首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background

Helper‐dependent, or gutted, adenoviruses (Ad) lack viral coding sequences, resulting in reduced immunotoxicity compared with conventional Ad vectors. Gutted Ad growth requires a conventional Ad to supply replication and packaging functions in trans. Methods that allow high‐titer growth of gutted vectors while reducing helper contamination, and which use safer helper viruses, will facilitate the use of gutted Ad vectors in vivo.

Methods

Replication‐defective helper viruses were generated that are deleted for Ad E1, E2b and E3 genes, but which contain loxP sites flanking the packaging signal. Complementing Ad packaging cell lines (C7‐cre cells) were also generated by transfecting 293 cells with the Ad E2b genes encoding DNA polymerase and pre‐terminal protein, and with a cre‐recombinase plasmid.

Results

We show that C7‐cre cells allow efficient production of gutted Ad using ΔE1 + ΔE2b + ΔE3 helper viruses whose growth can be limited by cre‐loxP‐mediated excision of the packaging signal. Gutted Ad vectors carrying ~28 kb cassettes expressing full‐length dystrophin were prepared at high titers, similar to those obtained with E2b+ helpers, with a resulting helper contamination of <1%.

Conclusions

These new packaging cell lines and helper viruses offer several significant advantages for gutted Ad vector production. They allow gutted virus amplification using a reduced number of passages, which should reduce the chances of selecting rearranged products. Furthermore, the residual helper contamination in gutted vector preparations should be less able to elicit immunological reactions upon delivery to tissues, since E2b‐deleted vectors display a profound reduction in viral gene expression. Copyright © 2002 John Wiley & Sons, Ltd.
  相似文献   

2.

Background

Adenovectors are widely used for efficient delivery of genes into a variety of cell types and organisms. However, the construction of the desired vector/genes combination, especially if it involves the cloning of several gene cassettes, can be laborious due to the large size of these vectors. New methods are needed to simplify the construction of complex combinations of gene cassettes into adenovectors.

Methods

Using simple cloning techniques and exploiting the λ‐phage packaging system, we devised efficient methods for the ‘selection’ of the desired vector constructs. Thus we generated a series of cosmids containing the adeno helper dependent (HD) backbone in which we inserted cis‐ and trans‐acting tetracycline (tet) elements for the regulation of any gene of interest. One of these cosmids has been used to produce an HD adenovirus carrying a tetracycline‐regulated gene expressing β‐galactosidase.

Results

We have demonstrated that the adeno‐cosmid system allows rapid and efficient cloning of genes of interest in helper dependent vectors, and described a prototype ‘ready‐to‐use’ vector in which any gene of interest can be easily expressed under the control of the tet system. The HD viruses produced with this novel methodology can be grown at high titers, can be easily separated from the helper adenovirus, and allow delivery and regulated gene expression in a variety of tissues.

Conclusions

Exploiting the λ‐packaging system, complex adeno constructs can be generated with a simple and reproducible protocol, which allows selection of the desired size construct, counterselecting for the frequently observed intramolecular recombinations and deletions. Copyright © 2002 John Wiley & Sons, Ltd.
  相似文献   

3.
4.

Background

Introduction of recombinant genes in the genome of primary lymphocytes by virtue of a replication‐deficient retrovirus can be used in immunological studies and for cell‐based gene therapy.

Methods

Packaging cells GP+E86 producing replication‐deficient retrovirus incorporating the genes of enhanced green fluorescent protein (eGFP), C2γ or C2ξ, were generated by calcium phosphate‐mediated transfection. Clones with the highest titres of retrovirus vector were isolated from them and their supernatants were used for transduction of PT67 cells. Primary mouse lymphocytes and T‐cell hybridoma MD.45 were transduced by centrifugation with retroviral stock. The retroviral content of packaging cell supernatants was determined by dot blotting and hybridization with a DNA probe.

Results

PT67 cells produced ~50 times more retrovirus vector than the original GP+E86 clones. When retroviral stocks of PT67 and GP+E86 cells were used at 1/50 dilution and undiluted, respectively (to normalize them forretroviral RNA content), the transduction efficiency of mouse T‐cell hybridoma was 40% and 5%, respectively. Centrifugation of target cells with retroviral stock at 2000 g for 60 min increased the percentage of transduced cells two‐ to three‐fold. Within a population of cells isolated from the draining lymph nodes of an immunized mouse and reactivated with an antigen, up to 60% of CD4+ T cells and up to 80% of B cells could be transduced with a transgene in replication‐deficient retrovirus packaged by PT67 cells using the optimized gene transfer protocol.

Conclusions

This protocol allows for the generation of packaging cells producing high titres of retrovirus vector. The 10A1 envelope protein is superior to the ecotropic one for the transduction of mouse lymphocytes. Copyright © 2002 John Wiley & Sons, Ltd.
  相似文献   

5.
6.

Background

Lentiviral vectors allow gene transfer into non‐dividing cells. Further development of these vector systems requires stable packaging cell lines that enable adequate safety testing.

Methods

To generate a packaging cell line for vectors based on simian immunodeficiency virus (SIV), expression plasmids were constructed that contain the codon‐optimized gag‐pol gene of SIV and the gene for the G protein of vesicular stomatitis virus (VSV‐G) under the control of an ponasterone‐inducible promoter. Stable cell lines expressing these packaging constructs were established and characterized.

Results

The RT activity and vector titers of cell clones stably transfected with the inducible gag‐pol expession plasmid could be induced by ponasterone by more than a factor of 1000. One of these clones was subsequently transfected with the ponasterone‐inducible VSV‐G expression plasmid to generate packaging cells. Clones of the packaging cells were screened for vector production by infection with an SIV vector and subsequent induction by ponasterone. In the supernatant of selected ponasterone‐induced producer clones vector titers of more than 1×105 transducing units/ml were obtained. Producer cell clones were stable for at least five months, as tested by vector production.

Conclusions

The packaging cells described should be suitable for most preclinical applications of SIV‐based vectors. By avoiding regions of high homology between the vector and the packaging constructs, the design of the SIV packaging cell line should reduce the risk of transfer of packaging genes to target cells and at the same time provide flexibility with respect to the SIV vector constructs that can be packaged. Copyright © 2002 John Wiley & Sons, Ltd.
  相似文献   

7.
8.

Background

We studied the ability of adenovirus type 5 (Ad5) to encapsidate new cellular ligands carried by their fibers to yield functional retargeted vectors for gene therapy. Recombinant Ad5 fibers containing shaft repeats 1 to 7 and an extrinsic trimerization motif, and terminated by its native knob or amino acid motifs containing RGD, have been rescued into infectious virions.

Methods

Polypeptide ligands of cell surface molecules, including single‐chain antibodies or epidermal growth factor, were cloned into recombinant fibers. Phenotypic analysis of fiber constructs and rescuing into the Ad5 genome were performed. Recombinant viruses were characterized with reference to fiber content, growth rate and infectivity.

Results

A major limiting factor for recovering viable recombinant Ad5 carrying fiber‐fused polypeptide ligands was apparently the ability of the ligand to fold correctly within the cellular cytoplasm. This constraint has previously not been systematically evaluated in the literature. Phenotypic analysis of the fiber‐ligand fusions showed that their degree of cytoplasmic solubility correlated with their ability to yield viable Ad5 vectors. Our results suggested that the fiber manipulations diminish virus growth rate, probably through different, opposing effects: (i) the reduced shaft length increases fiber solubility in the absence of the knob but (ii) diminishes virus entry, and (iii) the absence of the knob alters the overall protein composition of the virion and decreases its fiber copy number.

Conclusions

Based on our findings, cytoplasmic solubility and cytoplasmic ligand reactivity of fiber‐ligand fusion proteins are the best prediction criterion for viability and recovery of genetically retargeted Ad vectors. Copyright © 2002 John Wiley & Sons, Ltd.
  相似文献   

9.
10.

Background

Because gene therapy of the future will primarily take an in vivo approach, a number of problems associated with its current implementation exist. Currently, repeated delivery of a vector in vivo is necessary to ensure adequate transfer of the therapeutic gene. This may lead to the development of an immune response against the vector, thus interfering with gene delivery. To circumvent this problem, retroviral vector packaging cells that permanently produce recombinant retroviral vector particles have been encapsulated.

Methods

Vector (pBAG)‐producing amphotropic cells were encapsulated in beads composed of polymerized cellulose sulphate. These capsules were analysed in vitro for expression of the vector construct using X‐gal staining, as well as for the release of particles by performing RT‐PCR from culture supernatant. Infectivity studies were performed in vitro and in vivo. The latter was assayed using histological sections of the microcapsule and the surrounding area stained for β‐galactosidase activity and by RT‐PCR.

Results

In culture, the virus‐producing cells inside the capsules remained viable and released virus into the culture medium for at least 6 weeks. To test whether these capsules, upon implantation into mice, also release vector virions that infect the surrounding cells, two different models were used. In the first, capsules were implanted in the fat pad of the mammary gland of Balb/c mice. The capsules were well tolerated for at least 6 weeks and a self‐limiting inflammatory reaction without any other gross immune response was observed during this period. Furthermore, the virus‐producing cells remained viable. In the second model, SCID mice were immunologically reconstituted by subcutaneous implantation of thymus lobes from MHC‐identical Balb/c newborn mice and gene transfer into lymphoid cells was achieved by retroviral vectors released by co‐implanted capsules.

Conclusion

The implantation of such capsules containing cells that continually produce retroviral vector particles may be of use for in vivo gene therapy strategies. The data presented demonstrate the feasibility of the concept. Copyright © 2002 John Wiley & Sons, Ltd.
  相似文献   

11.

Background

A number of properties have relegated the use of Moloney murine leukemia virus (Mo‐MLV)‐based retrovirus vectors primarily to ex vivo protocols. Direct implantation of retrovirus producer cells can bypass some of the limitations, and in situ vector production may result in a large number of gene transfer events. However, the fibroblast nature of most retrovirus packaging cells does not provide for an effective distribution of vector producing foci in vivo, especially in the brain. Effective development of new retrovirus producer cells with enhanced biologic properties may require the testing of a large number of different cell types, and a quick and efficient method to generate them is needed.

Methods

Moloney murine leukemia virus (Mo‐MLV) gag‐pol and env genes and retrovirus vector sequences carrying lacZ were cloned into different minimal HSV/AAV hybrid amplicons. Helper virus‐free amplicon vectors were used to co‐infect glioma cells in culture. Titers and stability of retrovirus vector production were assessed.

Results

Simultaneous infection of two glioma lines, Gli‐36 (human) and J3T (dog), with both types of amplicon vectors, generated stable packaging populations that produced retrovirus titers of 0.5–1.2×105 and 3.1–7.1×103 tu/ml, respectively. Alternatively, when cells were first infected with retrovirus vectors followed by infection with HyRMOVAmpho amplicon vector, stable retrovirus packaging populations were obtained from Gli‐36 and J3T cells producing retrovirus titers comparable to those obtained with a traditional retrovirus packaging cell line, ΨCRIPlacZ.

Conclusions

This amplicon vector system should facilitate generation of new types of retrovirus producer cells. Conversion of cells with migratory or tumor/tissue homing properties could result in expansion of the spatial distribution or targeting capacity, respectively, of gene delivery by retrovirus vectors in vivo. Copyright © 2002 John Wiley & Sons, Ltd.
  相似文献   

12.

Background

Genetic marking of hematopoietic stem cells (HSCs) with multiple fluorescent proteins (FPs) would allow analysis of their features, including interaction with adjacent cells. However, there are few red FPs that are comparable to green FPs in terms of low toxicity and high fluorescent intensity. This study has evaluated the usefulness of Kusabira Orange (KO) originated from the coral stone Fungia concinna as a red FP for marking of HSCs

Methods

A vector used was the MSCV‐type retroviral vector, DΔNsap that has the PCC4 cell‐passaged myeloproliferative sarcoma virus derived long terminal repeat devoid of a binding site for YY1 and the primer‐binding site derived from the dl587rev, respectively. The vector was cloned with the codon‐optimized KO cDNA for higher expression in mammalian cells (huKO) and converted to the corresponding retroviruses pseudotyped with the vesicular stomatitis virus G envelope protein, then transduced into c‐KIT+Sca‐1+Lineage? cells obtained from C57BL/6 (Ly5.1) mice followed by transplantation into lethally irradiated Ly5.2 mice.

Results

Approximately 70% of donor‐derived cells highly expressed huKO at 16 weeks post‐transplantation. Furthermore, the high expression of huKO was also detected in serially transplanted mice, suggesting that expression of huKO per se had little deleterious effect on murine hematopoiesis. In double marking experiments, huKO‐expressing hematopoietic cells were easily distinguished from those expressing EGFP by flow cytometery and fluorescent microscope analysis.

Conclusions

Overall, the results obtained from the present study suggest that huKO can be used as a valuable and versatile red fluorescent marker for HSCs. Copyright © 2008 John Wiley & Sons, Ltd.
  相似文献   

13.

Background

Adeno‐associated virus serotype 2 (AAV2) vectors show considerable promise for ocular gene transfer. However, one potential barrier to efficacious long‐term therapy is the development of immune responses against the vector or transgene product.

Methods

We evaluated cellular and humoural responses in mice following both single and repeated subretinal administration of AAV2, and examined their effects on RPE65 and green fluorescent protein transgene expression.

Results

Following subretinal administration of vector, splenocytes and T‐cells from draining lymph nodes showed minimal activation following stimulation by co‐culture with AAV2. Neutralizing antibodies (NAbs) were not detected in the ocular fluids of any mice receiving AAV2 or in the serum of mice receiving a lower dose. NAbs were present in the serum of a proportion of mice receiving a higher dose of the vector. Furthermore, no differences in immunoglobulin titre in serum or ocular fluids against RPE65 protein or AAV2 capsid between treated and control mice were detected. Histological examination showed no evidence of retinal toxicity or leukocyte infiltration compared to uninjected eyes. Repeat administration of low‐dose AAV.hRPE65.hRPE65 to both eyes of RPE65?/? mice resulted in transgene expression and functional rescue, but re‐administration of high‐dose AAV2 resulted in boosted NAb titres and variable transgene expression in the second injected eye.

Conclusions

These data, which were obtained in mice, suggest that, following subretinal injection, immune responses to AAV2 are dose‐dependent. Low‐dose AAV2 is well tolerated in the eye, with minimal immune responses, and transgene expression after repeat administration of vector is achievable. Higher doses lead to the expression of NAbs that reduce the efficacy of repeated vector administration. Copyright © 2009 John Wiley & Sons, Ltd.
  相似文献   

14.

Background

Interferon‐α2 (IFNα2) is routinely used for anti‐hepatitis B virus (HBV) treatment. However, the therapeutic efficiency is unsatisfactory, particularly in East Asia. Such inefficiency might be a result of the short half‐life, relatively low local concentration and strong side‐effects of interferons. Frequent and repeated injection is also a big burden for patients. In the present study, a single dose of vector‐delivered IFNα1 was tested for its anti‐HBV effects.

Methods

Adeno‐associated viral vector (AAV‐IFNα1) was generated to deliver the IFNα1 gene into hepatocytes. IFNα1, hepatitis B surface (HBsAg) and e (HBeAg) antigens were measured by enzyme‐linked immunosorbent assay and/or western blotting. The level of viral DNA was measured by quantitative real‐time polymerase chain reaction.

Results

AAV‐IFNα1 effectively transduced HBV‐producing cells (HepAD38) and mouse hepatocytes, where IFNα1 was expressed in a stable manner. Both intracellular and extracellular HBsAg and HBeAg were significantly reduced in vitro. In the HBV‐producing mice, the concentration of IFNα1 in the liver was eight‐fold higher than that in plasma. Compared with control groups, HBeAg/HBsAg antigen levels were reduced by more than ten‐fold from day 1–5, and dropped to an undetectable level on day 9 in the AAV‐IFNα1 group. Concurrently, the level of viral DNA decreased over 30‐fold for several weeks.

Conclusions

A single dose administration of AAV‐IFNα1 viral vector displayed prolonged transgene expression and superior antiviral effects both in vitro and in vivo. Therefore, the use of AAV‐IFNα1 might be a potential alternative strategy for anti‐HBV therapy. Copyright © 2008 John Wiley & Sons, Ltd.
  相似文献   

15.

Background

Materno‐fetal transfer of intravenously administered liposome‐plasmid DNA complexes has been demonstrated only in mice. Studies on its materno‐fetal transfer in the pregnant monkey model is needed because of critical differences in placental structure between primates including humans and rodents.

Methods

The reporter plasmid pEGFP‐C1 was formulated in cationic lipid containing polybrene and vesicular stomatitis virus G protein. The fusogenic liposome‐plasmid DNA complexes were intradermally injected into pregnant common marmosets (N=2), a New World monkey, near term. DNA extracted from fetal tissues was subjected to PCR for detection of the egfp gene. Confocal microscopy and immunostaining were performed to determine the sites of transgene expression in the fetal organs.

Results

The egfp gene was detected in fetal blood and major organs (heart, liver, lung). The encoded protein was mainly produced in the endothelial cells of blood vessels in the fetal lungs.

Conclusions

This is the first report on materno‐fetal transfer of intradermally administered fusogenic liposome‐plasmid DNA complexes and fetal expression of a transgene in primates. Copyright © 2002 John Wiley & Sons, Ltd.
  相似文献   

16.

Background

Gene therapy strategies for the treatment of vascular disease such as the prevention of post‐angioplasty restenosis require efficient, non‐toxic transfection of vascular cells. In vitro studies in these cells contribute to vector development for in vivo use and for the evaluation of genes with therapeutic potential. The aim of this project was to evaluate a novel synthetic vector consisting of a liposome (L), an integrin targeting peptide (I), and plasmid DNA (D), which combine to form the LID vector complex.

Methods

Cultures of porcine smooth muscle cells and endothelial cells were established and then transfected with the LID vector, using the reporter genes luciferase and green fluorescent protein and the metalloprotease inhibitor TIMP‐1.

Results

The LID vector system transfected primary porcine vascular smooth muscle cells and porcine aortic endothelial cells with efficiency levels of 40% and 35%, respectively. By increasing the relative DNA concentration four‐fold, incubation periods as short as 30 min achieved the same levels of luciferase transgene expression as 4 h incubations at lower DNA concentrations. The transfection did not affect cell viability as measured by their proliferative potential. Serum levels of up to 20% in the transfection medium had no adverse affect on the efficiency of transfer and gene expression in either cell type. Transfections with the cDNA for TIMP‐1 produced protein levels that peaked at 130 ng/ml per 24 h and persisted for 14 days at 10 ng/ml per 24 h.

Conclusion

This novel vector system has potential for studies involving gene transfer to cardiovascular cells in vitro and in vivo. Copyright © 2002 John Wiley & Sons, Ltd.
  相似文献   

17.

Background

Naked DNA and standard vectors have previously been used for gene delivery from implantable carrier matrices with great potential for gene therapeutic assistance of wound healing or tissue engineering. We have previously developed copolymer‐protected gene vectors which are inert towards opsonization. Here we examine their potency in carrier‐mediated gene delivery in comparison to standard vectors using a vector‐loaded collagen sponge model.

Methods

Equine collagen type I sponges were loaded by a lyophilization method with naked DNA, polyethylenimine (PEI)‐DNA, DOTAP/cholesterol‐DNA and copolymer‐protected PEI‐DNA. These preparations were characterized in terms of vector‐release, cell growth on the matrices and reporter gene expression by cells colonizing the sponges in vitro and in vivo. Subcutaneous implantation of sponges in rats served as an in vivo model.

Results

At the chosen low vector dose, the loading efficiency was at least 86%. Naked DNA‐loaded collagen matrices lost 77% of the DNA dose in an initial burst in aqueous buffer in vitro. The other preparations examined displayed a sustained vector release. There was no difference in cell growth and invasion of the sponges between vector‐loaded and untreated collagen grafts. Reporter gene expression from cells colonizing the sponges in vitro was observed for not more than 7 days with naked DNA, whereas the lipoplex and polyplex preparations yielded long‐term expression throughout the experimental period of up to 56 days. The highest expression levels were achieved with the PEI‐DNA‐PROCOP (protective copolymer) formulation. Upon subcutaneous implantation in rats, no luciferase expression was detected with naked DNA preparations. DOTAP/cholesterol‐DNA and PEI‐DNA‐loaded implants lead to reporter gene expression for at least 3 days, but with poor reproducibility. PEI‐DNA‐PROCOP collagen matrices yielded consistently the highest reporter gene expression levels for at least 7 days with good reproducibility.

Conclusions

With the preparation method chosen, lipoplex‐ and polyplex‐loaded collagen sponges are superior in mediating sustained gene delivery in vitro and local transfection in vivo as compared to naked DNA‐loaded sponges. Protective copolymers are particularly advantageous in promoting the tranfection capacity of polyplex‐loaded sponges upon subcutaneous implantation, likely due to their stabilizing and opsonization‐inhibiting properties. Copyright © 2002 John Wiley & Sons, Ltd.
  相似文献   

18.
19.

Background

Retroviral particles that are inappropriately enveloped can transduce target cells if pre‐associated with cationic liposomes. This study optimises and addresses the mechanism of liposome‐enhanced gene delivery, and explores the potential for such agents to compensate for fusion deficiency associated with chimaeric envelope proteins.

Methods

Particles bearing wild‐type, chimaeric or no envelope proteins were complexed with DOTAP or DC‐Chol/DOPE cationic liposomes and added to target cells for various times. Particle binding was determined by detection of cell‐associated capsid protein and infectivity was measured histochemically.

Results

Stable association of cationic liposomes with retrovirus particles significantly enhanced their binding rate to target cells in proportion to the increase of transduction kinetics for infectious virus. Binding of virus was equivalent with or without envelope protein and/or virus receptor, indicating that a non‐specific interaction precedes receptor recognition. Non‐infectious combinations were rescued by the intrinsic fusogenicity of the cationic liposomes, which enabled entry of the viral core, but left subsequent events unaltered. The optimised transduction rate with non‐enveloped particles and DOTAP approached that of amphotropic‐enveloped virus in some cases, although the effect was target‐cell‐dependent. DC‐Chol/DOPE was less potent at direct fusion but was able to enhance 600‐fold the receptor‐dependent action of chimaeric envelopes that were deficient in fusion by virtue of the addition of targeting domains.

Conclusions

These data have implications for the development of retroviral vector targeting strategies from the perspectives of the specificity of target cell interaction and compensating for chimaeric envelope fusion deficiency. Copyright © 2002 John Wiley & Sons, Ltd.
  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号