首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Biliary phospholipids (PL) stimulate dietary fat absorption by facilitating intraluminal lipid solubilization and by providing surface components for chylomicron (CM) assembly. Impaired hepatic PL availability induces secretion of large very-low-density lipoproteins, but it is unclear whether CM size depends on biliary PL availability. Biliary PL secretion is absent in multidrug resistance protein 2-deficient (Mdr2(-/-)) mice, whereas it is strongly increased in essential fatty acid (EFA)-deficient mice. We investigated lymphatic CM size and composition in mice with absent (Mdr2(-/-)) or enhanced (EFA deficient) biliary PL secretion and in their respective controls under basal conditions and during enteral lipid administration. EFA deficiency was induced by feeding mice a high-fat, EFA-deficient diet for 8 wk. Lymph was collected by mesenteric lymph duct cannulation with or without intraduodenal lipid administration. Lymph was collected in 30-min fractions for up to 4 h, and lymphatic lipoprotein size was determined by dynamic light-scattering techniques. Lymph lipoprotein subfractions were isolated by ultracentrifugation, and lipid composition was measured. Lymphatic CMs were significantly larger in Mdr2(-/-) mice than in Mdr2(+/+) controls either without (+50%) or with (+25%) enteral lipid administration, and molar core-surface ratios were increased [triglyceride (TG)-to-PL ratio: 4.4 +/- 1.4 in Mdr2(-/-) mice vs. 2.7 +/- 0.8 in Mdr2(+/+) mice, P < 0.001]. In contrast, EFA-deficient mice secreted lipoproteins into lymph that were significantly smaller than in EFA-sufficient controls (173 +/- 32 vs. 236 +/- 47 nm), with correspondingly decreased core-surface ratios (TG-to-PL ratio: 3.0 +/- 1.0 in EFA-deficient mice vs. 6.0 +/- 1.9 in EFA-sufficient mice, P < 0.001). CM size increased during fat absorption in both EFA-deficient and EFA-sufficient mice, but the difference between the groups persisted. In conclusion, the present results strongly suggest that the availability of biliary PL is a major determinant of the size of intestinally produced lipoproteins both under basal conditions and during lipid absorption. Altered CM size may have physiological consequences for postprandial CM processing.  相似文献   

2.
Cystic fibrosis (CF) is frequently associated with progressive loss of exocrine pancreas function, leading to incomplete digestion and absorption of dietary fat. Supplementing patients with pancreatic lipase reduces fat excretion, but it does not completely correct fat malabsorption, indicating that additional pathological processes affect lipolysis and/or uptake of lipolytic products. To delineate the role of such (post) lipolytic processes in CF-related fat malabsorption, we assessed fat absorption, lipolysis, and fatty acid uptake in two murine CF models by measuring fecal fat excretion and uptake of oleate- and triolein-derived lipid. Pancreatic and biliary function was investigated by determining lipase secretion and biliary bile salt (BS) secretion, respectively. A marked increase in fecal fat excretion was observed in cftr null mice but not in homozygous DeltaF508 mice. Fecal BS loss was enhanced in both CF models, but biliary BS secretion rates were similar. Uptake of free fatty acid was delayed in both CF models, but only in null mice was a specific reduction in lipolytic activity apparent, characterized by strongly reduced triglyceride absorption. Impaired lipolysis was not due to reduced pancreatic lipase secretion. Suppression of gastric acid secretion partially restored lipolytic activity and lipid uptake, indicating that incomplete neutralization of gastric acid impedes fat absorption. We conclude that fat malabsorption in cftr null mice is caused by impairment of lipolysis, which may result from aberrant duodenal pH regulation.  相似文献   

3.
ABCG5 and ABCG8 require MDR2 for secretion of cholesterol into bile   总被引:1,自引:0,他引:1  
The major pathway for the removal of cholesterol from the body is via secretion into the bile. Three members of the ATP binding cassette (ABC) family, ABCG5 (G5), ABCG8 (G8), and ABCB4 (MDR2), are required for the efficient biliary export of sterols. Here, we examined the interdependence of these three ABC transporters for biliary sterol secretion. Biliary lipid levels in mice expressing no MDR2 (Mdr2-/- mice) were compared with those of Mdr2-/- mice expressing 14 copies of a human G5 (hG5) and hG8 transgene (Mdr2-/-;hG5G8Tg mice). Mdr2-/- mice had only trace amounts of biliary cholesterol and phospholipids. The Mdr2-/-;hG5G8Tg mice had biliary cholesterol levels as low as those of Mdr2-/- mice. Thus, MDR2 expression is required for G5G8-mediated biliary sterol secretion. To determine whether the reduction in fractional absorption of dietary sterols associated with G5G8 overexpression is secondary to the associated increase in biliary cholesterol, we compared the fractional absorption of sterols in Mdr2-/-;hG5G8Tg and hG5G8Tg animals. Inactivation of MDR2 markedly attenuated the reduction in fractional sterol absorption associated with G5G8 overexpression. These results are consistent with the notion that increased biliary cholesterol secretion contributes to the reduction in fractional sterol absorption associated with G5G8 overexpression.  相似文献   

4.
The phosphatidylethanolamine N-methyltransferase (PEMT) pathway of phosphatidylcholine (PC) biosynthesis is not essential for the highly specific acyl chain composition of biliary PC. We evaluated whether the PEMT pathway is quantitatively important for biliary PC secretion in mice under various experimental conditions. Biliary bile salt and PC secretion were determined in mice in which the gene encoding PEMT was inactivated (Pemt(-/-)) and in wild-type mice under basal conditions, during acute metabolic stress (intravenous infusion of the bile salt tauroursodeoxycholate), and during chronic metabolic stress (feeding a taurocholate-containing diet for 1 week). The activity of CTP:phosphocholine cytidylyltransferase, the rate-limiting enzyme of PC biosynthesis via the CDP-choline pathway, and the abundance of multi-drug-resistant protein 2 (Mdr2; encoded by the Abcb4 gene), the canalicular membrane flippase essential for biliary PC secretion, were determined. Under basal conditions, Pemt(-/-) and wild-type mice exhibited similar biliary secretion rates of bile salt and PC ( approximately 145 and approximately 28 nmol/min/100 g body weight, respectively). During acute or chronic bile salt administration, the biliary PC secretion rates increased similarly in Pemt(-/-) and control mice. Mdr2 mRNA and protein abundance did not differ between Pemt(-/-) and wild-type mice. The cytidylyltransferase activity in hepatic lysates was increased by 20% in Pemt(-/-) mice fed the basal (bile salt-free) diet (P < 0.05). We conclude that the biosynthesis of PC via the PEMT pathway is not quantitatively essential for biliary PC secretion under acute or chronic bile salt administration.  相似文献   

5.
Class III P-glycoproteins (Pgps) mediate biliary phosphatidylcholine (PC) secretion. Recent findings that class I P-glycoproteins are able to transport several short-chain phospholipid analogues raises questions about the role of these Pgps in physiological lipid transport. We investigated the biliary secretion of C6-7-nitro-2,1, 3-benzoxadiazol-4-yl (NBD)-labeled ceramide and its metabolites in Mdr1a/b and Mdr2 knockout mice compared to control mice. Biliary secretion of these NBD-lipids was unaffected in Mdr1a/b -/- mice. Thus neither Mdr1a nor Mdr1b Pgp mediates biliary secretion of these lipids. In contrast, secretion of all three NBD-labeled short-chain phospholipids was significantly reduced in Mdr2 -/- mice. As in vitro studies revealed that Mdr2 Pgp is not able to translocate these lipid analogues, we hypothesized that Mdr2 -/- mice had a reduced PC content of the exoplasmic canalicular membrane leaflet so that extraction of the short-chain lipid probes from this membrane by canalicular bile salts was impaired. To investigate this possibility we studied the bile salt-mediated extraction of natural sphingomyelin (SM) and NBD-labeled short-chain SM from small unilamellar vesicles of different lipid composition. Natural SM could be extracted by the bile salt tauroursodeoxycholate from vesicles containing PC, cholesterol (CHOL), and SM (1:2:2) but not from vesicles containing only SM and CHOL (3:2). NBD-labeled short-chain SM could be extracted from vesicles containing PC while its extraction from pure SM:CHOL vesicles was reduced by 65%.These data confirm that the efficiency of NBD-SM extraction depends on the lipid composition and suggest that the canalicular membrane outer leaflet of Mdr2 -/- mice has a reduced PC content.  相似文献   

6.
Hepatic up-regulation of sterol carrier protein 2 (Scp2) in mice promotes hypersecretion of cholesterol into bile and gallstone formation in response to a lithogenic diet. We hypothesized that Scp2 deficiency may alter biliary lipid secretion and hepatic cholesterol metabolism. Male gallstone-susceptible C57BL/6 and C57BL/6(Scp2(-/-)) knockout mice were fed a standard chow or lithogenic diet. Hepatic biles were collected to determine biliary lipid secretion rates, bile flow, and bile salt pool size. Plasma lipoprotein distribution was investigated, and gene expression of cytosolic lipid-binding proteins, lipoprotein receptors, hepatic regulatory enzymes, and intestinal cholesterol absorption was measured. Compared with chow-fed wild-type animals, C57BL/6(Scp2(-/-)) mice had higher bile flow and lower bile salt secretion rates, decreased hepatic apolipoprotein expression, increased hepatic cholesterol synthesis, and up-regulation of liver fatty acid-binding protein. In addition, the bile salt pool size was reduced and intestinal cholesterol absorption was unaltered in C57BL/6(Scp2(-/-)) mice. When C57BL/6(Scp2(-/-)) mice were challenged with a lithogenic diet, a smaller increase of hepatic free cholesterol failed to suppress cholesterol synthesis and biliary cholesterol secretion increased to a much smaller extent than phospholipid and bile salt secretion. Scp2 deficiency did not prevent gallstone formation and may be compensated in part by hepatic up-regulation of liver fatty acid-binding protein. These results support a role of Scp2 in hepatic cholesterol metabolism, biliary lipid secretion, and intracellular cholesterol distribution.  相似文献   

7.
In mammals, the only endogenous pathway for choline biosynthesis is the methylation of phosphatidylethanolamine to phosphatidylcholine (PC) by phosphatidylethanolamine N-methyltransferase (PEMT) coupled to PC degradation. Complete choline deprivation in mice by feeding Pemt(-/-) mice a choline-deficient (CD) diet decreases hepatic PC by 50% and is lethal within 5 days. PC secretion into bile is mediated by a PC-specific flippase, multiple drug-resistant protein 2 (MDR2). Here, we report that mice that lack both PEMT and MDR2 and are fed a CD diet survive for >90 days. Unexpectedly, the amount of PC also decreases by 50% in the livers of Mdr2(-/-)/Pemt(-/-) mice. The Mdr2(-/-)/Pemt(-/-) mice adapt to the severe choline deprivation via choline recycling by induction of phospholipase A(2), choline kinase, and CTP:phosphocholine cytidylyltransferase activities and by a strikingly decreased expression of choline oxidase. The ability of Mdr2(-/-)/Pemt(-/-) mice to survive complete choline deprivation suggests that acute lethality in CD-Pemt(-/-) mice results from rapid depletion of hepatic PC via biliary secretion.  相似文献   

8.
Both estrogen and dietary n-3 polyunsaturated fatty acids are known to be hypocholesterolemic, but appear to exert their effects by different mechanisms. In this study, the interaction between dietary fish oil (rich in n-3 polyunsaturated fatty acids) and estrogen in the regulation of hepatic cholesterol metabolism and biliary lipid secretion in rats was studied. Rats fed a low fat or a fish oil-supplemented diet for 21 days were injected with 17alpha-ethinyl estradiol (5 mg/kg body weight) or the vehicle only (control rats) once per day for 3 consecutive days. Estrogen-treatment led to a marked reduction in plasma cholesterol levels in fish oil-fed rats, which was greater than that observed with either estrogen or dietary fish oil alone. The expression of mRNA for cholesterol 7alpha-hydroxylase was decreased by estrogen in rats fed a low fat or a fish oil-supplemented diet, while the output of cholesterol (micromol/h/kg b.wt.) in the bile was unchanged in both groups. Cholesterol levels in the liver were increased by estrogen in rats given either diet, but there was a significant shift from cholesterol esterification to cholesteryl ester hydrolysis only in the fish oil-fed animals. Estrogen increased the concentration of cholesterol (micromol/ml) in the bile in rats fed the fish oil, but not the low fat diet. However, the cholesterol saturation index was unaffected. The output and concentration of total bile acid was also unaffected, but changes in the distribution of the individual bile acids were observed with estrogen treatment in both low fat and fish oil-fed groups. These results show that interaction between estrogen-treatment and dietary n-3 polyunsaturated fatty acids causes changes in hepatic cholesterol metabolism and biliary lipid secretion in rats, but does not increase the excretion of cholesterol from the body.  相似文献   

9.
Previously, we showed that estradiol replacement in ovariectomized rats produced prominent increases in serum and liver alpha-tocopherol (alphaTP). The present study was conducted to examine whether the estrogen-induced increase in the liver concentrations of alphaTP affects its biliary secretion and the fatty acid compositions of hepatic and biliary lipids. Ten ovariectomized rats were assigned to two groups: five rats were implanted subcutaneously with time-release estradiol pellets (OXE; 25 microg/day/rat) and five with placebo (OXP). Twice daily rats were pair-fed a modified AIN-93G diet containing soybean oil. At 5 weeks, bile was collected via a bile cannula hourly for 8 hours during duodenal infusion of a lipid emulsion (565 micromol triolein and 396 micromol Na-taurocholate/24 mL phosphate buffered saline, pH 6.45) at 3.0 mL/hr. During the 8-hour period, no difference was noted in the hourly rate of bile flow (0.95 mL/hr in OXE rats vs. 0.99 mL/hr in OXP rats). The biliary output of alphaTP for 8 hours was higher in OXE rats (51.6 +/- 3.6 nmol) than OXP rats (31.7 +/- 2.9 nmol). Likewise, the liver concentration of alphaTP was higher in OXE rats (81.9 +/- 3.5 nmol/g liver) than in OXP rats (53.3 +/- 7.4 nmol/g liver). The biliary secretion of phospholipids (PL) for 8 hours was significantly (P < 0.05) higher in OXE rats (55.1 +/- 4.9 micromol) than in OXP rats (42.3 +/- 4.7 micromol). Among the PL fatty acids, the outputs of 20:4 and 22:6n-3 were increased most markedly by estradiol replacement. The total outputs of 22:6n-3 for 8 hours in OXE and OXP rats were 2.95 +/- 0.20 micromol and 1.37 +/- 0.23 micromol, respectively. In the liver, the concentrations of PL 22:5n-3 and 22:6n-3 were elevated significantly in OXE rats. The present results suggest that estradiol may protect hepatic PL and membranes against oxidative damage by improving the liver status of alphaTP.  相似文献   

10.
Pyruvate dehydrogenase (PDH) is an important regulator of carbohydrate oxidation during exercise, and its activity can be downregulated by an increase in dietary fat. The purpose of this study was to determine the acute metabolic effects of differential dietary fatty acids on the activation of the PDH complex (PDHa activity) at rest and at the onset of moderate-intensity exercise. University-aged male subjects (n = 7) underwent two fat-loading trials spaced at least 2 wk apart. Subjects consumed approximately 300 g saturated (SFA) or n-6 polyunsaturated fatty acid (PUFA) fat over the course of 5 h. Following this, participants cycled at 65% of their maximum oxygen uptake for 15 min. Muscle biopsies were taken before and following fat loading and at 1 min exercise. Plasma free fatty acids increased from 0.15 +/- 0.07 to 0.54 +/- 0.19 mM over 5 h with SFA and from 0.11 +/- 0.04 to 0.35 +/- 0.13 mM with n-6 PUFA and were significantly lower throughout the n-6 PUFA trial. PDHa activity was unchanged following fat loading but increased at the onset of exercise in the SFA trial, from 1.18 +/- 0.27 to 2.16 +/- 0.37 mmol x min(-1) x kg wet wt(-1). This effect was negated in the n-6 PUFA trial (1.04 +/- 0.20 to 1.28 +/- 0.36 mmol x min(-1) x kg wet wt(-1)). PDH kinase was unchanged in both trials, suggesting that the attenuation of PDHa activity with n-6 PUFA was a result of changes in the concentrations of intramitochondrial effectors, potentially intramitochondrial NADH or Ca(2+). Our findings suggest that attenuated PDHa activity contributes to the preferential oxidation of n-6 PUFA during moderate-intensity exercise.  相似文献   

11.
Bile acid transport in sister of P-glycoprotein (ABCB11) knockout mice   总被引:3,自引:0,他引:3  
Lam P  Wang R  Ling V 《Biochemistry》2005,44(37):12598-12605
In vertebrates, bile flow is essential for movement of water and solutes across liver canalicular membranes. In recent years, the molecular motor of canalicular bile acid secretion has been identified as a member of the ATP binding cassette transporter (ABC) superfamily, known as sister of P-glycoprotein (Spgp) or bile salt export pump (Bsep, ABCB11). In humans, mutations in the BSEP gene are associated with a very low level of bile acid secretion and severe cholestasis. However, as reported previously, because the spgp(-)(/)(-) knockout mice do not express severe cholestasis and have substantial bile acid secretion, we investigated the "alternative transport system" that allows these mice to be physiologically relatively normal. We examined the expression levels of several ABC transporters in spgp(-)(/)(-) mice and found that the level of multidrug resistance Mdr1 (P-glycoprotein) was strikingly increased while those of Mdr2, Mrp2, and Mrp3 were increased to only a moderate extent. We hypothesize that an elevated level of Mdr1 in the spgp(-)(/)(-) knockout mice functions as an alternative pathway to transport bile acids and protects hepatocytes from bile acid-induced cholestasis. In support of this hypothesis, we showed that plasma membrane vesicles isolated from a drug resistant cell line expressing high levels of P-glycoprotein were capable of transporting bile acids, albeit with a 5-fold lower affinity compared to Spgp. This finding is the first direct evidence that P-glycoprotein (Mdr1) is capable of transporting bile acids.  相似文献   

12.
Essential fatty acid (EFA) deficiency during cholestasis is mainly due to malabsorption of dietary EFA (23). Theoretically, dietary phospholipids (PL) may have a higher bioavailability than dietary triglycerides (TG) during cholestasis. We developed murine models for EFA deficiency (EFAD) with and without extrahepatic cholestasis and compared the efficacy of oral supplementation of EFA as PL or as TG. EFAD was induced in mice by feeding a high-fat EFAD diet. After 3 wk on this diet, bile duct ligation was performed in a subgroup of mice to establish extrahepatic cholestasis. Cholestatic and noncholestatic EFAD mice continued on the EFAD diet (controls) or were supplemented for 3 wk with EFA-rich TG or EFA-rich PL. Fatty acid composition was determined in plasma, erythrocytes, liver, and brain. After 4 wk of EFAD diet, induction of EFAD was confirmed by a sixfold increased triene-to-tetraene ratio (T/T ratio) in erythrocytes of noncholestatic and cholestatic mice (P < 0.001). EFA-rich TG and EFA-rich PL were equally effective in preventing further increase of the erythrocyte T/T ratio, which was observed in cholestatic and noncholestatic nonsupplemented mice (12- and 16-fold the initial value, respectively). In cholestatic mice, EFA-rich PL was superior to EFA-rich TG in decreasing T/T ratios of liver TG and PL (each P < 0.05) and in increasing brain PL concentrations of the long-chain polyunsaturated fatty acids (LCPUFA) docosahexaenoic acid and arachidonic acid (each P < 0.05). We conclude that oral EFA supplementation in the form of PL is more effective than in the form of TG in increasing LCPUFA concentrations in liver and brain of cholestatic EFAD mice.  相似文献   

13.
Decreased bile secretion into the intestine has been associated with low plasma concentrations of essential fatty acids (EFA) in humans. We studied the mechanism behind this relationship by determining the status and absorption of the major dietary EFA, linoleic acid (LA), in control and 1-week bile-diverted rats. The absorption of LA was quantified by a balance method and by measuring plasma concentrations of [13C]LA after its intraduodenal administration. Absolute and relative concentrations of LA in plasma were decreased in bile-diverted rats (P<0.01 and P<0.001, respectively). Fecal excretion of LA was increased at least 20-fold in bile-diverted rats (0.72+/-0.11 vs. 0.03+/-0.00 mmol/day; P<0.0001). Due to increased chow ingestion by bile-diverted rats, net intestinal absorption of LA was similar between bile-diverted and control rats (1.96+/-0.14 vs. 1.91+/-0.07 mmol/day, respectively; P>0.05). After intraduodenal administration of [13C]LA, plasma concentrations were approximately 3-4-fold lower in bile-diverted rats for at least 6 h (P<0.001). Plasma concentrations of both [12C]arachidonic acid and [13C]arachidonic acid were increased in bile-diverted rats (P<0.05). We conclude that decreased plasma concentrations of LA in 1-week bile-diverted rats are not due to decreased net intestinal absorption of LA, but may be related to increased metabolism of LA.  相似文献   

14.
Thyroid hormone lowers serum cholesterol and alters sterol metabolic processes. This laboratory has previously reported increased biliary lipid secretion as an early effect of triiodothyronine (T3) in the rat. To evaluate whether the bile lipid action of T3 is a primary or secondary effect, the isolated-perfused rat liver model was used. Red blood cells in lipid-free buffer were used to perfuse livers of euthyroid and methimazole-hypothyroid rats, as well as hypothyroid rats given T3 at intervals before perfusion. Bile flow was maintained by taurocholate perfusion. Hypothyroid rats had elevated pre-perfusion serum cholesterol compared to euthyroid (107 +/- 4 vs. 65 +/- 2 mg/dl) and decreased biliary cholesterol (0.016 +/- 0.001 vs. 0.031 +/- 0.004 mumol/g liver/h) secretion. Serum cholesterol decreased to euthyroid levels by 18 h after T3, an effect that was prevented by bile duct ligation. Bile cholesterol secretion doubled by 18 h, and reached levels twice euthyroid by 42 h, while phospholipid secretion doubled to levels just above euthyroid. The fourfold increase in biliary cholesterol secretion occurred with lipid-free perfusion and unchanging bile acid uptake or output. It occurred without a fall in hepatic lipoprotein cholesterol secretion. Blockade of cholesterol synthesis with lovastatin failed to alter T3-augmented bile cholesterol secretion. We conclude that T3 induces biliary cholesterol secretion concomitantly with the fall in serum cholesterol. This augmented biliary secretion did not appear to depend upon lipoprotein uptake, increased bile acid transport, or cholesterol synthesis. It did not occur at the expense of hepatic lipoprotein secretion. Facilitated biliary lipid secretion may be a primary effect of T3.  相似文献   

15.
This study was aimed at redefining criteria for essential fatty acid (EFA) deficiency with the use of the direct transesterification procedure (1986. J. Lipid Res. 27: 114-120) and at determining whether a simple assay of total fatty acids (FA) is as predictive of EFA deficiency as the FA pattern from plasma, red cell, and platelet phospholipids. Fasting blood samples were taken from 163 cystic fibrosis (CF) patients who were encouraged to consume 35-40% of their calories as fat. Their mean (+/- SD) age was 9.6 +/- 4.8 yr. The control group consisted of 44 unaffected siblings aged 13.1 +/- 3.1 yr. The 20:3(n-9)/20:4(n-6) ratio in 77 (47%) CF children was more than 2 SD above the values (mean +/- SD) of 0.021 +/- 0.007 obtained in the 44 controls. Groups of EFA-sufficient (n = 10) and EFA-deficient (n = 7) subjects were selected for further studies. The plasma total FA 20:3(n-9)/20:4(n-6) ratios of 0.029 +/- 0.003 in EFA-sufficient and of 0.216 +/- 0.103 in EFA-deficient was as good a discriminant as FA in phospholipids from plasma, red cell PC, and platelets. Among the 21 individual fatty acids, 20:3(n-9), which was also found in controls, and 16:1(n-7) (palmitoleic) proved to be the most sensitive indices of EFA deficiency. They are equally reliable in plasma, red cells, and platelets, but the inverse linear relationship (r = -0.91) between the n-7 family and 18:2(n-6) proved to be more closely associated with EFA deficiency than the one (r = 0.66) between 20:3(n-9) and 20:4(n-6).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
The inbred C57L strain but not the AKR strain of mice carry Lith genes that determine cholesterol gallstone susceptibility. When C57L mice are fed a lithogenic diet containing 15% fat, 1% cholesterol, and 0.5% cholic acid, gallbladder bile displays rapid cholesterol supersaturation, mucin gel accumulation, increases in hydrophobic bile salts, and rapid phase separation of solid and liquid crystals, all of which contribute to the high cholesterol gallstone prevalence rates (D. Q-H. Wang, B. Paigen, and M. C. Carey. J. Lipid Res. 1997. 38: 1395;-1411). We have now determined the hepatic secretion rates of biliary lipids in fasting male and female C57L and AKR mice and the intercross (C57L x AKR)F(1) before and at frequent intervals during feeding the lithogenic diet for 56 days. Bile flow and biliary lipid secretion rates were measured in the first hour of an acute bile fistula and circulating bile salt pool sizes were determined by the "washout" technique after cholecystectomy. Compared with AKR mice, we found that i) C57L and F(1) mice on chow displayed significantly higher secretion rates of all biliary lipids, and larger bile salt pool sizes, as well as higher bile salt-dependent and bile salt-independent flow rates; ii) the lithogenic diet further increased biliary cholesterol and lecithin outputs, but bile salt outputs remained constant. Biliary coupling of cholesterol to lecithin increased approximately 30%, setting the biophysical conditions necessary for cholesterol phase separation in the gallbladder; and iii) no gender differences in lipid secretion rates were noted but male mice exhibited significantly more hydrophobic bile salt pools than females.We conclude that in gallstone-susceptible mice, Lith genes determine increased outputs of all biliary lipids but promote cholesterol hypersecretion disproportionately to lecithin and bile salt outputs thereby inducing lithogenic bile formation.  相似文献   

17.
Conjugated linoleic acid (CLA) induces a body fat loss that is enhanced in mice fed coconut oil (CO), which lacks essential fatty acids (EFA). Our objective was to determine if CO enhancement of CLA-induced body fat loss is due to the lack of EFA. The CLA-EFA interaction was tested by feeding CO and fat free (FF) diets for varying times with and without replenishment of individual EFA. Mice fed CO during only the 2-week CLA-feeding period did not differ from control mice in their adipose EFA content but still tended (P=0.06) to be leaner than mice fed soy oil (SO). Mice raised on CO or FF diets and fed CLA were leaner than the SO+CLA-fed mice (P<0.01). Mice raised on CO and then replenished with linoleic, linolenic, or arachidonic acid were leaner when fed CLA than mice raised on SO (P<0.001). Body fat of CO+CLA-fed mice was not affected by EFA addition. In summary, CO-fed mice not lacking in tissue EFA responded more to CLA than SO-fed mice. Also, EFA addition to CO diets did not alter the enhanced response to CLA. Therefore, the increased response to CLA in mice raised on CO or FF diets appears to be independent of a dietary EFA deficiency.  相似文献   

18.
Essential fatty acids (EFA) are important structural and functional components of cell membranes. Their deficiency has been associated with several clinical and biochemical abnormalities. In the present study, the lipid profile as well as the concentration, composition, and metabolism of lipoproteins were examined in rats rendered EFA-deficient over a period of 12 weeks. Changes in plasma fatty acids mainly induced an increase of palmitoleic (16:1 n-7) and eicosatrienoic (20:3 n-9) acids, while linoleic (18:2 n-6), arachidonic (20:4 n-6), linolenic (18:3 n-3), and docosahexaenoic (22:6 n-3) acids were decreased. The results show increased concentrations of free fatty acids (FFA) (P less than 0.001), triglycerides (P less than 0.001), total cholesterol (P less than 0.02), free cholesterol (P less than 0.005), and phospholipids (P less than 0.05) when compared to pair-fed controls. Similar levels of cholesteryl esters were found in the two groups, and lecithin: cholesterol acyltransferase activity (nmol/100 microliters plasma per h) (8.98 +/- 1.44 vs 8.72 +/- 0.50) did not differ. On the other hand, postheparin extrahepatic lipoprotein lipase (LPL) activity was significantly (P less than 0.002) decreased (5.96 +/- 0.29 vs 7.29 +/- 0.68 mumol FFA/ml per h) and could account for the hypertriglyceridemia as well for the relative triglyceride enrichment of very low density lipoprotein, intermediate density lipoprotein, and low density lipoprotein particles. This enzymatic depletion of LPL was mainly due to the adipose tissue, since a higher level (P less than 0.001) of hepatic lipase (325.8 +/- 16.0 vs 130.8 +/- 9.5 nmol FFA/mg protein per h) was found in liver acetone powder extracts.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
Essential fatty acid (EFA) deficiency in mice induces fat malabsorption. We previously reported indications that the underlying mechanism is located at the level of the intestinal mucosa. We have investigated the effects of EFA deficiency on small intestinal morphology and function. Mice were fed an EFA-deficient or control diet for 8 wk. A 72-h fat balance, the EFA status, and small intestinal histology were determined. Carbohydrate absorptive and digestive capacities were assessed by stable isotope methodology after administration of [U-(13)C]glucose and [1-(13)C]lactose. The mRNA expression and enzyme activity of lactase, and concentrations of the EFA linoleic acid (LA) were measured in small intestinal mucosa. Mice fed the EFA-deficient diet were markedly EFA-deficient with a profound fat malabsorption. EFA deficiency did not affect the histology or proliferative capacity of the small intestine. Blood [13C6]glucose appearance and disappearance were similar in both groups, indicating unaffected monosaccharide absorption. In contrast, blood appearance of [13C]glucose, originating from [1-(13)C]lactose, was delayed in EFA-deficient mice. EFA deficiency profoundly reduced lactase activity (-58%, P<0.01) and mRNA expression (-55%, P<0.01) in mid-small intestine. Both lactase activity and its mRNA expression strongly correlated with mucosal LA concentrations (r=0.77 and 0.79, respectively, P<0.01). EFA deficiency in mice inhibits the capacity to digest lactose but does not affect small intestinal histology. These data underscore the observation that EFA deficiency functionally impairs the small intestine, which in part may be mediated by low LA levels in the enterocytes.  相似文献   

20.
The reaction rate constants and transient spectra of 11 flavonoids and 4 phenolic acids reacting with e(aq)- at neutral pH were measured. Absorption bands of the transients of e(aq)- reacting with the above compounds all located at a wavelength shorter than 400 nm. The e(aq)- scavenging abilities were divided into three groups: (+)catechin ((1.2 +/-0.1) x 10(8) M(-1)s(-1)) < 4-chromanol ((4.4 +/- 0.4) x 10(8) M(-1)s(-1)) < genistein ((6.2+/-0.4) x 10(9) M (-1) s(-1) approximately genistin ((8 +/- 1) x 10(9) M(-1)s(-1)) approximately rutin ((7.6 +/- 0.4) x M(-1)s(-1) approximately caffeic acid ((8.3 +/- 0.5) x 10(9)M(-1)s(-1)) < transcinnamic acid((1.1 +/- 0.1) x 10(10) M(-1)s(-1)) approximately p-coumaric acid ((1.1 +/- 0.1) x 10(10) M(-1)s(-1) approximately 2,4,6-trihydroxylbenzoic acid((1.1 +/- 0.1) x 10(10) M(-1)s(-1)) approximately baicalein ((1.1 +/- 0.5) x 10(10) M(-1)s(-1)) approximately baicalin((1.3 + 0.1) X 10(10) M(-1)s(-1)) approximately naringenin ((1.2 +/- 0.1) x 10(10) M(-1)s(-1)) approximately naringin ((1.0 +/- 0.1) x 10(10) M(-1)s(-1)) approximately gossypin((1.2 +/- 0.1) x 10(10) M(-1)s(-1)) approximately quercetin((1.3 +/- 0.5) x 10(10) M(-1)s(-1)). These results suggested that C4 keto group is the active site for e(aq)- to attack on flavonoids and phenolic acids, whereas the o-dihydroxy structure in B ring, the C2,3 double bond, the C3-OH group, and glucosylation, which are key structures that influence the antioxidant activities of flavonoids and phenolic acids, have little effects on the e(aq)- scavenging activities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号