首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The white part of citrus peel, the albedo, has a special role in water relations of both fruit and leaves from early on in fruit development. In times of drought, this tissue acts as a water reservoir for juice sacs, seeds and leaves. When water was injected into the albedo, free water was undetectable using magnetic resonance imaging. Microscopy showed tightly packed cells with little intercellular space, and thick cell walls. Cell wall material comprised 21% of the fresh albedo weight, and contained 26.1% galacturonic acid, the main constituent of pectin. From this, we postulated that pectin of the cell wall was responsible for the high water-binding capacity of the immature lemon albedo. Cell wall material was extracted using mild procedures that keep polymers intact, and four pectic fractions were recovered. Of these fractions, the SDS and chelator-soluble fractions showed viscosities ten and twenty times higher than laboratory-grade citrus pectin or the other albedo-derived pectins. The yield of these two pectins represented 28% of the cell walls and 62% of the galacturonic acid content of immature lemon albedo. We concluded that, from viscosity and abundance, these types of pectin account for the high water-binding capacity of this tissue. Compositional analyses showed that the two highly viscous pectic fractions differ in galacturonic acid content, degree of branching and length of side chains from the less viscous albedo-derived pectins. The most striking feature of these highly viscous pectins, however, was their high molecular weight distribution compared to the other pectic fractions.  相似文献   

2.
Changes in pectin, hemicelluloses and cellulose in the cell walls of outer pericarp tissues of kiwifruit (Actinidia deliciosa cv. Hayward) were determined during development. An extensive amylase digestion was employed to remove possible contaminating starch before and after fractionation of wall polysaccharides. An initial treatment of crude cell walls with alpha-amylase and iso-amylase or DMSO, was found to be insufficient removing the contaminating starch from wall polysaccharides. After EDTA and alkaline extraction, the pectic and hemicellulose fractions were again treated with the combination of alpha-amylase and iso-amylase. The amounts of predominant pectic sugars Gal, Rha and Ara, unaffected by the first and second amylase digestion, decreased markedly during the early fruit enlargement (8-12 weeks after anthesis, WAA), then increased during 16-20 WAA, and finally declined during fruit maturity (20-25 WAA). The molecular-mass of pectic polysaccharides decreased during fruit enlargement (8-16 WAA), and then changed little during fruit maturity. The higher molecular-mass components of hemicelluloses in HC-I and HC-II fractions detected at the early stage of fruit enlargement (8-12 WAA) were degraded at the late stage of fruit enlargement (16 WAA), but then remained stable at the much lower molecular-mass till fruit maturity. The amount of Xyl in the HC-II fraction decreased during the early fruit enlargement and fruit maturity, an observation that was consistent with xyloglucan (XG) content. The gel permeation profiles of XG showed a slight increase in higher molecular-mass components during 8-12 WAA, but thereafter there was no significant down-shift of molecular-mass until harvest time. The cellulose fraction increased steadily during fruit enlargement through maturity, but the XG contents in HC-I and HC-II fractions remained at a low level during these stages. Methylation analysis of HC-I and HC-II fractions confirmed the low level of XG in the hemicellulosic fractions. It was suggested that pectin in the outer pericarp of kiwifruit was degraded at the early stage of fruit enlargement, but XG remains constant during fruit enlargement and maturation.  相似文献   

3.
It has previously been shown that down-regulation of an auxin response factor gene (DR12) results in pleiotropic phenotypes including enhanced fruit firmness in antisense transgenic tomato (AS-DR12). To uncover the nature of the ripening-associated modifications affecting fruit texture, comparative analyses were performed of pectin composition and structure in cell wall pericarp tissue of wild-type and AS-DR12 fruit at mature green (MG) and red-ripe (RR) stages. Throughout ripening, pectin showed a decrease in methyl esterification and in the content of galactan side chains in both genotypes. At mature green stage, pectin content in methyl ester groups was slightly higher in AS-DR12 fruit than in wild type, but this ratio was reversed at the red-ripe stage. The amount of water- and oxalate-soluble pectins increased at the red-ripe stage in the wild type, but decreased in AS-DR12. The distribution of methyl ester groups on the homogalaturonan backbone differed between the two genotypes. There was no evidence of more calcium cross-linked homogalacturan involved in cell-to-cell adhesion in AS-DR12 compared with wild-type fruit. Furthermore, the outer pericarp contains higher proportion of small cells in AS-DR12 fruit than in wild type and higher occurrence of (1-->5) alpha-L-arabinan epitope at the RR stage. It is concluded that the increased firmness of transgenic fruit does not result from a major impairment of ripening-related pectin metabolism, but rather involves differences in pectin fine structure associated with changes in tissue architecture.  相似文献   

4.
以‘雨花三号’水蜜桃果实为试材,分别在5℃(低温)和20℃(常温)贮藏一段时间后,研究桃果实采后细胞壁多糖降解、硬度以及乙烯释放速率的变化特征。结果表明,乙烯释放高峰明显滞后于果实采后硬度的快速下降期。不同温度下贮藏过程中果实细胞壁多糖变化的对比表明,低温抑制了细胞壁果胶和细胞壁其余组分的变化,从而抑制了果实的软化。富含半乳糖醛酸的果胶主链断裂。果胶和细胞壁其余组分也发生了半乳糖和阿拉伯糖等中性糖的损失,说明果胶和细胞壁其余组分的增溶及其侧链中性糖的降解也是桃果实采后软化的重要因素,这可能是由多种相关多糖降解酶的作用所导致的。但半纤维素多糖中中性糖的降解对桃果实采后软化的进程并没有影响。  相似文献   

5.
Plant cell walls consist of carbohydrate, protein, and aromatic compounds and are essential to the proper growth and development of plants. The carbohydrate components make up ∼90% of the primary wall, and are critical to wall function. There is a diversity of polysaccharides that make up the wall and that are classified as one of three types: cellulose, hemicellulose, or pectin. The pectins, which are most abundant in the plant primary cell walls and the middle lamellae, are a class of molecules defined by the presence of galacturonic acid. The pectic polysaccharides include the galacturonans (homogalacturonan, substituted galacturonans, and RG-II) and rhamnogalacturonan-I. Galacturonans have a backbone that consists of α-1,4-linked galacturonic acid. The identification of glycosyltransferases involved in pectin synthesis is essential to the study of cell wall function in plant growth and development and for maximizing the value and use of plant polysaccharides in industry and human health. A detailed synopsis of the existing literature on pectin structure, function, and biosynthesis is presented.  相似文献   

6.
The Cnr ( C olourless n on- r ipening) tomato ( Lycopersicon esculentum Mill.) mutant has an aberrant fruit-ripening phenotype in which fruit do not soften and have reduced cell adhesion between pericarp cells. Cell walls from Cnr fruit were analysed in order to assess the possible contribution of pectic polysaccharides to the non-softening and altered cell adhesion phenotype. Cell wall material (CWM) and solubilised fractions of mature green and red ripe fruit were analysed by chemical, enzymatic and immunochemical techniques. No major differences in CWM sugar composition were detected although differences were found in the solubility and composition of the pectic polysaccharides extracted from the CWM at both stages of development. In comparison with the wild type, the ripening-associated solubilisation of homogalacturonan-rich pectic polysaccharides was reduced in Cnr. The proportion of carbohydrate that was chelator-soluble was 50% less in Cnr cell walls at both the mature green and red ripe stages. Chelator-soluble material from ripe-stage Cnr was more susceptible to endo-polygalacturonase degradation than the corresponding material from wild-type fruit. In addition, cell walls from Cnr fruit contained larger amounts of galactosyl- and arabinosyl-containing polysaccharides that were tightly bound in the cell wall and could only be extracted with 4 M KOH, or remained in the insoluble residue. The complexity of the cell wall alterations that occur during fruit ripening and the significance of different extractable polymer pools from cell walls are discussed in relation to the Cnr phenotype.  相似文献   

7.
To develop antibody probes for the neutral side chains of pectins, antisera were generated to a pectic galactan isolated from tomato (Lycopersicon esculentum) pericarp cell walls and to a (1[->]4)-[beta]-galactotetraose-bovine serum albumin neoglycoprotein. The use of these two antisera in immunochemical assays and immunolocalization studies indicated that they had very similar specificities. A monoclonal antibody (LM5) was isolated and characterized subsequent to immunization with the neoglycoprotein. Hapten inhibition studies revealed that the antibody specifically recognized more than three contiguous units of (1[->]4)-[beta]-galactosyl residues. The antigalactan antibody was used to immunolocalize the galactan side chains of pectin in tomato fruit pericarp and tomato petiole cell walls. Although the LM5 epitope occurs in most cell walls of the tomato fruit, it was absent from both the locular gel and the epidermal and subepidermal cells. Furthermore, in contrast to other anti-pectin antibodies, LM5 did not label the cell wall thickenings of tomato petiole collenchyma.  相似文献   

8.
Changes in Cell Wall Polysaccharides of Green Bean Pods during Development   总被引:2,自引:0,他引:2  
The changes in cell wall polysaccharides and selected cell wall-modifying enzymes were studied during the development of green bean (Phaseolus vulgaris L.) pods. An overall increase of cell wall material on a dry-weight basis was observed during pod development. Major changes were detected in the pectic polymers. Young, exponentially growing cell walls contained large amounts of neutral, sugar-rich pectic polymers (rhamnogalacturonan), which were water insoluble and relatively tightly connected to the cell wall. During elongation, more galactose-rich pectic polymers were deposited into the cell wall. In addition, the level of branched rhamnogalacturonan remained constant, while the level of linear homogalacturonan steadily increased. During maturation of the pods, galactose-rich pectic polymers were degraded, while the accumulation of soluble homogalacturonan continued. During senescence there was an increase in the amount of ionically complexed pectins, mainly at the expense of freely soluble pectins. The most abundant of the enzymes tested for was pectin methylesterase. Peroxidase, beta-galactosidase, and alpha-arabinosidase were also detected in appreciable amounts. Polygalacturonase was detected only in very small amounts throughout development. The relationship between endogenous enzyme levels and the properties of cell wall polymers is discussed with respect to cell wall synthesis and degradation.  相似文献   

9.
A water-soluble, ethanol-insoluble extract of autolytically inactive tomato (Lycopersicon esculentum Mill.) pericarp tissue contains a series of galacturonic acid-containing (pectic) oligosaccharides that will elicit a transient increase in ethylene biosynthesis when applied to pericarp discs cut from mature green fruit. The concentration of these oligosaccharides in extracts (2.2 [mu]g/g fresh weight) is in excess of that required to promote ethylene synthesis. Oligomers in extracts of ripening fruits were partially purified by preparative high-performance liquid chromatography, and their compositions are described. Pectins were extracted from cell walls prepared from mature green fruit using chelator and Na2CO3 solutions. These pectins are not active in eliciting ethylene synthesis. However, treatment of the Na2CO3-soluble, but not the chelator-soluble, pectin with pure tomato polygalacturonase 1 generates oligomers that are similar to those extracted from ripening fruit (according to high-performance liquid chromatography analysis) and are active as elicitors. The possibility that pectin-derived oligomers are endogenous regulators of ripening is discussed.  相似文献   

10.

Background

One of the main factors that reduce fruit quality and lead to economically important losses is oversoftening. Textural changes during fruit ripening are mainly due to the dissolution of the middle lamella, the reduction of cell-to-cell adhesion and the weakening of parenchyma cell walls as a result of the action of cell wall modifying enzymes. Pectins, major components of fruit cell walls, are extensively modified during ripening. These changes include solubilization, depolymerization and the loss of neutral side chains. Recent evidence in strawberry and apple, fruits with a soft or crisp texture at ripening, suggests that pectin disassembly is a key factor in textural changes. In both these fruits, softening was reduced as result of antisense downregulation of polygalacturonase genes. Changes in pectic polymer size, composition and structure have traditionally been studied by conventional techniques, most of them relying on bulk analysis of a population of polysaccharides, and studies focusing on modifications at the nanostructural level are scarce. Atomic force microscopy (AFM) allows the study of individual polymers at high magnification and with minimal sample preparation; however, AFM has rarely been employed to analyse pectin disassembly during fruit ripening.

Scope

In this review, the main features of the pectin disassembly process during fruit ripening are first discussed, and then the nanostructural characterization of fruit pectins by AFM and its relationship with texture and postharvest fruit shelf life is reviewed. In general, fruit pectins are visualized under AFM as linear chains, a few of which show long branches, and aggregates. Number- and weight-average values obtained from these images are in good agreement with chromatographic analyses. Most AFM studies indicate reductions in the length of individual pectin chains and the frequency of aggregates as the fruits ripen. Pectins extracted with sodium carbonate, supposedly located within the primary cell wall, are the most affected.  相似文献   

11.
The ripening of discs cut from the pericarp of green tomato (Lycopersicon esculentum Mill.) fruits is inhibited by treatments with GA3 and several divalent cations, including calcium. Normal ripening is marked by an increase in the solubility of wall pectins. Calcium and GA3 alter the pattern of pectin solubility changes. In part this may be because polygalacturonase synthesis and/or secretion to the apoplast is reduced. The impact of divalent cations on ripening-related tissue softening appears to have a nonmetabolic component. Ripening-inhibiting ions rapidly reduce tissue softening, pectin solubilization and the normal ripening-related decrease in cellular turgor.  相似文献   

12.
Summary Pectic polysaccharides are major components of the plant cell wall matrix and are known to perform many important functions for the plant. In the course of our studies on the putative role of pectic polysaccharides in the control of cell elongation, we have examined the distribution of polygalacturonans in the epidermal and cortical parenchyma cell walls of flax seedling hypocotyls. Pectic components have been detected with (1) the nickel (Ni2+) staining method to visualize polygalacturonates, (2) monoclonal antibodies specific to low (JIM5) and highly methylesterified (JIM7) pectins and (3) a combination of subtractive treatment and PATAg (periodic acid-thiocarbohydrazide-silver proteinate) staining. In parallel, calcium (Ca2+) distribution has been imaged using SIMS microscopy (secondary ion mass spectrometry) on cryo-prepared samples and TEM (transmission electron microscopy) after precipitation of calcium with potassium pyroantimonate. Our results show that, at the tissular level, polygalacturonans are mainly located in the epidermal cell walls, as revealed by the Ni2+ staining and immunofluorescence microscopy with JIM5 and JIM7 antibodies. In parallel, Ca2+ distribution points to a higher content of this cation in the epidermal walls compared to cortical parenchyma walls. At the ultrastructural level, immunogold labeling with JIM5 and JIM7 antibodies shows a differential distribution of pectic polysaccharides within cell walls of both tissues. The acidic polygalacturonans (recognized by JIM5) held through calcium bridges are mainly found in the outer part of the external wall of epidermal cells. In contrast, the labeling of methylesterified pectins with JIM7 is slightly higher in the inner part than in the outer part of the wall. In the cortical parenchyma cells, acidic pectins are restricted to the cell junctions and the wall areas in contact with the air-spaces, whereas methylesterified pectins are evenly distributed all over the wall. In addition, the pyroantimonate precipitation method reveals a clear difference in the Ca2+ distribution in the epidermal wall, suggesting that this cation is more tightly bound to acidic pectins in the outer part than in the inner part of that wall. Our findings show that the distribution of pectic polysaccharides and the nature of their linkages differ not only between tissues, but also within a single wall of a given cell in flax hypocotyls. The differential distribution of pectins and Ca2+ in the external epidermal wall suggests a specific control of the demethylation of pectins and a central role for Ca2+ in this regulation.Abbreviations Cdta diamino-1,2-cyclohexane tetra-acetic acid - PATAg periodic acid-thiocarbohydrazide-silver proteinate - PGA polygalacturonic acid - PME pectin methylesterase - RG I rhamnogalacturonan I - SIMS secondary ion mass spectrometry - TEM transmission electron microscopy  相似文献   

13.
The catalytic activity of endopolygalacturonase (PG, EC 3.2.1.15) against pectic polymers in vitro is typically not expressed in vivo. In the present study, the binding and catalytic properties of PG isozyme 2 and the influence of the β-subunit protein were investigated in cell walls prepared from tomato fruit expressing an antisense gene to the β-subunit protein. Cell walls prepared from mature-green fruit were employed for binding and assay of PG2. Walls were provided with rate-limiting quantities of purified PG2 and incubated at 100 mM KCl, pH 4.5, or 25 mM KCl, pH 6.0. Cell walls of both β-subunit antisense and wild-type fruit retained comparable quantities of added PG2. The release of pectin from PG2-loaded walls was proportional to the quantity of added enzyme, consistent with a finite catalytic capacity of individual PG proteins. β-Subunit-antisense cell walls released 2- to 3-fold higher levels of pectin in response to PG2 than did wild-type walls. Cell walls incubated at pH 6.0 released lower quantities and showed less extensive depolymerization of pectins than did walls incubated at pH 4.5. Pectins recovered from ripe fruit were similar in size distribution to polymers released by PG2 at pH 6.0, indicating that pH can influence both quantitative and qualitative aspects of pectin metabolism and may be responsible for the restricted hydrolysis of pectins in vivo. Molecular mass differences were not evident in the polymers rendered freely soluble in response to PG2-mediated hydrolysis of β-subunit-antisense compared with wild-type cell walls. The solubilization of pectin from cell walls was not the sole indicator of the extent of PG-mediated cell wall hydrolysis. Hydrolytic modifications were also evident in a pectic fraction extracted from postcatalytic cell walls with 50 mM CDTA (trans-1,2-cyclohexanediamine-N,N,N′,N′-tetraacetic acid), and were more extensive for the β-subunit-antisense cell walls compared with the wild-type walls. Pectic polymers derived from ethanol insoluble-powders showed molecular mass downshifts during ripening but differences between the β-subunit-antisense and wild-type fruits were not observed.  相似文献   

14.
15.
Green and red tomato pericarp tissues were subjected to stress-relaxation analyses to evaluate their physical properties. Significant decreases in the initial stress, minimum stress-relaxation and maximum stress-relaxation times in the red tissues predict the losses of both viscosity and elasticity in the tissue. Cell walls of red fruit yielded more water-soluble polysaccharides and less pectin, hemicelluloses and cellulose. Average molecular mass of pectin determined by gel filtration chromatography was similar in the green and red, but molecular mass of hemicellulose of red fruit walls was reduced to 50% of that of the green fruit. The decreases in the amount of hemicellulose B and in the average molecular mass were associated primarily with the degradation of xylo-glucans. These data demonstrate that pectin solubilization, depolymerization of xyloglucans and over-all changes in the quantity of cell wall polysaccharide fractions contribute to tomato fruit softening.  相似文献   

16.
During fruit development in tomato (Solanum lycopersicum), cell proliferation and rapid cell expansion occur after pollination. Cell wall synthesis, alteration, and degradation play important roles during early fruit formation, but cell wall composition and the extent of cell wall synthesis/degradation are poorly understood. In this study, we used immunolocalization with a range of specific monoclonal antibodies to examine the changes in cell wall composition during early fruit development in tomato. In exploring early fruit development, the ?1 day post-anthesis (DPA) ovary and fruits at 1, 3, and 5 DPA were sampled. Paraffin sections were prepared for staining and immunolabeling. The 5 DPA fruit showed rapid growth in size and an increase in both methyl-esterified pectin and de-methyl-esterified pectin content in the pericarp, suggesting rapid synthesis and de-methyl esterification of pectin during this growth period. Labeling of pectic arabinan with LM6 antibody and galactan with LM5 antibody revealed abundant amounts of both, with unique distribution patterns in the ovule and premature pericarp. These results suggest the presence of rapid pectin metabolism during the early stages of fruit development and indicate a unique distribution of pectic galactan and arabinan within the ovule, where they may be involved in embryogenesis.  相似文献   

17.
Orfila C  Knox JP 《Plant physiology》2000,122(3):775-782
Scanning electron microscopic examination of intact tomato (Lycopersicon esculentum) pericarp and isolated pericarp cell walls revealed pit fields and associated radiating ridges on the inner face of cell walls. In regions of the cell wall away from pit fields, equivalent ridges occurred in parallel arrays. Treatment of isolated cell walls with a calcium chelator resulted in the loss of these ridges, indicating that they contain homogalacturonan-rich pectic polysaccharides. Immunolabeling procedures confirmed that pit fields and associated radiating ridges contained homogalacturonan. Epitopes of the side chains of pectic polysaccharides were not located in the same regions as homogalacturonan and were spatially regulated in relation to pit fields. A (1-->4)-beta-galactan epitope was absent from cell walls in regions of pit fields. A (1-->5)-alpha-arabinan epitope occurred most abundantly at the inner face of cell walls in regions surrounding the pit fields.  相似文献   

18.
Unripe Spanish pears ( Pyras commanis L. ev. Blanquilla ) were ripened at 18°C for 5 and 10 days. Softening of the cortical tissues was associated with swelling of parenchyma cell walls from 1 to more than 5 μm in 10 day ripe pears, by which time the pears were over ripe. However, there was little indication of cell separation and the middle lamella could be detected between most cell walls. Furthermore, cell separation was constrained by regions rich in plasmodesmata where wall swelling was prevented. Parenchyma cells in the 500 μm of tissue underlying the epidermis did not undergo ripening-related changes to the same extent as those of the cortex. These cells, in combination with a sub-epidermal layer of lignified sclereid clusters, constituted a relatively tough and protective skin. Ripening of the cortical tissues was associated with a depletion of alcohol-insoluble pectic polysaccharides, as indicated by the decrease in arabinose and uronic acid. Analysis of alcohol-insoluble cell wall preparations enriched in either parenchyma or sclereid cell walls indicated that this change was predominantly associated with the parenchyma walls. Such changes were less prominent in the peel. The decrease in pectic polysaccharides was accompanied by an increase in their solubility. During ripening, the sclereid clusters of the cortex continued in develop, as indicated by an increase in their size and yield of cell wall xylose and glucose. Cortical parenchyma cells radiating from the sclereids were firmly attached to the lignified cells. This was due to lignification extending from the sclereids into the primary walls of the parenchyma cells. We conclude that dissolution of pectic polysaccharides is one of several factors which determine softening during ripening of Spanish pears.  相似文献   

19.
Yang JL  Li YY  Zhang YJ  Zhang SS  Wu YR  Wu P  Zheng SJ 《Plant physiology》2008,146(2):602-611
Rice (Oryza sativa) is the most aluminum (Al)-resistant crop species among the small-grain cereals, but the mechanisms responsible for this trait are still unclear. Using two rice cultivars differing in Al resistance, rice sp. japonica 'Nipponbare' (an Al-resistant cultivar) and rice sp. indica 'Zhefu802' (an Al-sensitive cultivar), it was found that Al content in the root apex (0-10 mm) was significantly lower in Al-resistant 'Nipponbare' than in sensitive 'Zhefu802', with more of the Al localized to cell walls in 'Zhefu802', indicating that an Al exclusion mechanism is operating in 'Nipponbare'. However, neither organic acid efflux nor changes in rhizosphere pH appear to be responsible for the Al exclusion. Interestingly, cell wall polysaccharides (pectin, hemicellulose 1, and hemicellulose 2) in the root apex were found to be significantly higher in 'Zhefu802' than in 'Nipponbare' in the absence of Al, and Al exposure increased root apex hemicellulose content more significantly in 'Zhefu802'. Root tip cell wall pectin methylesterase (PME) activity was constitutively higher in 'Zhefu802' than in 'Nipponbare', although Al treatment resulted in increased PME activity in both cultivars. Immunolocalization of pectins showed a higher proportion of demethylated pectins in 'Zhefu802', indicating a higher proportion of free pectic acid residues in the cell walls of 'Zhefu802' root tips. Al adsorption and desorption kinetics of root tip cell walls also indicated that more Al was adsorbed and bound Al was retained more tightly in 'Zhefu802', which was consistent with Al content, PME activity, and pectin demethylesterification results. These responses were specific to Al compared with other metals (CdCl(2), LaCl(3), and CuCl(2)), and the ability of the cell wall to adsorb these metals was also not related to levels of cell wall pectins. All of these results suggest that cell wall polysaccharides may play an important role in excluding Al specifically from the rice root apex.  相似文献   

20.
Pectin: cell biology and prospects for functional analysis   总被引:27,自引:0,他引:27  
Pectin is a major component of primary cell walls of all land plants and encompasses a range of galacturonic acid-rich polysaccharides. Three major pectic polysaccharides (homogalacturonan, rhamnogalacturonan-I and rhamnogalacturonan-II) are thought to occur in all primary cell walls. This review surveys what is known about the structure and function of these pectin domains. The high degree of structural complexity and heterogeneity of the pectic matrix is produced both during biosynthesis in the endomembrane system and as a result of the action of an array of wall-based pectin-modifying enzymes. Recent developments in analytical techniques and in the generation of anti-pectin probes have begun to place the structural complexity of pectin in cell biological and developmental contexts. The in muro de-methyl-esterification of homogalacturonan by pectin methyl esterases is emerging as a key process for the local modulation of matrix properties. Rhamnogalacturonan-I comprises a highly diverse population of spatially and developmentally regulated polymers, whereas rhamnogalacturonan-II appears to be a highly conserved and stable pectic domain. Current knowledge of biosynthetic enzymes, plant and microbial pectinases and the interactions of pectin with other cell wall components and the impact of molecular genetic approaches are reviewed in terms of the functional analysis of pectic polysaccharides in plant growth and development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号