首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Osteoporosis (OP) and osteoarthritis (OA), the two most common age-related chronic disorders of articular joints and skeleton, represent a major public health problem in most developed countries. They are influenced by environmental factors and exhibit a strong genetic component. Large population studies clearly show their inverse relationship; therefore, an accurate analysis of the genetic bases of one of these two diseases may provide data of interest for the other disorder. The discovery of risk and protective genes for OP and OA promises to revolutionize strategies for diagnosing and treating these disorders. The primary goal of this symposium was to bring together scientists and clinicians working on OP and OA in order to identify the most promising and collaborative approaches for the coming decade. This meeting put into focus the importance of an adequate genetic approach to several areas of research: the search for the genetic determinants underlying new susceptibilities, the optimization of previously acquired data; the establishment of correlations between genetic polymorphism and functional variants, and gene–gene and gene–environment interactions (particularly those between genes and nutrients). An adequate genetic approach is also essential with regard to determining more selective criteria for phenotypic definition of familial OP, in order to obtain more homogeneous and statistically powerful family-based studies. The symposium concluded with an interesting overview of the future perspectives offered by DNA microarray technologies for identifying novel candidate genes, for developing proteomics and bioinformatics analyses and for designing low-cost clinical trials.  相似文献   

2.
In phytophagous insects, oviposition behaviour is an important component of habitat selection and, given the multiplicity of genetic and environmental factors affecting its expression, is defined as a complex character resulting from the sum of interdependent traits. Here, we study two components of egg-laying behaviour: oviposition acceptance (OA) and oviposition preference (OP) in Drosophila melanogaster using three natural fruits as resources (grape, tomato and orange) by means of no-choice and two-choice experiments, respectively. This experimental design allowed us to show that the results obtained in two-choice assays (OP) cannot be accounted for by those resulting from no-choice assays (OA). Since the genomes of all lines used are completely sequenced, we perform a genome-wide association study to identify and characterize the genetic underpinnings of these oviposition behaviour traits. The analyses revealed different candidate genes affecting natural genetic variation of both OA and OP traits. Moreover, our results suggest behavioural and genetic decoupling between OA and OP and that egg-laying behaviour is plastic and context-dependent. Such independence in the genetic architectures of OA and OP variation may influence different aspects of oviposition behaviour, including plasticity, canalization, host shift and maintenance of genetic variability, which contributes to the adoption of adaptive strategies during habitat selection.  相似文献   

3.
Osteoarthritis (OA) is characterized by alterations to subchondral bone as well as articular cartilage. Changes to bone in OA have also been identified at sites distal to the affected joint, which include increased bone volume fraction and reduced bone mineralization. Altered bone remodelling has been proposed to underlie these bone changes in OA. To investigate the molecular basis for these changes, we performed microarray gene expression profiling of bone obtained at autopsy from individuals with no evidence of joint disease (control) and from individuals undergoing joint replacement surgery for either degenerative hip OA, or fractured neck of femur (osteoporosis [OP]). The OP sample set was included because an inverse association, with respect to bone density, has been observed between OA and the low bone density disease OP. Compugen human 19K-oligo microarray slides were used to compare the gene expression profiles of OA, control and OP bone samples. Four sets of samples were analyzed, comprising 10 OA-control female, 10 OA-control male, 10 OA-OP female and 9 OP-control female sample pairs. Print tip Lowess normalization and Bayesian statistical analyses were carried out using linear models for microarray analysis, which identified 150 differentially expressed genes in OA bone with t scores above 4. Twenty-five of these genes were then confirmed to be differentially expressed (P < 0.01) by real-time PCR analysis. A substantial number of the top-ranking differentially expressed genes identified in OA bone are known to play roles in osteoblasts, osteocytes and osteoclasts. Many of these genes are targets of either the WNT (wingless MMTV integration) signalling pathway (TWIST1, IBSP, S100A4, MMP25, RUNX2 and CD14) or the transforming growth factor (TGF)-beta/bone morphogenic protein (BMP) signalling pathway (ADAMTS4, ADM, MEPE, GADD45B, COL4A1 and FST). Other differentially expressed genes included WNT (WNT5B, NHERF1, CTNNB1 and PTEN) and TGF-beta/BMP (TGFB1, SMAD3, BMP5 and INHBA) signalling pathway component or modulating genes. In addition a subset of genes involved in osteoclast function (GSN, PTK9, VCAM1, ITGB2, ANXA2, GRN, PDE4A and FOXP1) was identified as being differentially expressed in OA bone between females and males. Altered expression of these sets of genes suggests altered bone remodelling and may in part explain the sex disparity observed in OA.  相似文献   

4.
Osteoarthritis (OA), one of the most common age-related chronic disorders of articular cartilage, joints, and bone tissue, represents a major public health problem. Genetic studies have identified multiple gene variations associated with an increased risk of OA. These findings suggest that there is a large genetic component to OA and that the disorder belongs in the multigenetic, multifactorial class of genetic diseases. Studies of chondrodysplasias and associated hereditary OA have provided a better understanding of the role of structural genes in the maintenance and repair of articular cartilage, in the regulation of chondrocyte proliferation and gene expression, and in the pathogenesis of OA.  相似文献   

5.
G Yan  D D Chadee  D W Severson 《Genetics》1998,148(2):793-800
Information on genetic variation within and between populations is critical for understanding the evolutionary history of mosquito populations and disease epidemiology. Previous studies with Drosophila suggest that genetic variation of selectively neutral loci in a large fraction of genome may be constrained by fixation of advantageous mutations associated with hitchhiking effect. This study examined restriction fragment length polymorphisms of four natural Aedes aegypti mosquito populations from Trinidad and Tobago, at 16 loci. These populations have been subjected to organophosphate (OP) insecticide treatments for more than two decades, while dichlor-diphenyltrichlor (DDT) was the insecticide of choice prior to this period. We predicted that genes closely linked to the OP target loci would exhibit reduced genetic variation as a result of the hitchhiking effect associated with intensive OP insecticide selection. We also predicted that genetic variability of the genes conferring resistance to DDT and loci near the target site would be similar to other unlinked loci. As predicted, reduced genetic variation was found for loci in the general chromosomal region of a putative OP target site, and these loci generally exhibited larger F(ST) values than other random loci. In contrast, the gene conferring resistance to DDT and its linked loci show polymorphisms and genetic differentiation similar to other random loci. The reduced genetic variability and apparent gene deletion in some regions of chromosome 1 likely reflect the hitchhiking effect associated with OP insecticide selection.  相似文献   

6.
The major mental disorders, schizophrenia and bipolar disorder are substantially heritable. Recent genomic studies have identified a small number of common and rare risk genes contributing to both disorders and support epidemiological evidence that genetic susceptibility overlaps between them. Prompted by the question of whether risk genes cluster in specific molecular pathways or implicate discrete mechanisms we and others have developed hypothesis-free methods of investigating genome-wide association datasets at a pathway-level. The application of our method to the 212 experimentally-derived pathways in the Kyoto Encycolpaedia of Genes and Genomes (KEGG) database identified significant association between the cell adhesion molecule (CAM) pathway and both schizophrenia and bipolar disorder susceptibility across three GWAS datasets. Interestingly, a similar approach applied to an autistic spectrum disorders (ASDs) sample identified a similar pathway and involved many of the same genes. Disruption of a number of these genes (including NRXN1, CNTNAP2 and CASK) are known to cause diverse neurodevelopmental brain disorder phenotypes including schizophenia, autism, learning disability and specific language disorder. Taken together these studies bring the CAM pathway sharply into focus for more comprehensive DNA sequencing to identify the critical genes, and investigate their relationships and interaction with environmental risk factors in the expression of many seemingly different neurodevelopmental disorders.  相似文献   

7.
Osteoarthritis (OA) is characterized by alterations to subchondral bone as well as articular cartilage. Changes to bone in OA have also been identified at sites distal to the affected joint, which include increased bone volume fraction and reduced bone mineralization. Altered bone remodelling has been proposed to underlie these bone changes in OA. To investigate the molecular basis for these changes, we performed microarray gene expression profiling of bone obtained at autopsy from individuals with no evidence of joint disease (control) and from individuals undergoing joint replacement surgery for either degenerative hip OA, or fractured neck of femur (osteoporosis [OP]). The OP sample set was included because an inverse association, with respect to bone density, has been observed between OA and the low bone density disease OP. Compugen human 19K-oligo microarray slides were used to compare the gene expression profiles of OA, control and OP bone samples. Four sets of samples were analyzed, comprising 10 OA-control female, 10 OA-control male, 10 OA-OP female and 9 OP-control female sample pairs. Print tip Lowess normalization and Bayesian statistical analyses were carried out using linear models for microarray analysis, which identified 150 differentially expressed genes in OA bone with t scores above 4. Twenty-five of these genes were then confirmed to be differentially expressed (P < 0.01) by real-time PCR analysis. A substantial number of the top-ranking differentially expressed genes identified in OA bone are known to play roles in osteoblasts, osteocytes and osteoclasts. Many of these genes are targets of either the WNT (wingless MMTV integration) signalling pathway (TWIST1, IBSP, S100A4, MMP25, RUNX2 and CD14) or the transforming growth factor (TGF)-β/bone morphogenic protein (BMP) signalling pathway (ADAMTS4, ADM, MEPE, GADD45B, COL4A1 and FST). Other differentially expressed genes included WNT (WNT5B, NHERF1, CTNNB1 and PTEN) and TGF-β/BMP (TGFB1, SMAD3, BMP5 and INHBA) signalling pathway component or modulating genes. In addition a subset of genes involved in osteoclast function (GSN, PTK9, VCAM1, ITGB2, ANXA2, GRN, PDE4A and FOXP1) was identified as being differentially expressed in OA bone between females and males. Altered expression of these sets of genes suggests altered bone remodelling and may in part explain the sex disparity observed in OA.  相似文献   

8.

Background

Pro-inflammatory cytokines possess osteoclastogenic or anti-osteoclastogenic activities. They influence osteoclasts directly or via the receptor activator of nuclear factor κB (RANK), RANK ligand (RANKL) and osteoprotegerin (OPG) system. Recent evidence suggests that inflammation may play a role in osteoporosis (OP) and osteoarthritis (OA). We aimed therefore to determine whether there is a difference between both groups: first, in the expression of the osteoclastogenic and anti-osteoclastogenic cytokines, second, in correlation of these cytokines with bone mineral density (BMD) and levels of bone turnover markers (BTM) and third, in correlation between the expression of these cytokines and osteoclast specific genes and RANK/RANKL/OPG genes.

Methods

Human bone samples from 54 age and sex matched patients with OP or OA were collected during hip arthroplasty surgery. The expression of 25 genes encoding pro-inflammatory cytokines, their receptors, osteoclast specific genes and RANK/RANKL/OPG genes was measured using quantitative real-time PCR. Total hip, femoral neck and lumbar spine BMD and BTM in blood samples were measured. The comparison between OP and OA was assessed using Student''s t-test or Mann-Whitney U test and correlations between gene expression, BMD and BTM were determined using nonparametric correlation.

Results

The results demonstrated a higher expression of interleukin (IL)-6 and IL-1α in OP, and interferon (IFN)-γ in OA (p < 0.0005). Negative correlations of total hip BMD with tumor necrosis factor-α (TNF-α) in OA and with RANKL/RANK in OP were found (p < 0.05). Significant correlations with BTM were shown for IL-1α and IFN-γ in OP (rho = 0.608 and -0.634) and for TNF-α, IL-6 and transforming growth factor-β1 (TGF-β1) in OA (rho = 0.591, -0.521 and 0.636). Results showed OP specific negative correlations (IFN-γ with ITGB3, IFN-β1 with CTSK, tartrate resistant acid phosphatase (TRAP), CALCR, RANK, RANKL, IL-1α with CTSK, OPG, IL-17A with CALCR) and positive (TGF-β1 with CTSK, TRAP, RANK), and OA specific negative (IL-1α with osteoclast associated immunoglobulin-like receptor (OSCAR), TNF-α with RANK, RANKL, OPG) and positive (IL-6 with RANK, RANKL, OPG) correlations.

Conclusions

Our results demonstrate that the relationship between osteoclastogenic and anti-osteoclastogenic pro-inflammatory cytokines differs in human OP and OA bone and could present an important factor for characteristics of OP and OA bone phenotypes.  相似文献   

9.
Maize with opposite phyllotaxy (OP) and also initiating ears in opposite pairs is an aberrant mutant and also precious material for maize breeding and plant evolution studies. Mapping and identifying the markers closely linked to genes for the OP trait are essential for cloning the gene and marker-assisted selection in breeding. We established H14D, a near-isogenic line of the OP trait with H53 genetic background. We found that the OP trait is regulated by two independent dominant genes with mutually complementary relations, named Opp-1 and Opp-2. Screening of seven simple-sequence repeat (SSR) markers among the 105 pairs of SSR primers showed polymorphism between the inbred lines H14D and H53. The polymorphic SSR markers were then used to determine linkage with the trait in an F(2) population with 441 progeny, suggesting that SSR marker umc2094 in the Bin2.01 region is linked with Opp-1 at 6.7 cM, and bnlg1831 in Bin2.06 is linked with Opp-2 at 6.1 cM. Further investigation showed that bnlg1092 and umc1028 are linked to Opp-1 and Opp-2 genes, with genetic distances of 12.2 and 1.9 cM. It was also found that the four SSR markers flank the two OP genes, respectively. These results will be useful for marker-assisted selection breeding of OP maize and will also strengthen the basis for cloning of the opposite leafing gene.  相似文献   

10.
Recent advances in the genetic investigation of osteoarthritis   总被引:3,自引:0,他引:3  
Osteoarthritis (OA) demonstrates considerable clinical heterogeneity, generating heated debate over whether OA is a single disease or a complex mix of disparate diseases and concerning which tissues are principally involved in disease initiation and progression. Epidemiological studies have demonstrated a major genetic component to OA risk. However, these studies have also revealed differences in risk between males and females and for disease at different skeletal sites. This observation has resulted in the concept of genes for specific sites rather than a generalised OA phenotype. Recent breakthroughs have shed considerable light on the nature of OA genetic susceptibility. Many candidate genes have been confirmed, such as the interleukin-1 gene cluster and the oestrogen alpha-receptor gene ESR1. Genome-wide linkage scans have revealed several regions harbouring novel loci, some of which are beginning to yield their genes.  相似文献   

11.

Introduction

Osteoarthritis (OA) is considered to be a multifactorial and polygenic disease and diagnosis is mainly clinical and radiological. Correlation between radiographic data and clinical status has been reported. However, very few studies, especially in Caucasian people, describe the association between the Kellgren and Lawrence OA grading scale (KL) and genetic alterations to better understand OA etiopathogenesis and susceptibility. In order to update the knee OA grading, in this study we assessed the associations between KL grade, clinical features such as American Knee Society Score (AKSS), age, and polymorphisms in the principal osteoarthritis susceptibility (OS) genes in Sicilian individuals.

Methods

In 66 Sicilian individuals affected by primary knee OA, the clinical and radiographic evaluation was performed using 2 sub-scores of AKSS (knee score (KS) and function score (FS)) and KL. The patients were also classified according to age. Online Mendelian Inheritance in Man (OMIM) and Database of Single Nucleotide Polymorphisms (dbSNP) Short Genetic Variations databases were used to select gene regions containing the following polymorphisms to analyze: FRZB rs288326 and rs7775, MATN3 rs77245812, ASPN D14 repeats, PTHR2 rs76758470, GDF5 rs143383 and DVWA rs11718863. Patient genotypes were obtained using Sanger DNA sequencing analysis.

Results

In our cohort of patients a statistical association between the variables analyzed was reported in all associations tested (KL versus KS, FS and age). We observed that a mild to severe OA radiographic grade is related to severe clinical conditions and loss of articular function and that the severity of symptoms increases with age. Concerning the genotyping analysis, our results revealed a significant statistical association between KL grading and GDF5 rs143383 and DVWA rs11718863 genetic alterations. The latter was also associated with a more severe radiographic grade, displaying its predictive role as OA marker progression. Statistically significant association between clinical, radiographic and genetic signs observed, suggests extending the actual grading of knee OA based mainly on X-ray features.

Conclusions

This work represents a multidisciplinary and translational medicine approach to study OA where clinical, radiological, and OS5 and OS6 SNPs evaluation could contribute to better define grading and progression of OA and to the development of new therapies.  相似文献   

12.
McNairn AJ  Gerton JL 《Mutation research》2008,647(1-2):103-111
Over 75 years ago, two human genetic disorders were initially described and named for their founding physicians: Cornelia de Lange (CdLS) and Roberts syndrome (RBS)/SC Phocomelia (SC). In the past 4 years, genetic studies of patients have revealed the primary genes involved in these disorders are the essential, evolutionarily conserved components of the cohesin pathway. This pathway serves to facilitate cohesion between replicated sister chromatids, thereby enabling proper chromosome segregation. As a result of these findings, these disorders now represent a novel class of human genetic disorders known as cohesinopathies. Over 60% of CdLS patients examined have de novo mutations in either: SCC2/NIPBL, SMC1, or SMC3, whereas the causative gene in Roberts syndrome and SC Phocomelia has been identified as ESCO2. Now modern genetic, biochemical, and cell biological approaches may be applied to determine the underlying mechanism of these genetic disorders.  相似文献   

13.
14.
Osteoarthritis and osteoporosis are the two most common age-related chronic disorders of articular joints and skeleton, representing a major public health problem in most developed countries. Apart from being influenced by environmental factors, both disorders have a strong genetic component, and there is now considerable evidence from large population studies that these two disorders are inversely related. Thus, an accurate analysis of the genetic component of one of these two multifactorial diseases may provide data of interest for the other. However, the existence of confounding factors must always be borne in mind in interpreting the genetic analysis. In addition, each patient must be given an accurate clinical evaluation, including family history, history of drug treatments, lifestyle, and environment, in order to reduce the background bias. Here, we review the impact of recent work in molecular genetics suggesting that powerful molecular biology techniques will soon make possible both a rapid accumulation of data on the genetics of both disorders and the development of novel diagnostic, prognostic, and therapeutic approaches.  相似文献   

15.
Prader-Willi (PWS) and Angelman (AS) syndromes illustrate a disease paradigm of genomic imprinting, an epigenetic modification of DNA that results in parent-of-origin specific expression during embryogenesis and in the adult. From genetic data, at least two imprinted genes may be required for the classical PWS phenotype, whereas AS probably involves a single imprinted gene, and rare familial forms of both disorders involve imprinting mutations. In addition, the nonimprinted P gene is associated with pigmentation disorders in PWS, AS and oculocutaneous albinism. Identification of new genes, delineation of small deletions in unique patients, and direct screening for imprinted sequences, should soon identify candidate genes for PWS and AS. The mechanism of imprinting involves DNA methylation and replication timing, and appears to include multiple imprinted genes within a large imprinted domain. Imprinting of these genes may be regulated in cis, by an imprinting control element (ICE). Future studies can be expected to unravel the gene identities and imprinting mechanisms involved in these fascinating disorders; ultimately it may be possible to reactivate imprinted gene expression as a therapeutic approach.  相似文献   

16.
The genetic epidemiology of human primary osteoarthritis: current status   总被引:1,自引:0,他引:1  
Osteoarthritis (OA) is a common disease characterised by the degeneration of the cartilage of synovial joints such as the hip and knee. In the past ten years a large number of twin-pair, sibling-risk and segregation studies have been conducted on the disease, and these have revealed a major genetic component that is transmitted in a nonmendelian manner. OA therefore fits best into the complex, multifactorial class of common diseases. With a genetic component established, genome-wide linkage scans were performed, and these uncovered several genomic intervals likely to harbour OA susceptibility. In the past few years these intervals have started to yield genes containing OA-associated variants. This is therefore a very exciting period in the molecular genetic analysis of this common disease. The genes that have so far been implicated in susceptibility include the interleukin 1 gene (IL1) cluster at chromosome 2q11.2-q13, the matrilin 3 gene (MATN3) at 2p24.1, the IL-4 receptor alpha-chain gene (IL4R) at 16p12.1, the secreted frizzled-related protein 3 gene (FRZB) at 2q32.1, the metalloproteinase gene ADAM12 at 10q26.2 and, most recently, the asporin gene (ASPN) at 9q22.31. The evidence for involvement of these genes in OA is more compelling for some than others, with the IL1 and ASPN associations being the most convincing to date. It is imperative that the veracity of each of the associations be tested by genotyping additional cohorts and that their global relevance be assessed by genotyping OA cohorts from different ethnic backgrounds. The gene products of IL1, IL4R, FRZB and ASPN regulate cartilage chondrocyte differentiation and survival, and their effects on the chondrocyte are potentially amenable to therapeutic intervention. The latest genetics is therefore providing new insights for the development of novel OA treatments.  相似文献   

17.
de Leon J  Diaz FJ 《Human genetics》2012,131(6):877-901
The association between schizophrenia and tobacco smoking has been described in more than 1,000 articles, many with inadequate methodology. The studies on this association can focus on: (1) current smoking, ever smoking or smoking cessation; (2) non-psychiatric controls or controls with severe mental illness (e.g., bipolar disorder); and (3) higher smoking frequency or greater usage in smokers. The association with the most potential for genetic studies is that between ever daily smoking and schizophrenia; it may reflect a shared genetic vulnerability. To reduce the number of false-positive genes, we propose a three-stage approach derived from epidemiological knowledge. In the first stage, only genetic variations associated with ever daily smoking that are simultaneously significant within the non-psychiatric controls, the bipolar disorder controls and the schizophrenia cases will be selected. Only those genetic variations that are simultaneously significant in the three hypothesis tests will be tested in the second stage, where the prevalence of the genes must be significantly higher in schizophrenia than in bipolar disorder, and significantly higher in bipolar disorder than in controls. The genes simultaneously significant in the second stage will be included in a third stage where the gene variations must be significantly more frequent in schizophrenia patients who did not start smoking daily until their 20s (late start) versus those who had an early start. Any genetic approach to psychiatric disorders may fail if attention is not given to comorbidity and epidemiological studies that suggest which comorbidities are likely to be explained by genetics and which are not. Our approach, which examines the results of epidemiological studies on comorbidities and then looks for genes that simultaneously satisfy epidemiologically suggested sets of hypotheses, may also apply to the study of other major illnesses.  相似文献   

18.
Identifying genes involved in complex neuropsychiatric disorders through classic human genetic approaches has proven difficult. To overcome that barrier, we have developed a translational approach called Convergent Functional Genomics (CFG), which cross-matches animal model microarray gene expression data with human genetic linkage data as well as human postmortem brain data and biological role data, as a Bayesian way of cross-validating findings and reducing uncertainty. Our approach produces a short list of high probability candidate genes out of the hundreds of genes changed in microarray datasets and the hundreds of genes present in a linkage peak chromosomal area. These genes can then be prioritized, pursued, and validated in an individual fashion using: (1) human candidate gene association studies and (2) cell culture and mouse transgenic models. Further bioinformatics analysis of groups of genes identified through CFG leads to insights into pathways and mechanisms that may be involved in the pathophysiology of the illness studied. This simple but powerful approach is likely generalizable to other complex, non-neuropsychiatric disorders, for which good animal models, as well as good human genetic linkage datasets and human target tissue gene expression datasets exist.  相似文献   

19.
Genetic analysis of osmotic adjustment in crop plants   总被引:25,自引:4,他引:21  
Plant water deficit is a component of several different stresses, including drought, salinity and low temperatures, which severely limit plant growth and crop productivity. Genetic modification of plants to allow growth and yield under unfavourable conditions is an important component of the solution to problems of environmental stress. While disagreement and even confusion may characterize some of the discussions on what constitutes a significant and an effective osmotic adjustment (OA) is receiving increasing recognition as a major mechanism. This paper starts with review of OA functions, genetic variation and inheritance, and theories and principles involved in commonly used protocols for quantifying OA. Emphasis is placed on a summary of current molecular strategies and advanced in the improvement of plant stress resistance through manipulating OA. They include a genetic engineering approach and a QTL mapping approach. Future promising strategies for improving drought resistance lie in molecular technology that allows genes or QTLs controlling OA to be tagged and isolated, these genes to be expressed in transgenic plants, and efficiency of breeding via marker-assisted selection to be improved. Aspects of QTL utilization in plant genetics, breeding and physiology and future research directions are discussed.  相似文献   

20.
Summary The structure and organization of the human globin genes at the nucleotide level has been established by restriction endonuclease digestion of cellular DNA, and by the isolation and purification of these. genes in phage vectors. With this approach it has been possible to define alterations at the DNA level resulting in a group of inherited diseases of man known as the thalassemia syndromes, and related disorders. Combined with other known genetic and biochemical data, these studies provide a framework for understanding the pathogenesis of these disorders at the molecular level.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号