首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.

Background

Adenovectors are widely used for efficient delivery of genes into a variety of cell types and organisms. However, the construction of the desired vector/genes combination, especially if it involves the cloning of several gene cassettes, can be laborious due to the large size of these vectors. New methods are needed to simplify the construction of complex combinations of gene cassettes into adenovectors.

Methods

Using simple cloning techniques and exploiting the λ‐phage packaging system, we devised efficient methods for the ‘selection’ of the desired vector constructs. Thus we generated a series of cosmids containing the adeno helper dependent (HD) backbone in which we inserted cis‐ and trans‐acting tetracycline (tet) elements for the regulation of any gene of interest. One of these cosmids has been used to produce an HD adenovirus carrying a tetracycline‐regulated gene expressing β‐galactosidase.

Results

We have demonstrated that the adeno‐cosmid system allows rapid and efficient cloning of genes of interest in helper dependent vectors, and described a prototype ‘ready‐to‐use’ vector in which any gene of interest can be easily expressed under the control of the tet system. The HD viruses produced with this novel methodology can be grown at high titers, can be easily separated from the helper adenovirus, and allow delivery and regulated gene expression in a variety of tissues.

Conclusions

Exploiting the λ‐packaging system, complex adeno constructs can be generated with a simple and reproducible protocol, which allows selection of the desired size construct, counterselecting for the frequently observed intramolecular recombinations and deletions. Copyright © 2002 John Wiley & Sons, Ltd.
  相似文献   

3.
4.
5.
6.

Background

Retroviral transduction of human peripheral blood T cells has considerable potential in the development of gene therapy strategies for immunological disorders. New vectors and experimental procedures have been developed for efficient transduction of several genes into human T cells.

Methods

Bicistronic retroviral vectors encoding distinct cell markers were used for the simultaneous multiple transduction of a human T‐cell line (MT‐2), as well as of human peripheral blood T cells from normal donors. Transduction efficiencies were evaluated by flow cytometry and double‐ and triple‐transduced cells were isolated by fluorescence cell sorting.

Results

Four new bicistronic retroviral vectors were developed that express different gene markers under the control of the internal ribosome entry site (IRES) of the encephalomyocarditis virus. These markers are, respectively, enhanced green fluorescent protein (EGFP), β‐galactosidase, and truncated versions of human nerve growth factor receptor (ΔNGFR) and human growth hormone receptor (ΔGHR). A single 1 h spinoculation infection, performed in the presence of polybrene and using transiently produced amphotropic retroviral particles, was sufficient to obtain transduction efficiencies consistently greater than 50% on human peripheral blood T lymphocytes which had been previously stimulated for 3 days with immobilized anti‐CD3. The transient production of viral particles encoding EGFP, ΔNGFR, and ΔGHR markers in the same viral supernatant has allowed up to three different genes to be introduced simultaneously into human T cells.

Conclusions

This study describes new experimental conditions for efficient single‐step multiple transduction of human primary T lymphocytes. The procedure could be of interest for the development of gene therapy approaches. Copyright © 2002 John Wiley & Sons, Ltd.
  相似文献   

7.

Background

The pig lung, given its gross anatomical, histological and physiological similarities to the human lung, may be useful as a large animal model, in addition to rodents, in which to assess the potential of vectors for pulmonary airway gene transfer. The aim of this study was to assess the utility of the pig lung as a model of gene transfer to the human lung with a synthetic vector system.

Methods

The LID vector system consists of a complex of lipofectin (L), integrin‐binding peptide (I) and plasmid DNA (D). LID complexes containing a β‐galactosidase reporter gene under a CMV promoter or a control plasmid at1 mg/3 ml PBS, or 3 ml buffer, was administered to the right lower lobe ofthe pig lung through a bronchoscope. Pigs were culled at 48 h and lung sections prepared for immunohistochemical and histological analysis. Bronchoalveolar lavage fluid was collected and analysed for TNF‐α by ELISA.

Results

Immunohistochemical staining for the β‐galactosidase reporter gene indicated high efficiency of gene transfer by the LID vector to pig bronchial epithelium with 46% of large bronchi staining positively. There was no evidence for vector‐specific inflammation assessed by leukocytosis and cytokine production.

Conclusions

This study demonstrates the use of the pig for studies of gene transfer in the lung and confirms in a second species the potential of the LID vector for gene therapy of pulmonary diseases such as cystic fibrosis. Copyright © 2002 John Wiley & Sons, Ltd.
  相似文献   

8.

Background

Mucopolysaccharidosis VI (MPS VI), due to recessively inherited 4‐sulfatase (4S) deficiency, results in lysosomal storage of dermatan sulfate in numerous tissues. Retinal involvement is limited to the retinal pigment epithelium (RPE). This study aimed to determine whether recombinant adeno‐associated virus (AAV)‐mediated delivery of 4S would reverse the RPE pathology seen in MPS VI cats.

Methods

AAV.f4S, containing the feline 4S cDNA, was delivered unilaterally to eyes of affected cats by subretinal or intravitreal injection. Contralateral eyes received AAV with the green fluorescent protein (GFP) reporter gene as control. At 2–11 months post‐injection, the cats were sacrificed and the treatment effects were evaluated histologically.

Results

By ophthalmoscopy and histological analyses, GFP was evident as early as 4 weeks and persisted through the latest time point (11 months). Untreated and AAV.GFP‐treated diseased retinas contained massively hypertrophied RPE cells secondary to accumulation of dilated lysosomal inclusions containing dermatan sulfate. MPS VI eyes treated subretinally with AAV.f4S had minimal RPE cell inclusions and, consequently, were not hypertrophied.

Conclusions

AAV‐mediated subretinal delivery of f4S provided correction of the disease phenotype in RPE cells of feline MPS VI, supporting the utility of AAV as a vector for the treatment of RPE‐specific as well as lysosomal storage diseases. Copyright © 2002 John Wiley & Sons, Ltd.
  相似文献   

9.

Background

We studied the ability of adenovirus type 5 (Ad5) to encapsidate new cellular ligands carried by their fibers to yield functional retargeted vectors for gene therapy. Recombinant Ad5 fibers containing shaft repeats 1 to 7 and an extrinsic trimerization motif, and terminated by its native knob or amino acid motifs containing RGD, have been rescued into infectious virions.

Methods

Polypeptide ligands of cell surface molecules, including single‐chain antibodies or epidermal growth factor, were cloned into recombinant fibers. Phenotypic analysis of fiber constructs and rescuing into the Ad5 genome were performed. Recombinant viruses were characterized with reference to fiber content, growth rate and infectivity.

Results

A major limiting factor for recovering viable recombinant Ad5 carrying fiber‐fused polypeptide ligands was apparently the ability of the ligand to fold correctly within the cellular cytoplasm. This constraint has previously not been systematically evaluated in the literature. Phenotypic analysis of the fiber‐ligand fusions showed that their degree of cytoplasmic solubility correlated with their ability to yield viable Ad5 vectors. Our results suggested that the fiber manipulations diminish virus growth rate, probably through different, opposing effects: (i) the reduced shaft length increases fiber solubility in the absence of the knob but (ii) diminishes virus entry, and (iii) the absence of the knob alters the overall protein composition of the virion and decreases its fiber copy number.

Conclusions

Based on our findings, cytoplasmic solubility and cytoplasmic ligand reactivity of fiber‐ligand fusion proteins are the best prediction criterion for viability and recovery of genetically retargeted Ad vectors. Copyright © 2002 John Wiley & Sons, Ltd.
  相似文献   

10.

Background

Helper‐dependent, or gutted, adenoviruses (Ad) lack viral coding sequences, resulting in reduced immunotoxicity compared with conventional Ad vectors. Gutted Ad growth requires a conventional Ad to supply replication and packaging functions in trans. Methods that allow high‐titer growth of gutted vectors while reducing helper contamination, and which use safer helper viruses, will facilitate the use of gutted Ad vectors in vivo.

Methods

Replication‐defective helper viruses were generated that are deleted for Ad E1, E2b and E3 genes, but which contain loxP sites flanking the packaging signal. Complementing Ad packaging cell lines (C7‐cre cells) were also generated by transfecting 293 cells with the Ad E2b genes encoding DNA polymerase and pre‐terminal protein, and with a cre‐recombinase plasmid.

Results

We show that C7‐cre cells allow efficient production of gutted Ad using ΔE1 + ΔE2b + ΔE3 helper viruses whose growth can be limited by cre‐loxP‐mediated excision of the packaging signal. Gutted Ad vectors carrying ~28 kb cassettes expressing full‐length dystrophin were prepared at high titers, similar to those obtained with E2b+ helpers, with a resulting helper contamination of <1%.

Conclusions

These new packaging cell lines and helper viruses offer several significant advantages for gutted Ad vector production. They allow gutted virus amplification using a reduced number of passages, which should reduce the chances of selecting rearranged products. Furthermore, the residual helper contamination in gutted vector preparations should be less able to elicit immunological reactions upon delivery to tissues, since E2b‐deleted vectors display a profound reduction in viral gene expression. Copyright © 2002 John Wiley & Sons, Ltd.
  相似文献   

11.

Background

Lentiviral vectors allow gene transfer into non‐dividing cells. Further development of these vector systems requires stable packaging cell lines that enable adequate safety testing.

Methods

To generate a packaging cell line for vectors based on simian immunodeficiency virus (SIV), expression plasmids were constructed that contain the codon‐optimized gag‐pol gene of SIV and the gene for the G protein of vesicular stomatitis virus (VSV‐G) under the control of an ponasterone‐inducible promoter. Stable cell lines expressing these packaging constructs were established and characterized.

Results

The RT activity and vector titers of cell clones stably transfected with the inducible gag‐pol expession plasmid could be induced by ponasterone by more than a factor of 1000. One of these clones was subsequently transfected with the ponasterone‐inducible VSV‐G expression plasmid to generate packaging cells. Clones of the packaging cells were screened for vector production by infection with an SIV vector and subsequent induction by ponasterone. In the supernatant of selected ponasterone‐induced producer clones vector titers of more than 1×105 transducing units/ml were obtained. Producer cell clones were stable for at least five months, as tested by vector production.

Conclusions

The packaging cells described should be suitable for most preclinical applications of SIV‐based vectors. By avoiding regions of high homology between the vector and the packaging constructs, the design of the SIV packaging cell line should reduce the risk of transfer of packaging genes to target cells and at the same time provide flexibility with respect to the SIV vector constructs that can be packaged. Copyright © 2002 John Wiley & Sons, Ltd.
  相似文献   

12.
13.
14.

Background

High levels of foreign gene expression in mouse hepatocytes can be achieved by rapid tail vein injection of a large volume of a naked DNA solution, the ‘hydrodynamics‐based procedure’. Rats are more tolerant of the frequent phlebotomies required for monitoring blood parameters than mice, and thus are better for some biomedical research.

Methods

We tested this technique for the delivery of a therapeutic protein in normal rats, using a rat erythropoietin (Epo) expression plasmid vector, pCAGGS‐Epo.

Results

We obtained maximal Epo expression when the DNA solution was injected in a volume of 25 ml (approximately 100 ml/kg body weight) within 15 s. We observed a dose‐response relationship between serum Epo levels and the amount of injected DNA up to 800 µg. Using quantitative real‐time PCR, the vector‐derived Epo mRNA expression was mainly detected in the liver. When a lacZ expression plasmid was injected similarly, β‐galactosidase was exclusively detected in the liver, mainly in hepatocytes. Toxicity attributable to the technique was mild and transient, as assessed by histochemical analysis. Epo gene expression and erythropoiesis occurred with Epo gene transfer in a dose‐dependent manner, and persisted for at least 12 weeks, the last time point examined. Repeated administration of the plasmid DNA also effectively led to erythropoiesis.

Conclusions

These results demonstrate that gene transfer into the liver via rapid tail vein injection can easily be achieved in the rat, which is more than 10 times larger than the mouse, and has significant value for gene function analysis in rats. Copyright © 2002 John Wiley & Sons, Ltd.
  相似文献   

15.

Background

Because gene therapy of the future will primarily take an in vivo approach, a number of problems associated with its current implementation exist. Currently, repeated delivery of a vector in vivo is necessary to ensure adequate transfer of the therapeutic gene. This may lead to the development of an immune response against the vector, thus interfering with gene delivery. To circumvent this problem, retroviral vector packaging cells that permanently produce recombinant retroviral vector particles have been encapsulated.

Methods

Vector (pBAG)‐producing amphotropic cells were encapsulated in beads composed of polymerized cellulose sulphate. These capsules were analysed in vitro for expression of the vector construct using X‐gal staining, as well as for the release of particles by performing RT‐PCR from culture supernatant. Infectivity studies were performed in vitro and in vivo. The latter was assayed using histological sections of the microcapsule and the surrounding area stained for β‐galactosidase activity and by RT‐PCR.

Results

In culture, the virus‐producing cells inside the capsules remained viable and released virus into the culture medium for at least 6 weeks. To test whether these capsules, upon implantation into mice, also release vector virions that infect the surrounding cells, two different models were used. In the first, capsules were implanted in the fat pad of the mammary gland of Balb/c mice. The capsules were well tolerated for at least 6 weeks and a self‐limiting inflammatory reaction without any other gross immune response was observed during this period. Furthermore, the virus‐producing cells remained viable. In the second model, SCID mice were immunologically reconstituted by subcutaneous implantation of thymus lobes from MHC‐identical Balb/c newborn mice and gene transfer into lymphoid cells was achieved by retroviral vectors released by co‐implanted capsules.

Conclusion

The implantation of such capsules containing cells that continually produce retroviral vector particles may be of use for in vivo gene therapy strategies. The data presented demonstrate the feasibility of the concept. Copyright © 2002 John Wiley & Sons, Ltd.
  相似文献   

16.

Background

No effective long‐term treatment is available for rheumatoid arthritis. Recent advances in gene therapy and cell therapy have demonstrated efficiency in collagen‐induced arthritis (CIA). Interleukin‐4 (IL‐4) is already known to be efficient in CIA in systemic injection or administered by gene therapy. This study was designed to evaluate the effect of a non‐viral gene therapy of CIA, involving injection of syngeneic fibroblasts transfected with a plasmid encoding for IL‐4.

Methods

Immortalised fibroblasts from DBA/1 mice (DBA/1/0 cells) were transfected with a plasmid expressing IL‐4 cDNA (DBA/1/IL‐4 cells). Xenogeneic fibroblasts from Chinese hamster ovary (CHO) transfected with a plasmid expressing IL‐4 cDNA (CHO/IL‐4) were studied also. The cells were engrafted in mice developing CIA by subcutaneous injection of 3 × 106 DBA/1/0 or DBA/1/IL‐4 or CHO/IL‐4 cells.

Results

Injection of DBA/1/IL‐4 cells, on days 10 and 25 after immunisation, was associated with a significant and lasting improvement in the clinical and histological evidence of joint inflammation and destruction as compared with DBA/1/0 and CHO/IL‐4 cells. DBA/1/IL‐4 cell treatment decreased also the production of IgG2a antibody to CII and the proliferation of CIIB‐specific nodal T cells. Later treatments (engraftments on days 23 and 35 after immunisation) exerted also an anti‐inflammatory effect, as evaluated on clinical and histological signs of CIA.

Conclusions

Taken together, these findings indicate that systemic administration of syngeneic cells transfected with an anti‐inflammatory cytokine gene, namely IL‐4, with a non‐viral method is effective in CIA and may attenuate the cytokine imbalance seen in this disease. Copyright © 2002 John Wiley & Sons, Ltd.
  相似文献   

17.

Background

Despite improvements in the treatment of osteosarcoma (OS) there are still too many patients who cannot benefit from current treatment modalities. Therefore, new therapeutic approaches are warranted. Here we explore the efficacy of targeted adenoviral based suicide gene therapy.

Methods and results

Immunohistochemistry and FACS analysis detected low or absent expression levels of the primary adenovirus receptor CAR on human primary OS and human OS cell lines. These results predict a low infection efficiency and thus a reduced therapeutic effect. Targeting the adenoviruses to another receptor highly expressed on OS could overcome this limitation. We found epidermal growth factor receptor (EGFR) to be widely expressed on primary OS. Immunohistochemistry on primary tumor samples and FACS analysis on primary short‐term cultures and four OS cell lines showed that EGFR was consistently expressed. The recombinant bispecific single‐chain antibody 425‐s11 redirects adenoviral vectors towards the EGFR. Adenovirus transduction experiments in the presence or absence of 425‐s11 showed significantly enhanced gene transfer with the targeted adenoviral vector compared with the native vector (OS cell lines 2.5 to 7.2 times enhanced gene transfer and OS primary short term cultures 1.7 to 10 times enhanced gene transfer). On this basis, targeted suicide gene therapy experiments with AdCMVHSV‐TK in combination with ganciclovir were performed. These experiments demonstrated up to 3.5‐fold enhanced kill of OS cell lines and primary short‐term cultures by the EGFR targeted vector.

Conclusions

Suicide gene therapy with adenovirus targeted towards EGFR may have favorable therapeutic characteristics for future gene therapy applications in OS. Copyright © 2002 John Wiley & Sons, Ltd.
  相似文献   

18.

Background

Gene therapy has recently been advanced by the development of HIV‐based vectors that are able to transduce some non‐dividing cells. The manipulation of most non‐dividing cells remains, however, scarcely efficient. One of the biological mechanisms postulated to prevent powerful transduction of quiescent cells by lentiviral vectors is the paucity of deoxynucleotides (dNTPs). In this study, a novel delivery strategy is developed to improve significantly the efficiency of HIV‐based vectors in transducing non‐dividing cells. This approach is based on increasing the intracellular availability of dNTPs by incubating target cells with the dNTP precursors, deoxynucleosides (dNSs).

Methods

Mature human monocyte‐derived macrophages (14–21 days old) were transduced at a low multiplicity of infection (MOI) of HIV vectors carrying a reporter gene. dNSs were added to the medium during transduction (5 mM dNS) and immediately before post‐transduction culture (2.5 mM dNS). Macrophages were harvested 2–7 days after transduction and assayed for transgene expression by cytofluorimetry.

Results

The addition of dNS to the medium significantly enhanced the efficiency of transduction of human macrophages by HIV‐based vectors. The percentage of cells expressing the transgene rose up to 50% in the presence of dNS, increasing the basal transduction levels up to 35‐fold (average=10.8‐fold). Furthermore, treatment with dNTP precursors compensated for the wide inter‐donor variability, allowing the highest enhancement effects in donors with the lowest basal transduction efficiencies.

Conclusions

This is the first demonstration that a single treatment of non‐dividing target cells with exogenous dNS can enhance the efficiency of lentiviral‐mediated transduction of cells, allowing for high efficiency gene transfer. The effects of dNTP precursors compensated for both the poor basal levels and the wide inter‐donor variability, two major limitations for the transduction of non‐dividing cells. Macrophages are a representative model of cells whose permissiveness to gene delivery was increased up to levels suitable for genetic manipulation applications. This simple approach might be transferred to a broader range of quiescent cell types that are scarcely susceptible to lentiviral‐based gene delivery due to low dNTP levels. Copyright © 2002 John Wiley & Sons, Ltd.
  相似文献   

19.

Background

The helper‐dependent (HD) adenoviral (Ad) vector relies on a helper virus to provide viral proteins for vector amplification. HD‐Ad vectors can significantly increase therapeutic gene expression and improve safety. However, the yield of an HD‐Ad vector is generally lower than that of an E1‐deleted first‐generation vector, likely due to the alterations in viral E3 or packaging regions of a helper virus that attenuate its replication and complementing for an HD‐Ad vector.

Methods

To study this question and improve HD‐Ad vector production, we have generated four different helper viruses with a wild‐type or deleted E3 region, and with a relocated loxP. We have also constructed a first‐generation vector with a wild‐type E3 region and without the loxP site. We compared the replication of these viruses in Cre‐positive and ‐negative cells and studied their complementing for HD‐Ad vector production.

Results

Viruses with deleted E3 formed smaller plaques and produced lower titer compared with viruses containing the E3 region. The site where a loxP is inserted can also affect virus replication. Higher yield of HD‐Ad vector was obtained when a helper virus with wild‐type E3 was used. We also showed that deletion of the packaging signal in a helper virus through loxP/Cre interaction decreased the viral DNA complementing ability.

Conclusions

Although the E3 region is not essential for adenovirus replication in vivo, deletion of this region attenuates virus replication. Production of HD‐Ad vector can be further improved by modifications in helper virus structure. Copyright © 2002 John Wiley & Sons, Ltd.
  相似文献   

20.

Background

Polyethylenimines (PEIs) and cationic polymers have been used successfully in gene delivery. In earlier reports, only large PEIs (MW>10 000) have shown significant transfection efficiency. In the present study, the roles of small PEIs (MW 700 and 2000) were studied as additional compounds to see if they can improve gene delivery with cationic liposomes.

Methods

The TKBPVlacZ expression plasmid was transfected in the CV1‐P (monkey fibroblastoma) and SMC (rabbit smooth muscle) cell lines using various combinations of PEIs (MW 700, 2000, and 25 000) and Dosper liposomes. The transfection efficiency was determined with the fluorometric ONPG (o‐nitrophenol‐β‐D ‐galactopyranoside) assay and histochemical X‐gal staining. The toxicity of the transfection reagents was estimated by the MTT [3‐(4,5‐dimethylthiazolyl‐2)‐2,5‐diphenyl tetrazolium bromide] assay.

Results

Transfection of TKBPVlacZ plasmid by the small PEIs (MW 700 and 2000) combined with Dosper liposomes was associated with high expression of the lacZ reporter gene in the CV1‐P and SMC cell lines. The transfection efficiencies of the low‐molecular‐weight PEI/liposome combinations were several fold higher than those of PEIs or liposomes alone. PEI/liposome combinations had no toxicity on the cell lines tested.

Conclusions

The low‐molecular‐weight PEIs could be used successfully for gene delivery when combined with the cationic liposomes, resulting in a synergistic increase of the transfection efficiency in both cell lines studied. Copyright © 2002 John Wiley & Sons, Ltd.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号