首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have shown previously that the muscarinic agonist, carbachol (CCh), transactivates the epidermal growth factor receptor (EGFr) via calmodulin, Pyk-2, and Src kinase activation. EGFr phosphorylation causes extracellular signal-regulated kinase (ERK) activation and inhibits CCh-stimulated chloride secretion across intestinal epithelial cells. Here we investigated whether CCh-stimulated EGFr transactivation involves EGFr ligand release. Pre-incubation of T(84) cell monolayers with a neutralizing antibody to the EGFr ligand binding domain decreased CCh-induced phosphorylation of EGFr and ERK. CCh-stimulated efflux of (86)Rb+ from T(84) cell monolayers, which parallels changes in chloride secretion, was potentiated by anti-EGFr pre-incubation. Anti-EGFr did not reduce CCh-stimulated Pyk-2 phosphorylation. Co-incubation with the Src kinase inhibitor PP2 and anti-EGFr had an additive inhibitory effect on CCh-induced ERK phosphorylation greater than either inhibitor alone. CCh caused the basolateral release of transforming growth factor alpha (TGF-alpha) into T(84) cell bathing media. A metalloproteinase inhibitor, WAY171318, reduced CCh-induced phosphorylation of ERK and completely blocked EGFr phosphorylation and TGF-alpha release. We conclude that CCh-stimulated EGFr transactivation and subsequent ERK activation, a pathway that limits CCh-induced chloride secretion, is mediated by metalloproteinase-dependent extracellular release of TGF-alpha and intracellular Src activation. These findings have important implications for our understanding of the role of growth factors in regulating epithelial ion secretion.  相似文献   

2.
The hypothalamic decapeptide, gonadotropin-releasing hormone (GnRH), utilizes multiple signaling pathways to activate extracellularly regulated mitogen-activated protein kinases (ERK1/2) in normal and immortalized pituitary gonadotrophs and transfected cells expressing the GnRH receptor. In immortalized hypothalamic GnRH neurons (GT1-7 cells), which also express GnRH receptors, GnRH, epidermal growth factor (EGF), and phorbol 12-myristate 13-acetate (PMA) caused marked phosphorylation of ERK1/2. This action of GnRH and PMA, but not that of EGF, was primarily dependent on activation of protein kinase C (PKC), and the ERK1/2 responses to all three agents were abolished by the selective EGF receptor kinase inhibitor, AG1478. Consistent with this, both GnRH and EGF increased tyrosine phosphorylation of the EGF receptor. GnRH and PMA, but not EGF, caused rapid phosphorylation of the proline-rich tyrosine kinase, Pyk2, at Tyr(402). This was reduced by Ca(2+) chelation and inhibition of PKC, but not by AG1478. GnRH stimulation caused translocation of PKC alpha and -epsilon to the cell membrane and enhanced the association of Src with PKC alpha and PKC epsilon, Pyk2, and the EGF receptor. The Src inhibitor, PP2, the C-terminal Src kinase (Csk), and dominant-negative Pyk2 attenuated ERK1/2 activation by GnRH and PMA but not by EGF. These findings indicate that Src and Pyk2 act upstream of the EGF receptor to mediate its transactivation, which is essential for GnRH-induced ERK1/2 phosphorylation in hypothalamic GnRH neurons.  相似文献   

3.
Renal proximal tubular cell (RPTC) dedifferentiation is thought to be a prerequisite for regenerative proliferation and migration after renal injury. However, the specific mediators and the mechanisms that regulate RPTC dedifferentiation have not been elucidated. Because epidermal growth factor (EGF) receptor activity is required for recovery from acute renal failure, we examined the role of the EGF receptor in dedifferentiation and the mechanisms of EGF receptor transactivation in primary cultures of RPTCs after oxidant injury. Exposure of confluent RPTCs to H2O2 resulted in 40% cell death, and surviving RPTCs acquired a dedifferentiated phenotype (e.g. elongated morphology and vimetin expression). The EGF receptor, p38, Src, and MKK3 were activated after oxidant injury and inhibition of the EGF receptor or p38 with specific inhibitors (AG1478 and SB203580, respectively) blocked RPTC dedifferentiation. Treatment with SB203580 or adenoviral overexpression of dominant negative p38alpha or its upstream activator, MKK3, inhibited EGF receptor phosphorylation induced by oxidant injury, whereas AG1478 had no effect on p38 phosphorylation. Inhibition of Src with 4-amino-5-(4-methylphenyl)-7-(t-butyl)pyrazolo[3,4-d]-pyrimidine (PP1) blocked MKK3 and p38 activation, and inhibition of MKK3 blocked p38 activation. In addition, inactivation of Src, MKK3, p38, or the EGF receptor blocked tyrosine phosphorylation of beta-catenin, a key signaling intermediate that is involved in the epithelial-mesenchymal transition and vimentin expression. These results reveal that p38 mediates EGF receptor activation after oxidant injury; that Src activates MMK3, which, in turn, activates p38; and that the EGF receptor signaling pathway plays a critical role in RPTC dedifferentiation.  相似文献   

4.
Ultraviolet (UV) irradiation stimulates stress-activated protein kinase/c-Jun N-terminal kinase (SAPK/JNK), which is a member of the mitogen-activated protein kinase (MAPK) superfamily and implicated in stress-induced apoptosis. UV also induces the activation of another MAPK member, extracellular signal-regulated kinase (ERK), which is typically involved in a growth-signaling cascade. However, the UV-induced signaling pathway leading to ERK activation, together with the physiological role, has remained unknown. Here we examined the molecular mechanism and physiological function of UV-induced ERK activation in human epidermoid carcinoma A431 cells that retain a high number of epidermal growth factor (EGF) receptors. UV-induced ERK activation was accompanied with the Tyr phosphorylation of EGF receptors, and both responses were completely abolished in the presence of a selective EGF receptor inhibitor (AG1478) or the Src inhibitor PP2 and by the expression of a kinase-dead Src mutant. On the other hand, SAPK/JNK activation by UV was partially inhibited by these inhibitors. UV stimulated Src activity in a manner similar to the ERK activation, but the Src activation was insensitive to AG1478. UV-induced cell apoptosis measured by DNA fragmentation and caspase 3 activation was enhanced by AG1478 and an ERK kinase inhibitor (U0126) but inhibited by EGF receptor stimulation by the agonist. These results indicate that UV-induced ERK activation, which provides a survival signal against stress-induced apoptosis, is mediated through Src-dependent Tyr phosphorylation of EGF receptors.  相似文献   

5.
Despite constitutive expression of autocrine transforming growth factor-alpha (TGF-alpha) in growth factor-independent colon carcinoma cells, the epidermal growth factor receptor (EGFr) is not saturated and can be further activated by exogenous EGFr ligand. Given that the activation of EGFr by exogenous growth factor has no further effect on DNA synthesis, the question arises as to what function this additional EGFr activation might have. We report that EGF induces integrin alpha2 expression, integrin-mediated adhesion, and micromotility of HCT116 cells. The stimulatory effect of ligand on these biological functions is abrogated by treatment with AG1478- and EGFr-blocking monoclonal antibody. This provides evidence that the biological responses are EGFr-mediated and EGFr is located upstream of integrin alpha2 expression. Therefore, although exogenous EGF has no effect on DNA synthesis beyond that induced by autocrine TGF-alpha (at subsaturating levels of EGFr occupation) exogenous growth factor does induce integrin alpha2 expression, cell adhesion, and micromotion. An important finding revealed by this study is the documentation of biological responses of EGFr-mediated functions, including DNA synthesis, cell adhesion, and micromotion, which differ in sensitivity with respect to different degrees of EGFr activation at the basal state and in response to exogenous ligand.  相似文献   

6.
We have previously shown that the Gq protein coupled receptor (GqPCR) agonist, carbachol (CCh), transactivates and recruits epidermal growth factor receptor (EGFr)-dependent signaling mechanisms in intestinal epithelial cells. Increasing evidence suggests that GqPCR agonists can also recruit focal adhesion-dependent signaling pathways in some cell types. Therefore, the aim of the present study was to investigate if CCh stimulates activation of the focal adhesion-associated protein, focal adhesion kinase (FAK), in intestinal epithelia and, if so, to examine the signaling mechanisms involved. Experiments were carried out on monolayers of T84 cells grown on permeable supports. CCh rapidly induced tyrosine phosphorylation of FAK in T84 cells. This effect was accompanied by phosphorylation of another focal adhesion-associated protein, paxillin, and association of FAK with paxillin. CCh-stimulated FAK phosphorylation was inhibited by a chelator of intracellular Ca2+, BAPTA/AM (20 microM), and was mimicked by thapsigargin (2 microM), which mobilizes intracellular Ca2+ in a receptor-independent fashion. CCh also induced association of FAK with the EGFr and FAK phosphorylation was attenuated by an EGFr inhibitor, tyrphostin AG1478, and an inhibitor of Src family kinases, PP2. The actin cytoskeleton disruptor, cytochalasin D (20 microM), abolished FAK phosphorylation in response to CCh but did not alter CCh-induced EGFr or ERK MAPK activation. In summary, these data demonstrate that agonists of GqPCRs have the ability to induce FAK activation in intestinal epithelial cells. GqPCR-induced FAK activation is mediated by via a pathway involving transactivation of the EGFr and alterations in the actin cytoskeleton.  相似文献   

7.
Binding of ouabain to Na(+)/K(+)-ATPase activates tyrosine phosphorylation of the epidermal growth factor receptor (EGFR), Src, and p42/44 mitogen-activated protein kinases (MAPKs) in both cardiac myocytes and A7r5 cells. Here, we explored the roles of Src and the EGFR in the ouabain-invoked pathways that lead to the activation of MAPKs. Exposure of A7r5 and LLC-PK1 cells to ouabain caused a dose-dependent inhibition of Na(+)/K(+)-ATPase activity, which correlated well with ouabain-induced activation of Src and MAPKs in these cells. Immunoprecipitation experiments showed that ouabain stimulated Src binding to Na(+)/K(+)-ATPase in a dose- and time-dependent manner and increased phosphorylation of Src at Tyr(418) but had no effect on Tyr(529) phosphorylation. Ouabain failed to activate MAPKs in A7r5 cells that were pretreated with the Src inhibitor PP2 and in SYF cells in which Src family kinases are knocked out. Preincubation with AG1478, but not AG1295, also blocked the effects of ouabain on p42/44 MAPKs in A7r5 cells. Significantly, both herbimycin A and PP2 abrogated ouabain-induced but not epidermal growth factor-induced Src binding to the EGFR and the subsequent EGFR tyrosine phosphorylation. Ouabain also failed to affect tyrosine phosphorylation of the EGFR in SYF cells. In addition, unlike epidermal growth factor, ouabain did not increase EGFR autophosphorylation at Tyr(1173). These findings clearly indicate that ouabain transactivates the EGFR by activation of Src and stimulation of Src binding to the EGFR. Furthermore, we found that the transactivated EGFR was capable of recruiting and phosphorylating the adaptor protein Shc. This resulted in increased binding of another adaptor protein Grb2 to the Src-EGFR complex and the subsequent activation of Ras and MAPKs. Taken together, these new findings suggest that Src mediates the inter-receptor cross-talk between Na(+)/K(+)-ATPase and the EGFR to transduce the signals from ouabain to the Ras/MAPK cascade.  相似文献   

8.
We examined the stimulus-secretion pathways whereby proteinase-activated receptor 2 (PAR-2) stimulates Cl(-) secretion in intestinal epithelial cells. SCBN and T84 epithelial monolayers grown on Snapwell supports and mounted in modified Ussing chambers were activated by the PAR-2-activating peptides SLIGRL-NH(2) and 2-furoyl-LIGRLO-NH(2). Short-circuit current (I(sc)) was used as a measure of net electrogenic ion transport. Basolateral, but not apical, application of SLIGRL-NH(2) or 2-furoyl-LIGRLO-NH(2) caused a concentration-dependent change in I(sc) that was significantly reduced in Cl(-)-free buffer and by the intracellular Ca(2+) blockers thapsigargin and BAPTA-AM, but not by the Ca(2+) channel blocker verapamil. Inhibitors of PKA (H-89) and CFTR (glibenclamide) also significantly reduced PAR-2-stimulated Cl(-) transport. PAR-2 activation was associated with increases in cAMP and intracellular Ca(2+). Immunoblot analysis revealed increases in phosphorylation of epidermal growth factor (EGF) receptor (EGFR) tyrosine kinase, Src, Pyk2, cRaf, and ERK1/2 in response to PAR-2 activation. Pretreatment with inhibitors of cyclooxygenases (indomethacin), tyrosine kinases (genistein), EGFR (PD-153035), MEK (PD-98059 or U-0126), and Src (PP1) inhibited SLIGRL-NH(2)-induced increases in I(sc). Inhibition of Src, but not matrix metalloproteinases, reduced EGFR phosphorylation. Reduced EGFR phosphorylation paralleled the reduction in PAR-2-stimulated I(sc). We conclude that activation of basolateral, but not apical, PAR-2 induces epithelial Cl(-) secretion via cAMP- and Ca(2+)-dependent mechanisms. The secretory effect involves EGFR transactivation by Src, leading to subsequent ERK1/2 activation and increased cyclooxygenase activity.  相似文献   

9.
Exposure of MDA-MB-468 cells to ionizing radiation (IR) caused biphasic activation of ERK as indicated by its phosphorylation at Thr202/Tyr204. Specific epidermal growth factor receptor (EGFR) inhibitor AG1478 and specific Src inhibitor PP2 inhibited IR-induced ERK1/2 activation but phosphatidylinositol-3 kinase inhibitor wortmannin did not. IR caused EGFR tyrosine phosphorylation, whereas it did not induce EGFR autophosphorylation at Tyr992, Tyr1045, and Tyr1068 or Src-dependent EGFR phosphorylation at Tyr845. SHP-2, which positively regulates EGFR/Ras/ERK signaling cascade, became activated by IR as indicated by its phosphorylation at Tyr542. This activation was inhibited by PP2 not by AG1478, which suggests Src-dependent activation of SHP-2. Src and PTPalpha, which positively regulates Src, became activated as indicated by phosphorylation at Tyr416 and Tyr789, respectively. These data suggest that IR-induced ERK1/2 activation involves EGFR through a Src-dependent pathway that is distinct from EGFR ligand activation.  相似文献   

10.
Serine proteases are now considered as crucial contributors to the development of human colon cancer. We have shown recently that thrombin is a potent growth factor for colon cancer cells through activation of the aberrantly expressed protease-activated receptor 1 (PAR1). Here, we analyzed the signaling pathways downstream of PAR1 activation, which lead to colon cancer cell proliferation in HT-29 cells. Our data are consistent with the following cascade of events on activation of PAR1 by thrombin or specific activating peptide: (a) a matrix metalloproteinase-dependent release of transforming growth factor-alpha (TGF-alpha) as shown with TGF-alpha blocking antibodies and measurement of TGF-alpha in culture medium; (b) TGF-alpha-mediated activation of epidermal growth factor receptor (EGFR) and subsequent EGFR phosphorylation; and (c) activation of extracellular signal-regulated protein kinase 1/2 (ERK1/2) and subsequent cell proliferation. The links between these events are shown by the fact that stimulation of cell proliferation and ERK1/2 on activation of PAR1 is reversed by the MMP inhibitor batimastat, TGF-alpha neutralizing antibodies, EGFR ligand binding domain blocking antibodies, and the EGFR tyrosine kinase inhibitors AG1478 and PD168393. Therefore, transactivation of EGFR seems to be a major mechanism whereby activation of PAR1 results in colon cancer cell growth. Finally, PAR1 activation induces Src phosphorylation, which is reversed by using the Src tyrosine kinase inhibitor PP2, suggesting that Src activation plays a permissive role for PAR1-mediated ERK1/2 activation and cell proliferation probably acting downstream of the EGFR. These data explain how thrombin exerts robust trophic action on colon cancer cells and underline the critical role of EGFR transactivation.  相似文献   

11.
The epidermal growth factor receptor (EGFr) regulates many cellular functions, such as proliferation, apoptosis, and ion transport. Our aim was to investigate whether long term treatment with interferon-γ (IFN-γ) modulates EGF activation of downstream signaling pathways in intestinal epithelial cells and if this contributes to dysregulation of epithelial ion transport in inflammation. Polarized monolayers of T(84) and HT29/cl.19A colonocytes were preincubated with IFN-γ prior to stimulation with EGF. Basolateral potassium transport was studied in Ussing chambers. We also studied inflamed colonic mucosae from C57BL/6 mice treated with dextran sulfate sodium or mdr1a knock-out mice and controls. IFN-γ increased intestinal epithelial EGFr expression without increasing its phosphorylation. Conversely, IFN-γ caused a significant decrease in EGF-stimulated phosphorylation of specific EGFr tyrosine residues and activation of ERK but not Akt-1. In IFNγ-pretreated cells, the inhibitory effect of EGF on carbachol-stimulated K(+) channel activity was lost. In inflamed colonic tissues, EGFr expression was significantly increased, whereas ERK phosphorylation was reduced. Thus, although it up-regulates EGFr expression, IFN-γ causes defective EGFr activation in colonic epithelial cells via reduced phosphorylation of specific EGFr tyrosine residues. This probably accounts for altered downstream signaling consequences. These observations were corroborated in the setting of colitis. IFN-γ also abrogates the ability of EGF to inhibit carbachol-stimulated basolateral K(+) currents. Our data suggest that, in the setting of inflammation, the biological effect of EGF, including the inhibitory effect of EGF on Ca(2+)-dependent ion transport, is altered, perhaps contributing to diarrheal and other symptoms in vivo.  相似文献   

12.
Antagonism of voltage-dependent K+ (Kv) currents in pancreatic beta-cells may contribute to the ability of glucagon-like peptide-1 (GLP-1) to stimulate insulin secretion. The mechanism and signaling pathway regulating these currents in rat beta-cells were investigated using the GLP-1 receptor agonist exendin 4. Inhibition of Kv currents resulted from a 20-mV leftward shift in the voltage dependence of steady-state inactivation. Blocking cAMP or protein kinase A (PKA) signaling (Rp-cAMP and H-89, respectively) prevented the inhibition of currents by exendin 4. However, direct activation of this pathway alone by intracellular dialysis of cAMP or the PKA catalytic subunit (cPKA) could not inhibit currents, implicating a role for alternative signaling pathways. A number of phosphorylation sites associated with phosphatidylinositol 3 (PI3)-kinase activation were up-regulated in GLP-1-treated MIN6 insulinoma cells, and the PI3 kinase inhibitor wortmannin could prevent antagonism of beta-cell currents by exendin 4. Antagonists of Src family kinases (PP1) and the epidermal growth factor (EGF) receptor (AG1478) also prevented current inhibition by exendin 4, demonstrating a role for Src kinase-mediated trans-activation of the EGF tyrosine kinase receptor. Accordingly, the EGF receptor agonist betacellulin could replicate the effects of exendin 4 in the presence of elevated intracellular cAMP. Downstream, the PKCzeta pseudosubstrate inhibitor could prevent current inhibition by exendin 4. Therefore, antagonism of beta-cell Kv currents by GLP-1 receptor activation requires both cAMP/PKA and PI3 kinase/PKCzeta signaling via trans-activation of the EGF receptor. This represents a novel dual pathway for the control of Kv currents by G protein-coupled receptors.  相似文献   

13.
Diverse extracellular stimuli activate the ERK1/2 MAPK cascade by transactivating epidermal growth factor (EGF) receptors. Here, we have examined the role of EGF receptors in IGF-I-stimulated ERK1/2 activation in several cultured cell lines. In human embryonic kidney 293 cells, IGF-I triggered proteolysis of heparin binding (HB)-EGF, increased tyrosine autophosphorylation of EGF receptors, stimulated EGF receptor inhibitor (AG1478)-sensitive ERK1/2 phosphorylation, and promoted EGF receptor endocytosis. In a mixed culture system that employed IGF-I receptor null murine embryo fibroblasts (MEFs) (R(-) cells) to detect paracrine signals produced by MEFs expressing the human IGF-I receptor (R(+) cells), stimulation of R(+) cells provoked rapid activation of green fluorescent protein-tagged ERK2 in cocultured R(-) cells. The R(-) cell response was abolished by either the broad-spectrum matrix metalloprotease inhibitor batimastat or by AG1478, indicating that it resulted from the proteolytic generation of an EGF receptor ligand from adjacent R(+) cells. These data suggest that the paracrine production of EGF receptor ligands leading to EGF receptor transactivation is a general property of IGF-I receptor signaling. In contrast, the contribution of transactivated EGF receptors to IGF-I-stimulated downstream events, such as ERK1/2 activation, varies in a cell type-dependent manner.  相似文献   

14.
Glucosylceramide-based glycosphingolipids have been previously demonstrated to regulate negatively the formation of inositol 1,4,5-trisphosphate by phospholipase C-gamma1. In the present study, the depletion of endogenous glucosylceramide by D-t-EtDO-P4 in cultured ECV304 cells induced autophosphorylation of Src kinase at tyrosine residue 418 within the catalytic loop and dephosphorylation of Src kinase at tyrosine residues 529 within the carboxyl-terminal regulatory region. Phosphotransferase activities of Src kinase were also induced in the glucosylceramide-depleted cells. c-Src kinase activity and phosphorylations at Src Tyr-418 and epidermal growth factor (EGF) receptor Tyr-1068 were significantly enhanced by bradykinin in response to 100 nm D-t-EtDO-P4 compared with control cells. The phosphorylation and dephosphorylation on Tyr-418 and Tyr-529 residues of c-Src were reversed by treatment of 4-amino-5-(4-chlorophenyl)-7-t-butyl(pyrazolo)[3,4-d]pyrimidine (PP2), an inhibitor of Src kinase, in control cells. Glucosylceramide-depleted cells resisted treatment with PP2, and both phosphorylation of Tyr-418 and dephosphorylation of Tyr-529 induced by depletion of glucosylceramide were maintained. Compared with untreated cells, tyrosine phosphorylation of phospholipase C-gamma1 was enhanced by EGF stimulation in glucosylceramide-depleted cells, associated with enhanced tyrosine phosphorylation of the EGF receptor at Tyr-1068 and Tyr-1086 stimulated by EGF. The Src inhibitor, PP2, significantly blocked EGF-induced tyrosine phosphorylation of phospholipase C-gamma1 in control cells, whereas in glucosylceramide-depleted cells, suppression of Src kinase activity by PP2 toward EGF-induced tyrosine phosphorylation of phospholipase C-gamma1 was less significant. Thus the activation of Src kinase by depletion of glucosylceramide-based glycosphingolipids in cultured ECV304 cells is a critical up-stream event in the activation of phospholipase C-gamma1.  相似文献   

15.
Objective: Epidermal growth factor (EGF) stimulates proliferation in 3T3‐L1 preadipocytes, but EGF action in differentiation is less clear. EGF promotes differentiation at concentrations <1 nM but inhibits differentiation at higher concentrations, suggesting a dual role in adipogenesis. We hypothesized that differences in EGF receptor activation and downstream signaling mediate distinct biological effects of EGF at low vs. high abundance. Research Methods and Procedures: We compared the effects of low (0.1 nM) vs. high (10 nM) EGF on the activation of EGF receptors, proximal signaling molecules Src and Shc, and the downstream mitogen‐activated protein kinase (MAPK) pathways extracellular regulated kinase (ERK) and p38 in proliferating and differentiated 3T3‐L1 cells. Results: Both low and high EGF activated ERK and p38 in preadipocytes. Src inhibitors PP1 and PP2 blocked ERK and p38 activation by low but not high EGF, and only high EGF increased Shc phosphorylation. Selective inhibition of the EGF receptor (EGFR) with AG1478 blocked ERK and p38 activation at both concentrations; however, selective inhibition of the ErbB2 receptor (EB2R) with AG825 or small interfering RNA (siRNA) blocked low but not high EGF activation of ERK and p38. Coimmunoprecipitation of EGFR with EB2R and Src was observed with low EGF in preadipocytes but at both concentrations in adipocytes. EB2R inhibition during differentiation decreased p38 activity and peroxisome proliferator‐activated receptor γ (PPARγ) abundance. Discussion: Our results show that EGFR homodimers mediate action of EGF at high abundance, but at low abundance, EGF promotes differentiation through EGFR/EB2R heterodimer activation of Src and p38. These results may partially explain the observations that high EGF concentrations inhibit, whereas low concentrations support, preadipocyte differentiation.  相似文献   

16.
Previous studies found that epidermal growth factor (EGF) decreased paracellular permeability in gastric mucosa, but the other physiological regulators and the molecular mechanisms mediating these responses remain undefined. We investigated the role of secretin and Src in regulating paracellular permeability because secretin regulates gastric chief cell function and Src mediates events involving the cytoskeletal-membrane interface, respectively. Confluent monolayers were formed from canine gastric epithelial cells in short-term culture on Transwell filter inserts. Resistance was monitored in the presence of secretin with or without specific kinase inhibitors. Tyrosine phosphorylation of Src at Tyr(416) was measured with a site-specific phosphotyrosine antibody. Basolateral, but not apical, secretin at concentrations from 1 to 100 nM dose dependently increased resistance; this response was rapid and sustained over hours. PP2 (10 microM), a selective Src tyrosine kinase inhibitor, but not the inactive isomer PP3, abolished the increase in resistance by secretin but only modestly attenuated apical EGF effects. AG-1478 (100 nM), a specific EGF receptor tyrosine kinase inhibitor, attenuated the resistance increase to EGF but not secretin. Secretin, but not EGF, induced tyrosine phosphorylation of Src at Tyr(416) in a dose-dependent fashion, with the maximal response observed at 1 min. PP2, but not PP3, dramatically inhibited this tyrosine phosphorylation. Secretin increases paracellular resistance in gastric mucosa through a Src-mediated pathway, while the effect of EGF is Src independent. Src appears to mediate the physiological effects of this G(s)-coupled receptor in primary epithelial cells.  相似文献   

17.
Thromboxane A2 receptor (TP) mediates bronchial smooth muscle cell (BSMC) contraction, airway hyperresponsiveness, and airway inflammation in patients with asthma. In the present study, a pathogenic role of TP activation in airway remodeling was examined using primary cultures of human BSMC. A TP agonist, I-BOP, concentration-dependently enhanced not only bromodeoxyuridine (BrdU) uptake but also cell proliferation of BSMC. A TP-selective antagonist, AA-2414, blocked the effects of I-BOP on both BrdU uptake and cell proliferation. I-BOP-induced BrdU uptake was significantly blocked by two non-selective tyrosine kinase inhibitors, genistein and herbimycin A, or a Src family tyrosine kinase inhibitor, PP2, but not by an inhibitor of epidermal growth factor (EGF) receptor-associated tyrosine kinase, AG1478. In conclusion, TP receptor activation causes DNA synthesis and cell proliferation of human BSMC by activating tyrosine kinases including Src, but not by EGF receptor transactivation.  相似文献   

18.
Oxidative stress has been implicated in the pathogenesis of inflammatory diseases of airways. Here we show that oxidative stress causes ligand-independent activation of epidermal growth factor receptors (EGFR) and subsequent activation of mitogen-activated protein kinase kinase (MEK)-p44/42 mitogen-activated protein kinase (p44/42mapk), resulting in mucin synthesis in NCI-H292 cells. Exogenous hydrogen peroxide and neutrophils activated by IL-8, FMLP, or TNF-alpha increased EGFR tyrosine phosphorylation and subsequent activation of p44/42mapk and up-regulated the expression of MUC5AC at both mRNA and protein levels in NCI-H292 cells. These effects were blocked by selective EGFR tyrosine kinase inhibitors (AG1478, BIBX1522) and by a selective MEK inhibitor (PD98059), whereas a selective platelet-derived growth factor receptor tyrosine kinase inhibitor (AG1295), a selective p38 MAPK inhibitor (SB203580), and a negative compound of tyrosine kinase inhibitors (A1) were without effect. Neutrophil supernatant-induced EGFR tyrosine phosphorylation, activation of p44/42mapk, and MUC5AC synthesis were inhibited by antioxidants (N-acetyl-cysteine, DMSO, dimethyl thiourea, or superoxide dismutase); neutralizing Abs to EGFR ligands (EGF and TGF-alpha) were without effect, and no TGF-alpha protein was found in the neutrophil supernatant. In contrast, the EGFR ligand, TGF-alpha, increased EGFR tyrosine phosphorylation, activation of p44/42mapk, and subsequent MUC5AC synthesis, but these effects were not inhibited by antioxidants. These results implicate oxidative stress in stimulating mucin synthesis in airways and provide new therapeutic approaches in airway hypersecretory diseases.  相似文献   

19.
Mouse capillary endothelial cells (1G11 cell line) embedded in type I collagen gels undergo in vitro angiogenesis. Cells rapidly reorganize and form capillary-like structures when stimulated with serum. Transforming growth factor beta1 (TGF-beta1) alone can substitute for serum and induce cell survival and tubular network formation. This TGF-beta1-mediated angiogenic activity depends on phosphatidylinositol 3-kinase (PI3K) and p42/p44 mitogen-activated protein kinase (MAPK) signaling. We showed that specific inhibitors of either pathway (wortmannin, LY-294002, and PD-98059) all suppressed TGF-beta1-induced angiogenesis mainly by compromising cell survival. We established that TGF-beta1 stimulated the expression of TGF-alpha mRNA and protein, the tyrosine phosphorylation of a 170-kDa membrane protein representing the epidermal growth factor (EGF) receptor, and the delayed activation of PI3K/Akt and p42/p44 MAPK. Moreover, we showed that all these TGF-beta1-mediated signaling events, including tubular network formation, were suppressed by incubating TGF-beta1-stimulated endothelial cells with a soluble form of an EGF receptor (ErbB-1) or tyrphostin AG1478, a specific blocker of EGF receptor tyrosine kinase. Finally, addition of TGF-alpha alone poorly stimulated angiogenesis; however, by reducing cell death, it strongly potentiated the action of TGF-beta1. We therefore propose that TGF-beta1 promotes angiogenesis at least in part via the autocrine secretion of TGF-alpha, a cell survival growth factor, activating PI3K/Akt and p42/p44 MAPK.  相似文献   

20.
Proximal events in signaling by plasma membrane estrogen receptors   总被引:18,自引:0,他引:18  
Estradiol (E2) rapidly stimulates signal transduction from plasma membrane estrogen receptors (ER) that are G protein-coupled. This is reported to occur through the transactivation of the epidermal growth factor receptor (EGFR) or insulin-like growth factor-1 receptor, similar to other G protein-coupled receptors. Here, we define the signaling events that result in EGFR and ERK activation. E2-stimulated ERK required ER in breast cancer and endothelial cells and was substantially prevented by expression of a dominant negative EGFR or by tyrphostin AG1478, a specific inhibitor for EGFR tyrosine kinase activity. Transactivation/phosphorylation of EGFR by E2 was dependent on the rapid liberation of heparin-binding EGF (HB-EGF) from cultured MCF-7 cells and was blocked by antibodies to this ligand for EGFR. Expression of dominant negative mini-genes for Galpha(q) and Galpha(i) blocked E2-induced, EGFR-dependent ERK activation, and Gbetagamma also contributed. G protein activation led to activation of matrix metalloproteinases (MMP)-2 and -9. This resulted from Src-induced MMP activation, implicated using PP2 (Src family kinase inhibitor) or the expression of a dominant negative Src protein. Antisense oligonucleotides to MMP-2 and MMP-9 or ICI 182780 (ER antagonist) each prevented E2-induced HB-EGF liberation and ERK activation. E2 also induced AKT up-regulation in MCF-7 cells and p38beta MAP kinase activity in endothelial cells, blocked by an MMP inhibitor, GM6001, and tyrphostin AG1478. Targeting of only the E domain of ERalpha to the plasma membrane resulted in MMP activation and EGFR transactivation. Thus, specific G proteins mediate the ability of E2 to activate MMP-2 and MMP-9 via Src. This leads to HB-EGF transactivation of EGFR and signaling to multiple kinase cascades in several target cells for E2. The E domain is sufficient to enact these events, defining additional details of the important cross-talk between membrane ER and EGFR in breast cancer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号