na(+) absorption involves two phases. The first phase involves stimulation of PI3K, which increases SGK-dependent insertion and function of BLM-Na(+)-K(+)-ATPase and subsequent increased membrane insertion of aNHE3. The latter may be caused by Na(+)-K(+)-ATPase-induced changes in [Na] or transcellular Na flux. The second phase involves SGK-dependent increases in total NHE3 and Na(+)-K(+)-ATPase protein expression and activities. The coordination of apical and BLM transporters after aldosterone stimulation is therefore a complex process that requires multiple time- and interdependent cellular processes.  相似文献   

10.
Uroguanylin (UGN) has been proposed as a key regulator of salt and water intestinal transport. Uroguanylin activates cell-surface guanylate cyclase C receptor (GC-C) and modulates cellular function via cyclic GMP (cGMP), thus increasing electrolyte and net water secretion. It has been suggested that the action of UGN could involve the Na(+)/H(+) exchanger, but the actual contribution of this transporter still remains unclear. The objective of our study was to investigate the putative effects of UGN on some members of the Na(+)/H(+) exchanger family (NHEs), as well as to clarify its consequences on transepithelial fluid flow in T84 cells. In order to do so, transepithelial fluid flow (J(v)) was studied by optic techniques and intracellular pH (pH(i)) was measured with a fluorescence method. Results showed that NHE2 is found at the apical membrane and has a major role in Na(+) absorption; NHE1 and NHE4 are localized at the basolateral membrane with a house-keeping role in steady state pH(i). In the assayed conditions, cell exposure to apical UGN increases net secretory J(v), without changing short-circuit currents nor transepithelial resistance, and reduces NHE2 activity. Therefore, at physiological pH, the effect on net J(v) was produced mainly by a reduction in normal Na(+) absorption through NHE2, rather than by the stimulation of electrolyte secretion. Our study shows that the effect of UGN on pH(i) is GC-C/cGMP-mediated and enhanced by sildenafil, thus involving PDE5 enzyme. Additionally, cell exposure to apical UGN results in intracellular alkalinization, probably due to indirect effects on basolateral NHE1 and NHE4, which have a major role in pH(i) regulation.  相似文献   

11.
Four isoforms of the Na+/H+ exchanger (NHE6-NHE9) are distributed to intracellular compartments in human cells. They are localized to Golgi and post-Golgi endocytic compartments as follows: mid- to trans-Golgi, NHE8; trans-Golgi network, NHE7; early recycling endosomes, NHE6; and late recycling endosomes, NHE9. No significant localization of these NHEs was observed in lysosomes. The distribution of these NHEs is not discrete in the cells, and there is partial overlap with other isoforms, suggesting that the intracellular localization of the NHEs is established by the balance of transport in and out of the post-Golgi compartments as the dynamic membrane trafficking. The overexpression of NHE isoforms increased the luminal pH of the compartments in which the protein resided from the mildly acidic pH to the cytosolic pH, suggesting that their in vivo function is to regulate the pH and monovalent cation concentration in these organelles. We propose that the specific NHE isoforms contribute to the maintenance of the unique acidic pH values of the Golgi and post-Golgi compartments in the cell.  相似文献   

12.
We previously demonstrated that there is a paucity of brush-border membrane NHE3 in neonates, the predominant Na(+)/H(+) exchanger in the adult proximal tubule, while NHE8 is relatively highly expressed in neonates compared with adults. We recently showed that metabolic acidosis in neonatal rodents can increase brush-border membrane NHE8 protein expression and Na(+)/H(+) exchange activity. To further examine the regulation of NHE8 by acid, we incubated NRK cells, which express NHE8 but not NHE3, with either acid or control media (6.6 vs. 7.4). There was an increase in Na(+)/H(+) exchanger activity within 6 h of incubation with acid media assessed as the rate of sodium-dependent recovery of pH from an acid load (dpH(i)/dt). The acid stimulation persisted for at least 24 h. The increase in Na(+)/H(+) exchange activity was paralleled by an increase in surface expression of NHE8, assessed by surface biotinylation and streptavidin precipitation. The increase in both apical membrane NHE8 protein expression and Na(+)/H(+) exchange activity with pH 6.6 media compared with 7.4 media was not affected by actinomycin D or cycloheximide consistent with an increase in surface expression independent of mRNA or protein synthesis. Furthermore, there was no increase in total cellular NHE8 protein abundance or mRNA abundance with acid media. Finally, we demonstrate that the increase in surface expression of NHE8 with acid media was blocked by colchicine and cytochalasin D and mediated by acid increasing the rate of exocytosis. In conclusion, NHE8 surface expression and activity are regulated by acid media by increasing the rate of trafficking to the apical membrane.  相似文献   

13.
Diarrhea is a common manifestation of gastrointestinal disorders. Diarrhea-induced losses of fluid and electrolyte could lead to dehydration and electrolyte imbalances, resulting in significant morbidity and mortality, especially in children living in developing countries. Somatostatin, a peptide hormone secreted by D-cells, plays an important role in regulating motility and intestinal Na(+) absorption. Although octreotide, a somatostatin analog, is used to treat diarrhea, its mechanisms of action are unclear. Here we showed that octreotide increased brush-border membrane Na(+)/H(+) exchanger 8 (NHE8) expression in the small intestine to the exclusion of other NHEs that participate in Na(+) absorption. The same effect also occurred in human intestinal cells (Caco-2). We found that the increase of NHE8 expression by somatostatin required p38 mitogen-activated protein kinase (MAPK) activation. Furthermore, the somatostatin receptor SSTR2 antagonist CYN154806 could abolish somatostatin-induced NHE8 expression and p38 MAPK phosphorylation. Thus our data provided the first concrete evidence indicating that somatostatin stimulates intestinal Na(+) absorption by increasing intestinal NHE8 expression through the SSTR2-p38 MAPK pathway.  相似文献   

14.
In an attempt to identify proteins that assemble with the apical membrane Na(+)-H(+) exchanger isoform NHE3, we generated monoclonal antibodies (mAbs) against affinity-purified NHE3 protein complexes isolated from solubilized renal microvillus membrane vesicles. Hybridomas were selected based on their ability to immunoprecipitate NHE3. We have characterized in detail one of the mAbs (1D11) that specifically co-precipitated NHE3 but not villin or NaPi-2. Western blot analyses of microvillus membranes and immunoelectron microscopy of kidney sections showed that mAb 1D11 recognizes a 110-kDa protein highly expressed on the apical membrane of proximal tubule cells. Immunoaffinity chromatography was used to isolate the antigen against which mAb 1D11 is directed. N-terminal sequencing of the purified protein identified it as dipeptidyl peptidase IV (DPPIV) (EC ), which was confirmed by assays of DPPIV enzyme activity. We also evaluated the distribution of the NHE3-DPPIV complex in microdomains of rabbit renal brush border. In contrast to the previously described NHE3-megalin complex, which principally resides in a dense membrane population (coated pits) in which NHE3 is inactive, the NHE3-DPPIV complex was predominantly in the microvillar fraction in which NHE3 is active. Serial precipitation experiments confirmed that anti-megalin and anti-DPPIV antibodies co-precipitate different pools of NHE3. Taken together, these studies revealed an unexpected association of the brush border Na(+)-H(+) exchanger NHE3 with dipeptidyl peptidase IV in the proximal tubule. These findings raise the possibility that association with DPPIV may affect NHE3 surface expression and/or activity.  相似文献   

15.
16.
Colitis in interleukin-2-deficient (IL-2(-/-)) mice resembles ulcerative colitis in humans. We studied epithelial transport and barrier function in IL-2(-/-) mice and used this model to characterize mechanisms of diarrhea during intestinal inflammation. (22)Na(+) and (36)Cl(-) fluxes were measured in proximal colon. Net Na(+) flux was reduced from 4.0 +/- 0.5 to 0.8 +/- 0.5 micromol.h(-1).cm(-2), which was paralleled by diminished mRNA and protein expression of the Na(+)/H(+) exchanger NHE3. Net Cl(-) flux was also decreased from 2.2 +/- 1.6 to -2.7 +/- 0.6 micromol.h(-1).cm(-2), indicating impaired Na(+)-Cl(-) absorption. In distal colon, aldosterone-induced electrogenic Na(+) absorption was 6.1 +/- 0.9 micromol.h(-1).cm(-2) in controls and was abolished in IL-2(-/-) mice. Concomitantly, mRNA expression of beta- and gamma-subunits of the epithelial sodium channel (ENaC) was reduced. Epithelial barrier was studied in proximal colon by impedance technique and mannitol fluxes. In contrast to ulcerative colitis, epithelial resistance was increased and mannitol fluxes were decreased in IL-2(-/-) mice. This was in accord with the findings of reduced ion transport as well as increased expression of tight junction proteins occludin and claudin-1, -2, -3, and -5. In conclusion, the IL-2(-/-) mucosa exhibits impaired electroneutral Na(+)-Cl(-) absorption and electrogenic Na(+) transport due to reduced mRNA and protein expression of NHE3 and ENaC beta- and gamma-subunit mRNA. This represents a model of early intestinal inflammation with absorptive dysfunction due to impaired transport protein expression/function while epithelial barrier is still intact. Therefore, this model is ideal to study regulation of transporter expression independent of barrier defects.  相似文献   

17.
Na(+)/H(+) exchanger 3 (NHE3) kinase A regulatory protein (E3KARP) has been implicated in cAMP- and Ca(2+)-dependent inhibition of NHE3. In the current study, a new role of E3KARP is demonstrated in the stimulation of NHE3 activity. Lysophosphatidic acid (LPA) is a mediator of the restitution phase of inflammation but has not been studied for effects on sodium absorption. LPA has no effect on NHE3 activity in opossum kidney (OK) proximal tubule cells, which lack expression of endogenous E3KARP. However, in OK cells exogenously expressing E3KARP, LPA stimulated NHE3 activity. Consistent with the stimulatory effect on NHE3 activity, LPA treatment increased the surface NHE3 amount, which occurred by accelerating exocytic trafficking (endocytic recycling) to the apical plasma membrane. These LPA effects only occurred in OK cells transfected with E3KARP. The LPA-induced increases of NHE3 activity, surface NHE3 amounts, and exocytosis were completely inhibited by pretreatment with the PI 3-kinase inhibitor, LY294002. LPA stimulation of the phosphorylation of Akt was used as an assay for PI 3-kinase activity. LY294002 completely prevented the LPA-induced increase in Akt phosphorylation, which is consistent with the inhibitory effect of LY294002 on the LPA stimulation of NHE3 activity. The LPA-induced phosphorylation of Akt was the same in OK cells with and without E3KARP. These results show that LPA stimulates NHE3 in the apical surface of OK cells by a mechanism that is dependent on both E3KARP and PI 3-kinase. This is the first demonstration that rapid stimulation of NHE3 activity is dependent on an apical membrane PDZ domain protein.  相似文献   

18.
Na+/H+ exchangers (NHEs) are integral transmembrane proteins found in all mammalian cells. There is substantial evidence indicating that NHEs regulate inflammatory processes. Because intestinal epithelial cells express a variety of NHEs, we tested the possibility that NHEs are also involved in regulation of the epithelial cell inflammatory response. In addition, since the epithelial inflammatory response is an important contributor to mucosal inflammation in inflammatory bowel disease (IBD), we examined the role of NHEs in the modulation of disease activity in a mouse model of IBD. In human gut epithelial cells, NHE inhibition using a variety of agents, including amiloride, 5-(N-methyl-N-isobutyl)amiloride, 5-(N-ethyl-N-isopropyl)- amiloride, harmaline, clonidine, and cimetidine, suppressed interleukin-8 (IL-8) production. The inhibitory effect of NHE inhibition on IL-8 was associated with a decrease in IL-8 mRNA accumulation. NHE inhibition suppressed both activation of the p42/p44 mitogen-activated protein kinase and nuclear factor-kappaB. Finally, NHE inhibition ameliorated the course of IBD in dextran sulfate-treated mice. Our data demonstrate that inhibition of NHEs may be an approach worthy of pursuing for the treatment of IBD.  相似文献   

19.
Apically expressed intestinal and renal sodium-hydrogen exchangers (NHEs) play a major role in Na(+) absorption. Our previous studies on NHE ontogeny have shown that NHE-2 and NHE-3 are expressed at very low levels in young animals. Furthermore, single and/or double NHE-2 and NHE-3 knockout mice display no obvious abnormalities before weaning. These observations suggest that other transporter(s) may be involved in intestinal Na+ absorption during early life. The present studies were designed to clone the novel rat intestinal NHE-8 cDNA and to decipher the NHE-8 protein localization and gene expression pattern during different developmental stages. The rat NHE-8 cDNA has 2,160 bp and encodes a 575-amino acid protein. An antibody against NHE-8 protein was developed. Immunohistochemistry staining indicated apical localization of NHE-8 protein in rat intestinal epithelial cells. The apical localization of NHE-8 was also confirmed by its presence in brush-border membrane and its absence in basolateral membrane preparations. Northern blotting utilizing a NHE-8-specific probe demonstrated higher NHE-8 mRNA expression in young animals compared with adult animals. Western blot analysis revealed a similar pattern. Tissue distribution with multiple human tissue RNA blot showed that NHE-8 was expressed in multiple tissues including the gastrointestinal tract. In conclusion, we have cloned the full-length NHE-8 cDNA from rat intestine and further showed its apical localization in intestinal epithelial cells. We have also shown that NHE-8 gene expression and protein expression were regulated during ontogeny. Our data suggests that NHE-8 may play an important role in intestinal Na+ absorption during early life.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号