首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 560 毫秒
1.
Betaine protects early preimplantation mouse embryos against increased osmolarity in vitro, functioning as an organic osmolyte. Betaine is effective at very low external concentrations, with half-maximal protection of 1-cell embryo development to blastocysts at approximately 50 microM, making it one of the best osmoprotectants for mouse preimplantation embryos. We performed studies designed to determine whether known high-affinity organic osmolyte transporters could account for the ability of betaine to act as an organic osmolyte in preimplantation embryos. We found no evidence in 1-cell embryos of transport by a betaine/GABA transporter (BGT1), the osmoregulated betaine transporter found in a number of cell types, as betaine and GABA did not inhibit each other's transport. Instead, all saturable GABA transport in embryos was apparently via the beta-amino acid transporter. We also found that the glycine transporter, GLY, which mediates osmoprotective transport of glycine in early preimplantation embryos, does not appear to transport betaine. Finally, increased osmolarity did not induce any detectable System A amino acid transporter activity, which is osmotically-inducible in other cells and can transport betaine. There does appear, however, to be a saturable betaine transporter in 1-cell mouse embryos, as considerable 14C-betaine transport was measured which was substantially inhibited by excess unlabeled betaine. Our data imply that betaine functions as an organic osmolyte in embryos due to its saturable transport via a mechanism distinct from known osmolyte transporters. We propose that an unidentified high-affinity betaine transporter may be expressed in early embryos and mediate transport of betaine as an organic osmolyte.  相似文献   

2.
Wild-type strains of Escherichia coli K-12 cannot grow in media with gamma-aminobutyrate (GABA) as the sole source of carbon or nitrogen. Mutants were isolated which could utilize GABA as the sole source of nitrogen. These mutants were found to have six- to ninefold higher activities of gamma-aminobutyrate-alpha-ketoglutarate transaminase (EC 2.6.1.19) and succinate semialdehyde dehydrogenase (EC 1.2.1.16) than those of the wild-type parent strains. Secondary mutants derived from these GABA-nitrogen-utilizing strains were able to grow on GABA as the sole source of carbon and nitrogen. They also grew faster on a variety of other carbon and nitrogen sources, and their growth was more strongly inhibited by different metabolic inhibitors than was that of the parent strains. The nature of the two mutations and the possible genes involved are discussed. A scheme of the pathway for GABA breakdown in E. coli K-12 is presented.  相似文献   

3.
Abstract Methylophilus methylotrophus can use methylamine as sole source of carbon and nitrogen. Measurements of the specific activity of methylamine dehydrogenase (MNDH) in bacteria grown in batch or chemostat culture showed that MNDH was induced by methylamine and repressed when methanol or NH4+ were provided as alternative carbon or nitrogen sources. The degree of repression varied with the growth conditions. Methanol dehydrogenase (MDH) was present in bacteria growtn on methylamine as sole carbon source, but the specific activity was low compared with that in bacteria grown on medium containing methanol, indicating that this enzyme is induced by methanol.  相似文献   

4.
5.
An isolate of an osmotolerant rhizobacterium has been obtained from a weed rhizosphere which showed tolerance up to 1.0 M NaCl. The isolate has been subjected to growth analysis in a medium which contained 10 mM betaine as the sole carbon source. It was observed that betaine could be used as the sole carbon source for the growth of salt-tolerant rhizobacteria under NaCl-stress at 1.0 M concentration. Interestingly, it was found that betaine at 100 mM concentration suppressed the growth of salt-tolerant rhizobacteria. The growth of the osmotolerant rhizobacterium was stimulated when it was grown in a medium containing both glucose and betaine, demonstrating that betaine was an osmoprotectant. The presence of glucose at 10 mM concentration, however, did not alleviate the growth-suppressive effect of betaine at 100 mM concentration. The osmoprotective effect of betaine was demonstrated by the fact that the addition of betaine at different time intervals enhanced the growth accordingly. However, the growth-suppressive effect of betaine at 100 mM concentration was also noticeable when betaine was added at different time intervals.  相似文献   

6.
7.
Transport of methylamine by Pseudomonas sp. MA.   总被引:5,自引:5,他引:0       下载免费PDF全文
Pseudomonas sp. MA grows on methylamines as a sole source of carbon, nitrogen, and energy. The transport of methylamine into the organism was investigated. It was found that this organism possesses an inducible transport system for methylamine having the following physical parameters: pH optimum, 7.2; temperature optimum, 30 to 35 degrees C; Km, 1 to 30 mM; Vmax, 90 to 120 nmol/min per mg (dry weight) of cells. Methylamine uptake was curtailed by azide, cyanide, and carbonyl cyanide-m-chlorophenylhydrazone; osmotic shock treatment reduced the uptake by 50%. The uptake was not effectively inhibited by ammonium ion, amino acids, or amides, but was competitively inhibited by short-chain alkylamines. Cells grown on succinate-ammonium chloride did not possess the transport system, but it could be induced in such cells by methylamine in 20 h. Cells grown with methylamine as a sole nitrogen, but not carbon, source transported methylamine at a reduced rate.  相似文献   

8.
The uptake of methylamine as the sole nitrogen, but not carbon, source by Pseudomonas sp. strain MA was investigated. Under these growth conditions, a high-affinity, low-capacity uptake system was present having a Km of 16 microM and Vmax of 2 nmol.min-.mg (dry weight) of cells that was competitively inhibited by ammonium chloride. The transport system was induced by growth on succinate with methylamine as the sole nitrogen source.  相似文献   

9.
10.
Choline is abundantly produced by eukaryotes and plays an important role as a precursor of the osmoprotectant glycine betaine. In Pseudomonas aeruginosa, glycine betaine has additional roles as a nutrient source and an inducer of the hemolytic phospholipase C, PlcH. The multiple functions for glycine betaine suggested that the cytoplasmic pool of glycine betaine is regulated in P. aeruginosa. We used (13)C nuclear magnetic resonance ((13)C-NMR) to demonstrate that P. aeruginosa maintains both choline and glycine betaine pools under a variety of conditions, in contrast to the transient glycine betaine pool reported for most bacteria. We were able to experimentally manipulate the choline and glycine betaine pools by overexpression of the cognate catabolic genes. Depletion of either the choline or glycine betaine pool reduced phospholipase production, a result unexpected for choline depletion. Depletion of the glycine betaine pool, but not the choline pool, inhibited growth under conditions of high salt with glucose as the primary carbon source. Depletion of the choline pool inhibited growth under high-salt conditions with choline as the sole carbon source, suggesting a role for the choline pool under these conditions. Here we have described the presence of a choline pool in P. aeruginosa and other pseudomonads that, with the glycine betaine pool, regulates osmoprotection and phospholipase production and impacts growth under high-salt conditions. These findings suggest that the levels of both pools are actively maintained and that perturbation of either pool impacts P. aeruginosa physiology.  相似文献   

11.
A biosensor system based on the difference in the oxygen uptake response of two microbial electrodes was developed to monitor trimethylamine (TMA). The first electrode, constructed using Pseudomonas aminovorans grown on TMA, was sensitive to TMA, trimethylamine N-oxide (TMAO), dimethylamine (DMA) and monomethylamine (MMA). The second electrode responding to TMAO, DMA and MMA was prepared using Ps. aminovorans grown on TMAO. The difference in oxygen uptake was linearly related to the TMA concentration in the range of 5-26 microM. The minimum detectable level was 2.6 microM and the relative standard deviation was determined to be 14% for 16 repeated analyses. When operated and stored at 30 degrees C, the response of the system was stable for only 2 days. However, when the biosensor system was operated at 30 degrees C but stored overnight at 4 degrees C, the system was stable up to 20 days. The biosensor system was applicable for the determination of TMA in fish tissue extracts and the results compared well with those determined by HPLC.  相似文献   

12.
A Rhizopus oryzae lipase gene has been expressed in Pichia pastoris as a reporter using the formaldehyde dehydrogenase 1 promoter (PFLD1) of this organism, which has been reported to be strongly and independently induced by either methanol as sole carbon source or methylamine as sole nitrogen source. Levels of lipase expressed and secreted under the control of the PFLD1 at different induction conditions have been compared to those obtained with the commonly used alcohol oxidase 1 promoter (PAOX1) in small (shake flask) and 1l bioreactor batch cultures. PFLD1-controlled heterologous gene expression was strongly repressed by excess of either glycerol or glucose-but not sorbitol-during growth using methylamine both as sole nitrogen source and inducing substrate. Co-induction of PFLD1 with methanol and methylamine resulted in a synergistic effect on extracellular lipase expression levels. In all tested conditions, the substitution of ammonium for methylamine as carbon source provoked a clear decrease in the specific growth rate and yield of biomass per gram of carbon source. Overall, this study demonstrates that the PFLD1 promoter is at least as efficient as the PAOX1 for extracellular expression of heterologous proteins in P. pastoris bioreactor cultures and provides a first basis for the further design of methanol-free high cell density fed-batch cultivation strategies for controlled overproduction of foreign proteins in P. pastoris.  相似文献   

13.
Pseudomonas aeruginosa uses the quaternary amine choline as a carbon source, osmoprotectant, and macromolecular precursor. The importance of choline in P. aeruginosa physiology is highlighted by the presence of multiple known and putative choline transporters encoded within its genome. This report describes the relative roles of three choline transporters, the ABC transporter CbcXWV and two symporters, BetT1 and BetT3, in P. aeruginosa growth on choline under osmotic conditions that are physiologically relevant to eukaryotic hosts. The increased lag phases exhibited by the ΔbetT1 and ΔbetT1 ΔbetT3 mutants relative to the wild type upon transfer to medium with choline as a sole carbon source suggested roles for BetT1 and BetT3 in cells newly exposed to choline. BetT3 and CbcXWV, but not BetT1, were sufficient to support growth on choline. betT1 and betT3 expression was regulated by the repressor BetI and choline, whereas cbcXWV expression was induced by the activator GbdR and glycine betaine. The data support a model in which, upon transfer to a choline-based medium, the glycine betaine derived from choline taken up by BetT1 and BetT3 promotes subsequent GbdR-mediated cbcXWV induction. Furthermore, growth data indicated that the relative contributions of each transporter varied under different conditions, as BetT1 and CbcXWV were the primary choline transporters under hypo-osmolar conditions whereas BetT3 was the major choline transporter under hyperosmolar conditions. This work represents the first systematic approach to unravel the mechanisms of choline uptake in P. aeruginosa, which has the most complex bacterial choline uptake systems characterized to date.  相似文献   

14.
15.
Many hypertonic bacteria, plants, marine animals, and the mammalian renal medulla are protected from the deleterious effects of high intracellular concentrations of electrolytes by accumulating high concentrations of the nonperturbing osmolyte betaine. When kidney-derived Madin-Darby canine kidney (MDCK) cells are cultured in hypertonic medium, they accumulate betaine to 1,000 times its medium concentration. This results from induction by hypertonicity of high rates of betaine transport into cells. We have isolated a cDNA (BGT-1) encoding a renal betaine transporter by screening an MDCK cell cDNA library for expression of a betaine transporter in Xenopus oocytes. The cDNA encodes a single protein of 614 amino acids, with an estimated molecular weight of 69 kDa. The deduced amino acid sequence exhibits highly significant sequence and topographic similarity to brain gamma-amino-n-butyric acid (GABA) and noradrenaline transporters, suggesting that the renal BGT-1 is a member of the brain GABA/noradrenaline transporter gene family. Expression in oocytes indicates that the BGT-1 protein has both betaine and GABA transport activities that are Cl(-)- as well as Na(+)-dependent and functionally similar to betaine and GABA transport in MDCK cells. Northern hybridization indicates that transporter mRNA is localized to the kidney medulla and is induced in MDCK cells by hypertonicity.  相似文献   

16.
Summary Low molecular weight nitrogenous impurity compounds as well as raffinose are negative quality factors that interfere with efficient processing of sugarbeet (Beta vulgaris L.) for sucrose. In order to identify nutrient media for cell selection of biochemical mutants or transgenics that might have reduced levels of these processing impurities, the ability of 10 endogenous compounds to serve as sole nitrogen or carbon source for suspension plating and subculture callus growth was evaluated. The most productive concentrations of nitrate, ammonium, l-glutamine, l-glutamate, urea, and l-proline as sole nitrogen sources supported plating callus growth at 106, 159, 233, 167, 80, and 52%, respectively, as well as the historical 60 mM mix of nitrate and ammonium in Murashige-Skoog medium. Glycine betaine and choline did not support growth. d(+) Raffinose and d(+) galactose supported plating callus growth only 67 and 25%, respectively, as well as sucrose as sole carbohydrate source. No callus growth occurred on glutamine, glutamate, or glycine betaine as the sole carbon or carbon plus nitrogen source. Platings on either nitrate or ammonium as sole nitrogen source did not differ in sensitivity to the nitrate uptake inhibitor phenylglyoxal, suggesting that phenylglyoxal lacks the specificity for use in selection for mutants of nitrate uptake. The ability of raffinose to be used as the carbon source, and glutamine or glutamate as the nitrogen source, may preclude their use for selection of genetic variants accumulating less of these processing impurities. However, mutants or transgenics able to utilize either glutamine, glutamate, or glycine betaine might be selectable on media containing any one of these as carbon, nitrogen, or carbon plus nitrogen source, respectively, that is incapable of supporting wild-type cell growth.  相似文献   

17.
At an alkaline pH and in an aqueous solution carbaryl hydrolyses to form 1-naphthol, methylamine and carbon dioxide, but it is much more stable at an acid pH. Soil perfusion column experiments indicated that the rate of carbaryl degradation at pH 6.0 to 7.0 was limited by the rate of chemical hydrolysis. Bacterial communities of at least 12 and 14 members were selected in continuous cultures using carbaryl as the sole carbon and nitrogen source at pH 6.0. These communities were supported by the slow formation of hydrolysis products and a carbaryl-degrading bacterium was not selected after greater than 2000 h. A bacterial community of at least eight members was selected using equimolar 1-naphthol and methylamine as its sole carbon and nitrogen source. In contrast, after a lag of between 10 and 50 days, soil perfusion column and continuous culture enrichments at pH 5.2 and 5.0, respectively, led to the selection of a Pseudomonas sp. which could utilize carbaryl as its sole carbon and nitrogen source.  相似文献   

18.
At an alkaline pH and in an aqueous solution carbaryl hydrolyses to form 1-naphthol, methylamine and carbon dioxide, but it is much more stable at an acid pH. Soil perfusion column experiments indicated that the rate of carbaryl degradation at pH 6.0 to 7.0 was limited by the rate of chemical hydrolysis. Bacterial communities of at least 12 and 14 members were selected in continuous cultures using carbaryl as the sole carbon and nitrogen source at pH 6.0. These communities were supported by the slow formation of hydrolysis products and a carbaryl-degrading bacterium was not selected after > 2000 h. A bacterial community of at least eight members was selected using equimolar 1-naphthol and methylamine as its sole carbon and nitrogen source. In contrast, after a lag of between 10 and 50 days, soil perfusion column and continuous culture enrichments at pH 5.2 and 5.0, respectively, led to the selection of a Pseudomonas sp. which could utilize carbaryl as its sole carbon and nitrogen source.  相似文献   

19.
At an alkaline pH and in aqueous solution, carbaryl hydrolyses to form 1-naphthol, methylamine and carbon dioxide, but it is much more stable at an acid pH. Two bacteria isolated from garden soil, Pseudomonas sp. (NCIB 12042) and Rhodococcus sp. (NCIB 12038), could grow on carbaryl as sole carbon and nitrogen source at pH 6.8 but failed to metabolize carbaryl rapidly. Both could use 1-naphthol as sole carbon source and NCIB 12042 metabolized 1-naphthol via salicylic acid which induced higher expression of enzymes in the pathway. Strain NCIB 12038 metabolized 1-naphthol via salicylic and gentisic acids. In contrast, Pseudomonas sp. (NCIB 12043) was selected in a soil perfusion column enrichment at pH 5.2 and metabolized carbaryl rapidly to 1-naphthol and methylamine. 1-Naphthol was metabolized via gentisic acid. Neither salicylate nor gentisate induced higher expression of enzymes for 1-naphthol catabolism in NCIB 12038 and NCIB 12043.  相似文献   

20.
At an alkaline pH and in aqueous solution, carbaryl hydrolyses to form 1-naphthol, methylamine and carbon dioxide, but it is much more stable at an acid pH. Two bacterial isolated from garden soil, Pseudomonas sp. (NCIB 12042) and Rhodococcus sp. (NCIB 12038), could grow on carbaryl as sole carbon and nitrogen source at pH 6.8 but failed to metabolize carbaryl rapidly. Both could use 1-naphthol as sole carbon source and NCIB 12042 metabolized 1-naphthol via salicylic acid which induced higher expression of enzymes in the pathway. Strain NCIB 12038 metabolized 1-naphthol via salicylic and gentisic acids. In contrast, Pseudomonas sp. (NCIB 12043) was selected in a soil perfusion column enrichment at pH 5.2 and metabolized carbaryl rapidly to 1-naphthol and methylamine. 1-Naphthol was metabolized via gentisic acid. Neither salicylate nor gentisate induced higher expression of enzymes for 1-naphthol catabolism in NCIB 12038 and NCIB 12043.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号