首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Crystals of sarcoplasmic reticulum Ca(2+)-ATPase   总被引:1,自引:0,他引:1  
High-resolution structures of the Ca(2+)-ATPase have over the last 5 years added a structural dimension to our understanding of the function of this integral membrane protein. The Ca(2+)-ATPase is now by far the membrane protein where the most functionally different conformations have been described in precise structural detail. Here, we review our experience from solving Ca(2+)-ATPase structures: a purification scheme involving minimum handling of the protein to preserve natural and essential lipids, a rational approach to screening for crystals based on a limited number of polyethyleneglycols and many different salts, improving crystal quality using additives, collecting the data and finally solving the structures. We argue that certain of the lessons learned in the present study are very likely to be useful for crystallisation of eukaryotic membrane proteins in general.  相似文献   

2.
The sarcoplasmic reticulum Ca(2+)-ATPase (SERCA1a) pumps Ca(2+) and countertransport protons. Proton pathways in the Ca(2+) bound and Ca(2+)-free states are suggested based on an analysis of crystal structures to which water molecules were added. The pathways are indicated by chains of water molecules that interact favorably with the protein. In the Ca(2+) bound state Ca(2)E1, one of the proposed Ca(2+) entry paths is suggested to operate additionally or alternatively as proton pathway. In analogs of the ADP-insensitive phosphoenzyme E2P and in the Ca(2+)-free state E2, the proton path leads between transmembrane helices M5 to M8 from the lumenal side of the protein to the Ca(2+) binding residues Glu-771, Asp-800 and Glu-908. The proton path is different from suggested Ca(2+) dissociation pathways. We suggest that separate proton and Ca(2+) pathways enable rapid (partial) neutralization of the empty cation binding sites. For this reason, transient protonation of empty cation binding sites and separate pathways for different ions are advantageous for P-type ATPases in general.  相似文献   

3.
The Ca(2+) binding sites of the Ca(2+)-ATPase of skeletal muscle sarcoplasmic reticulum (SR) have been identified as two high-affinity sites orientated towards the cytoplasm, two sites of low affinity facing the lumen, and a transient occluded species that is isolated from both membrane surfaces. Binding and release studies, using (45)Ca(2+), have invoked models with sequential binding and release from high- and low-affinity sites in a channel-like structure. We have characterised turnover conditions in isolated SR vesicles with oxalate in a Ca(2+)-limited state, [Ca(2)](lim), where both high- and low-affinity sites are vacant in the absence of chelators (Biochim. Biophys. Acta 1418 (1999) 48-60). Thapsigargin (TG), a high-affinity specific inhibitor of the Ca(2+)-ATPase, released a fraction of total Ca(2+) at [Ca(2+)](lim) that accumulated during active transport. Maximal Ca(2+) release was at 2:1 TG/ATPase. Ionophore, A23187, and Triton X-100 released the rest of Ca(2+) resistant to TG. The amount of Ca(2+) released depended on the incubation time at [Ca(2+)](lim), being 3.0 nmol/mg at 20 s and 0.42 nmol/mg at 1000 s. Rate constants for release declined from 0. 13 to 0.03 s(-1). The rapidly released early fraction declined with time and k=0.13 min(-1). Release was not due to reversal of the pump cycle since ADP had no effect; neither was release impaired with substrates acetyl phosphate or GTP. A phase of reuptake of Ca(2+) followed release, being greater with shorter delay (up to 200 s) following active transport. Reuptake was minimal with GTP, with delays more than 300 s, and was abolished by vanadate and at higher [TG], >5 microM. Ruthenium red had no effect on efflux, indicating that ryanodine-sensitive efflux channels in terminal cisternal membranes are not involved in the Ca(2+) release mechanism. It is concluded that the Ca(2+) released by TG is from the occluded Ca(2+) fraction. The Ca(2+) occlusion sites appear to be independent of both high-affinity cytoplasmic and low-affinity lumenal sites, supporting a multisite 'in line' sequential binding mechanism for Ca(2+) transport.  相似文献   

4.
To examine the thermal instability and the role of sulfhydryl (SH) oxidation on sarcoplasmic reticulum (SR) Ca(2+)-ATPase function, crude homogenates were prepared from the white portion of the gastrocnemius (WG) adult rat muscles (n = 9) and incubated in vitro for < or =60 min either at a normal resting body temperature (37 degrees C) or at a temperature indicative of exercise-induced hyperthermia (41 degrees C) with DTT and without DTT (CON). In general, treatment with DTT resulted in higher Ca(2+)-ATPase and Ca(2+) uptake values (nmol. mg protein(-1). min(-1), P < 0.05), an effect that was not specific to time of incubation. Incubations at 41 degrees C resulted in lower (P < 0.05) Ca(2+) uptake rates (156 +/- 18 and 35.9 +/- 3.3) compared with 37 degrees C (570 +/- 54 and 364 +/- 26) at 30 and 60 min, respectively. At 37 degrees C, ryanodine (300 microM), which was used to block Ca(2+) release from the calcium release channel, prevented the time-dependent decrease in Ca(2+) uptake. A general inactivation (P < 0.05) of maximal Ca(2+)-ATPase activity (V(max)) in CON was observed with incubation time (0 > 30 > 60 min), with the effect being more pronounced (P < 0.05) at 41 degrees C compared with 37 degrees C. The Hill slope, a measure of co-operativity, and the pCa(50), the cytosolic Ca(2+) concentration required for half-maximal activation of Ca(2+)-ATPase activity, decreased (P < 0.05) at 41 degrees C only. Treatment with DTT attenuated the alterations in enzyme kinetics. The increase in V(max) with the Ca(2+) ionophore A-23187 was less pronounced at 41 degrees C compared with 37 degrees C. It is concluded that exposure of homogenates to a temperature typically experienced in exercise results in a reduction in the coupling ratio, which is mediated primarily by lower Ca(2+) uptake and occurs as a result of increases in membrane permeability to Ca(2+). Moreover, the decreases in Ca(2+)-ATPase kinetics in WG with sustained heat stress result from SH oxidation.  相似文献   

5.
Regulation of cardiac sarcoplasmic reticulum (Ca2+ + Mg2+)-ATPase   总被引:2,自引:0,他引:2  
Summary The two high affinity calcium binding sites of the cardiac (Ca2+ + Mg2+)-ATPase have been identified with the use of Eu3+. Eu3+ competes for the two high affinity calcium sites on the enzyme. With the use of laser-pulsed fluorescent spectroscopy, the environment of the two sites appear to be heterogeneous and contain different numbers of H2O molecules coordinated to the ion. The ion appears to be occluded even further in the presence of ATP. Using non-radiative energy transfer studies, we were able to estimate the distance between the two Ca2+ sites to be between 9.4 to 10.2 A in the presence of ATP. Finally, from the assumption that the calcium site must contain four carboxylic side chains to provide the 6–8 ligands needed to coordinate calcium, and based on our recently published data, we predict the peptidic backbone of the two sites.  相似文献   

6.
Arsenate, an analogue of inorganic phosphate, causes an increase in the intrinsic fluorescence of the Ca(2+)-ATPase of sarcoplasmic reticulum membranes. This increase in fluorescence is observed regardless of whether Ca(2+)-loaded or leaky vesicles are assayed. The maximal fluorescence change (2-3%) is observed at pH 6.0 in the presence of Mg2+ and is abolished by the addition of micromolar Ca2+ concentrations. Dimethyl sulfoxide (20% v/v) increases the enzyme's affinity for arsenate one order of magnitude. It is concluded that arsenate, after binding, promotes the same conformational change of the enzyme as that produced by Pi.  相似文献   

7.
Use of the nonphosphorylating beta,gamma-bidentate chromium(III) complex of ATP to induce a stable Ca(2+)-occluded form of the sarcoplasmic reticulum Ca(2+)-ATPase was combined with molecular sieve high performance liquid chromatography of detergent-solubilized protein to examine the ability of the Ca(2+)-ATPase mutants Gly-233-->Glu, Gly-233-->Val, Glu-309-->Gln, Gly-310-->Pro, Pro-312-->Ala, Ile-315-->Arg, Leu-319-->Arg, Asp-703-->Ala, Gly-770-->Ala, Glu-771-->Gln, Asp-800-->Asn, and Gly-801-->Val to occlude Ca2+. This provided a new approach to identification of amino acid residues involved in Ca2+ binding and in the closure of the gates to the Ca2+ binding pocket of the Ca(2+)-ATPase. The "phosphorylation-negative" mutant Asp-703-->Ala and mutants of ADP-sensitive phosphoenzyme intermediate type were fully capable of occluding Ca2+, as was the mutant Gly-770-->Ala. Mutants in which carboxylic acid-containing residues in the putative transmembrane segments had been substituted ("Ca(2+)-site mutants") and mutant Gly-801-->Val were unable to occlude either of the two calcium ions. In addition, the mutant Gly-310-->Pro, previously classified as ADP-insensitive phosphoenzyme intermediate type (Andersen, J.P., Vilsen, B., and MacLennan, D.H. (1992). J. Biol. Chem. 267, 2767-2774), was unable to occlude Ca2+, even though Ca(2+)-activated phosphorylation from MgATP took place in this mutant.  相似文献   

8.
Toyoshima C  Nomura H  Sugita Y 《FEBS letters》2003,555(1):106-110
The structures of the Ca(2+)-ATPase (SERCA1a) have been determined for five different states by X-ray crystallography. Detailed comparison of the structures in the Ca(2+)-bound form and unbound (but thapsigargin-bound) form reveals that very large rearrangements of the transmembrane helices take place accompanying Ca2+ dissociation and binding and that they are mechanically linked with equally large movements of the cytoplasmic domains. The meanings of the rearrangements of the transmembrane helices and those of the cytoplasmic domains, and the mechanistic roles of the phosphorylation are now becoming clear.  相似文献   

9.
The Ca(2+)-ATPase from sarcoplasmic reticulum reacts with phenylmaleimide, producing the inhibition of the ATPase activity following a pseudo-first-order kinetic with a rate constant of 19 M(-1) s(-1). Calcium and ATP binding are not altered upon phenylmaleimide inhibition. However, the presence of millimolar calcium, and to a lesser extent magnesium, in the inhibition medium enhances the effect of phenylmaleimide, causing a higher degree of inhibition. Solubilization with C(12)E(8) does not affect the ATPase inhibition, excluding any kind of participation of the lipid bilayer. Phosphorylation with ATP in steady-state conditions as well as phosphorylation with inorganic phosphate in equilibrium conditions were strongly inhibited. Conversely, we have found that the occupancy of the phosphorylation site by ortovanadate fully protects against the inhibitory effect of phenylmaleimide, indicating a conformational transition associated with the phosphorylation reaction.  相似文献   

10.
A method for tethering proteins to solid surfaces has been utilized to form vectorially oriented monolayers of the detergent-solubilized integral membrane protein Ca(2+) -ATPase from the sarcoplasmic reticulum (SR). Bifunctional, organic self-assembled monolayers (SAMs) possessing "headgroup" binding specificity for the substrate and "endgroup" binding specificity for the enzyme were utilized to tether the enzyme to the substrate. Specifically, an amine-terminated 11-siloxyundecaneamine SAM was found to bind the Ca(2+)-ATPase primarily electrostatically. The Ca(2+)-ATPase was labeled with the fluorescent probe 5-(2-[(iodoacetyl)amino]ethyl)aminonaphthalene-1-sulfonic acid before monolayer formation. Consequently, fluorescence measurements performed on amine-terminated SAM/enzyme monolayers formed on quartz substrates served to establish the nature of protein binding. Formation of the monolayers on inorganic multilayer substrates fabricated by molecular beam epitaxy made it possible to use x-ray interferometry to determine the profile structure for the system, which was proved correct by x-ray holography. The profile structures established the vectorial orientation of the Ca(2+)-ATPase within these monolayers, to a spatial resolution of approximately 12 A. Such vectorially oriented monolayers of detergent-solubilized Ca(2+)-ATPase from SR make possible a wide variety of correlative structure/function studies, which would serve to elucidate the mechanism of Ca(2+) transport by this enzyme.  相似文献   

11.
The dependence of the (Ca2+ + Mg2+)-ATPase activity of sarcoplasmic reticulum vesicles upon the concentration of pentobarbital shows a biphasic pattern. Concentrations of pentobarbital ranging from 2 to 8 mM produce a slight stimulation, approximately 20-30%, of the ATPase activity of sarcoplasmic reticulum vesicles made leaky to Ca2+, whereas pentobarbital concentrations above 10 mM strongly inhibit the activity. The purified ATPase shows a higher sensitivity to pentobarbital, namely 3-4-fold shift towards lower values of the K0.5 value of inhibition by this drug. These effects of pentobarbital are observed over a wide range of ATP concentrations. In addition, this drug shifts the Ca2+ dependence of the (Ca2+ + Mg2+)-ATPase activity towards higher values of free Ca2+ concentrations and increases several-fold the passive permeability to Ca2+ of the sarcoplasmic reticulum membranes. At the concentrations of pentobarbital that inhibit this enzyme in the sarcoplasmic reticulum membrane, pentobarbital does not significantly alter the order parameter of these membranes as monitored with diphenylhexatriene, whereas the temperature of denaturation of the (Ca2+ + Mg2+)-ATPase is decreased by 4-5 C degrees, thus, indicating that the conformation of the ATPase is altered. The effects of pentobarbital on the intensity of the fluorescence of fluorescein-labeled (Ca2+ + Mg2+)-ATPase in sarcoplasmic reticulum also support the hypothesis of a conformational change in the enzyme induced by millimolar concentrations of this drug. It is concluded that the inhibition of the sarcoplasmic reticulum ATPase by pentobarbital is a consequence of its binding to hydrophobic binding sites in this enzyme.  相似文献   

12.
In sarcoplasmic reticulum vesicles or in the (Ca2+ + Mg2+)-ATPase purified from sarcoplasmic reticulum, quercetin inhibited ATP hydrolysis, Ca2+ uptake, ATP-Pi exchange, ATP synthesis coupled to Ca2+ efflux, ATP-ADP exchange, and steady state phosphorylation of the ATPase by inorganic phosphate. Steady state phosphorylation of the ATPase by ATP was not inhibited. Quercetin also inhibited ATP and ADP binding but not the binding of Ca2+. The inhibition of ATP-dependent Ca2+ transport by quercetin was reversible, and ATP, Ca2+, and dithiothreitol did not affect the inhibitory action of quercetin.  相似文献   

13.
The fast-twitch skeletal muscle Ca(2+)-ATPase isoenzyme, SERCA1a, is localized in chick skeletal myotubes to both the sarcoplasmic reticulum (SR) and to the nuclear envelope, an extension of the endoplasmic reticulum (ER). The ER labeling remained after cycloheximide treatment, indicating that it did not represent newly synthesized SERCA1a in transit to the SR. Expression of the cDNA encoding SERCA1a in cultured non-muscle cells led to the localization of the enzyme in the ER, as indicated by organelle morphology and the co-localization of SERCA1a with the endogenous ER luminal protein, BiP. Immunopurification analysis showed that SERCA1a was not bound to BiP, nor was any degradation apparent. Thus, the SR Ca(2+)-ATPase appears to contain ER targeting information.  相似文献   

14.
Electron microscopy of multilamellar crystals of CA(2+)-ATPase currently offers the best opportunity for obtaining a high-resolution structure of this ATP-driven ion pump. Under certain conditions small, wormlike crystals are formed and provide views parallel to the lamellar plane, from which parameters of lamellar stacking can be directly measured. Assuming that molecular packing is the same, data from these views could supplement those obtained by tilting large, thin platelike crystals. However, we were surprised to discover that the lamellar spacing was variable and depended on the amount of glycerol present during crystallization (20% versus 5%). Projection maps (h,0,l) from these womklike crystals suggest different molecular contacts that give rise to the different lamellar spacings. Based on an orthogonal projection map (h,k,0) from collapsed, wormlike crystals and on x-ray powder patterns, we conclude that molecular packing within the lamellar plane is the same as that in thin, platelike crystals and is unaffected by glycerol. Finally, the orientation of molecules in the lamellar plane was characterized from freeze-dried, shadowed crystals. Comparing the profile of molecules in these multilamellar crystals with that previously observed in helical tubes induced by vanadate gives structural evidence of the conformational change that accompanies binding of calcium of Ca(2+)-ATPase.  相似文献   

15.
The effect of anti-ATPase antibodies with epitopes near Asp-351 (PR-8), Lys-515 (PR-11) and the ATP binding domain (D12) of the Ca(2+)-ATPase of sarcoplasmic reticulum (EC 3.6.1.38) was analyzed. The PR-8 and D12 antibodies reacted freely with the Ca(2+)-ATPase in the native membrane, indicating that their epitopes are exposed on the cytoplasmic surface. Both PR-8 and D12 interfered with the crystallization of the Ca(2+)-ATPase, suggesting that their binding sites are at interfaces between ATPase molecules. PR-11 had no effect on ATPase-ATPase interactions or on the ATPase activity of sarcoplasmic reticulum. The epitope of PR-11 is suggested to be the VIDRC sequence at residues 520-525, while that of D12 at residues 670-720 of the Ca(2+)-ATPase. The use of predictive algorithms of antigenicity for identification of potential antigenic determinants in the Ca(2+)-ATPase is analyzed.  相似文献   

16.
Liu M  Barth A 《Biophysical journal》2003,85(5):3262-3270
Infrared spectroscopy was used to monitor the conformational change of 2',3'-O-(2,4,6-trinitrophenyl)adenosine 5'-monophosphate (TNP-AMP) binding to the sarcoplasmic reticulum Ca(2+)-ATPase. TNP-AMP binding was observed in a competition experiment: TNP-AMP is initially bound to the ATPase but is then replaced by beta,gamma-iminoadenosine 5'-triphosphate (AMPPNP) after AMPPNP release from P(3)-1-(2-nitrophenyl)ethyl AMPPNP (caged AMPPNP). The resulting infrared difference spectra are compared to those of AMPPNP binding to the free ATPase, to obtain a difference spectrum that reflects solely TNP-AMP binding to the Ca(2+)-ATPase. TNP-AMP used as an ATP analog in the crystal structure of the sarcoplasmic reticulum Ca(2+)-ATPase was found to induce a conformational change upon binding to the ATPase. It binds with a binding mode that is different from that of AMPPNP, ATP, and other tri- and diphosphate nucleotides: TNP-AMP binding causes partially opposite and smaller conformational changes compared to ATP or AMPPNP. The conformation of the TNP-AMP ATPase complex is more similar to that of the E1Ca(2) state than to that of the E1ATPCa(2) state. Regarding the use of infrared spectroscopy as a technique for ligand binding studies, our results show that infrared spectroscopy is able to distinguish different binding modes.  相似文献   

17.
18.
Epitopes for a number of monoclonal antibodies (mAbs) binding (Ca(2+)-Mg2+)-ATPase purified from skeletal muscle sarcoplasmic reticulum have been defined by studying binding to fusion proteins generated from cDNA fragment libraries. Comparison of these results with those of previous studies of binding of mAbs to proteolytic fragments of the ATPase have allowed the definition of the epitopes to within approx. 100 residues and for one (mAb 1/2H7) to within 45 residues. The experiments suggest considerable exposure of the nucleotide binding domain of the ATPase on the top surface of the protein. Those mAbs that were found to inhibit steady-state ATPase activity were found to bind to epitopes in the nucleotide binding domain of the ATPase.  相似文献   

19.
S Hechtenberg  D Beyersmann 《Enzyme》1991,45(3):109-115
The effect of Cd2+, Pb2+ and Hg2+ on the Ca(2+)-ATPase activity of sarcoplasmic reticulum from rabbit muscle was studied. The concentration of relevant free and complex species for the assay conditions have been computed. As a result, ATP hydrolysis was found to be inhibited with an IC50 value of 950 nmol/l free Cd2+ or 95 nmol/l free Pb2+. Although calculation of the free Hg2+ was not possible, the comparison of the IC50 values for total metal ions show that Hg2+ is the strongest inhibitor of enzyme activity. The inhibition by Cd2+ seems to be independent of substrate concentration, whereas the inhibitory effect of Pb2+ is lowered in the presence of higher MgATP concentrations. Our data illustrate that the three heavy metals are potent inhibitors of the Ca2+ pump. Therefore low concentrations of these metal ions may disturb intracellular Ca2+ homeostasis and act on Ca(2+)-mediated cell functions.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号