首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The interaction of B18 peptide with surfactants has been studied by circular dichroism spectroscopy and fluorescence measurements. B18 is the fusogenic motif of the fertilization sea urchin protein. The peptide forms an alpha-helix structure when interacting with positively or negatively charged surfactants below and above the critical micellar concentration (CMC). The alpha-helix formation is due to binding of surfactant monomers rather than the formation of surfactant micelles on the peptide. Fluorescence measurements show that the CMC of the negatively charged surfactant increases in the presence of B18, supporting the fact that there is a strong interaction between the peptide and monomers. Nonionic surfactant monomers have no effect on the peptide structure, whereas the micelles induce an alpha-helical conformation. In this case the helix stabilization results from the formation of surfactant micelles on the peptide.  相似文献   

2.
To examine the relationship between peptide sequence and the interaction of amphipathic alpha-helical peptides with phosphatidylcholines, various methods of mixing the peptide and lipid were explored. A series of amphipathic alpha-helical peptides containing from 10 to 18 residues were synthesized by solid-phase techniques. An 18-residue peptide and two relatively hydrophobic 10-residue peptides did not disrupt dimyristoylphosphatidylcholine liposomes when added to the lipid in buffer. However, when the peptides were premixed with lipid in a suitable organic solvent and then reconstituted with aqueous buffer, clear micelles were formed, indicating association of the amphipathic alpha-helical peptide with lipid. In general, the best solvent for this purpose was trifluoroethanol. The circular dichroic and fluorescence spectra of peptides which readily formed clear mixtures when mixed in buffer with dimyristoylphosphatidylcholine liposomes were similar when prepared either by the alternative pathway technique using trifluoroethanol or by a cholate removal technique. For the peptides which did not clear liposomes in buffer, first mixing with dimyristoylphosphatidylcholine in trifluoroethanol resulted in an increase in the alpha-helicity of the peptides as judged by circular dichroic spectra and a blue-shift in the fluorescence emission maxima of the single tryptophan residue in each peptide. These data are consistent with formation of an amphipathic alpha-helix in lipid by peptides which based on mixing experiments with dimyristoylphosphatidylcholine liposomes in buffer at the phase transition temperature of the lipid would be considered ineffective in lipid binding. Thus, simple mixing of peptides with liposomes may give misleading results concerning the intrinsic affinity of a particular peptide sequence for lipid. In addition, the data demonstrate that relatively hydrophobic amphipathic alpha-helical peptides which do not form small micelles with dimyristoylphosphatidylcholine spontaneously in aqueous solution may interact with lipid as typical amphipathic alpha-helices when mixed by an alternative pathway.  相似文献   

3.
The adsorption of nonionic surfactants on hide powder previously treated with anionic surfactants has been studied. The adsorption of nonionic surfactants takes place through hydrophobic interactions. A mechanism has been proposed for this interaction, assuming that the nonionic surfactant has been fixed by means of secondary adsorption (hydrophobic interaction) after the primary adsorption of the anionic surfactant (ionic and hydrophobic interaction) which makes it possible.  相似文献   

4.
Jia Y  Narayanan J  Liu XY  Liu Y 《Biophysical journal》2005,89(6):4245-4251
The mechanism of crystallization of soluble, globular protein (lysozyme) in the presence of nonionic surfactant C8E4 (tetraoxyethylene glycol monooctyl ether) was examined using both static and dynamic light scattering. The interprotein interaction was found to be attractive in solution conditions that yielded crystals and repulsive in the noncrystallizing solution conditions. The validity of the second virial coefficient as a criterion for predicting protein crystallization could be established even in the presence of nonionic surfactants. Our experiments indicate that the origin of the change in interactions can be attributed to the adsorption of nonionic surfactant monomers on soluble proteins, which is generally assumed to be the case with only membrane proteins. This adsorption screens the hydrophobic attractive force and enhances the hydration and electrostatic repulsive forces between protein molecules. Thus at low surfactant concentration, the effective protein-protein interaction remains repulsive. Large surfactant concentrations promote protein crystallization, possibly due to the attractive depletion force caused by the intervening free surfactant micelles.  相似文献   

5.
As a model of receptor protein, a series of 3alpha-helix bundle peptides constructed on a template peptide were designed so as to possess a hydrophobic cavity. The size of cavity was modulated by simple replacements of Leu residues to Ala residues in the hydrophobic core. Binding abilities to 8-anilino-1-naphthalenesulfonic acid (ANS) were estimated by the increase of fluorescence intensity. The peptide having three or four Ala residues in the hydrophobic core remarkably increased the binding ability for ANS, though the peptide having two Ala residues gave an inefficient cavity for ANS. The peptide having six Ala residues decreased the binding ability due to crucial destabilization of the helix bundle structure. This scaffold can be utilized to a receptor model, while further tuning of the sequence is necessary.  相似文献   

6.
Adrenocorticotropin (ACTH) and α-melanocyte stimulating hormone (α-MSH) are peptides which present many physiological effects related to pigmentation, motor and sexual behavior, learning and memory, analgesia, anti-inflammatory and antipyretic processes. The 13 amino acid residues of α-MSH are the same initial sequence of ACTH and due to the presence of a tryptophan residue in position 9 of the peptide chain, fluorescence techniques could be used to investigate the conformational properties of the hormones in different environments and the mechanisms of interaction with biomimetic systems like sodium dodecyl sulphate (SDS) micelles, sodium dodecyl sulphate-poly(ethylene oxide) (SDS-PEO) aggregates and neutral polymeric micelles. In buffer solution, fluorescence parameters were typical of peptides containing tryptophan exposed to the aqueous medium and upon addition of surfactant and polymer molecules, the gradual change of those parameters demonstrated the interaction of the peptides with the microheterogeneous systems. From time-resolved experiments it was shown that the interaction proceeded with conformational changes in both peptides, and further information was obtained from quenching of Trp fluorescence by a family of N-alkylpyridinium ions, which possess affinity to the microheterogeneous systems dependent on the length of the alkyl chain. The quenching of Trp fluorescence was enhanced in the presence of charged micelles, compared to the buffer solution and the accessibility of the fluorophore to the quencher was dependent on the peptide and the alkylpyridinium: in ACTH(1–21) highest collisional constants were obtained using ethylpyridinium as quencher, indicating a location of the residue in the surface of the micelle, while in α-MSH the best quencher was hexylpyridinium, indicating insertion of the residue into the non-polar region of the micelles. The results had shown that the interaction between the peptides and the biomimetic systems where driven by combined electrostatic and hydrophobic effects: in ACTH(1–24) the electrostatic interaction between highly positively charged C-terminal and negatively charged surface of micelles and aggregates predominates over hydrophobic interactions involving residues in the central region of the peptide; in α-MSH, which presents one residual positive charge, the hydrophobic interactions are relevant to position the Trp residue in the non-polar region of the microheterogeneous systems.  相似文献   

7.
Tang YC  Deber CM 《Biopolymers》2004,76(2):110-118
Lysine tagging of hydrophobic peptides of parent sequence KKAAALAAAAALAAWAALAAAKKKK-NH(2) has been shown to facilitate their synthesis and purification through water solubilization, yet not impact on the intrinsic properties of the hydrophobic core sequence with respect to its insertion into membranes in an alpha-helical conformation. However, due to their positively charged character, such peptides often become bound to phospholipid head groups in membrane surfaces, which inhibits their transbilayer insertion and/or prevents their transport across cellular bilayers. We sought to develop more neutral peptides of membrane-permeable character by replacing most Lys residues with uncharged peptoid [N-(R)glycyl] residues, which might similarly confer water solubility while retaining membrane-interactive properties of the hydrophobic core. Several "peptoid-tagged" derivatives of the parent peptide were prepared with varying peptoid content, with five of the six Lys residues replaced with peptoids Nala and/or Nval. Conformations of these peptides measured by circular dichroism spectroscopy demonstrated that these water-soluble peptides retain the alpha-helix structure in micelles (lysophosphatidylcholine and sodium dodecyl sulfate) notwithstanding the known helix-breaking capacity of the peptoid tags. Blue shifts in Trp fluorescence spectra and quenching experiments with acrylamide confirmed that peptoid-tagged peptides insert spontaneously into micellar membranes. Results suggest that upon introduction of uncharged tags, the interaction between the membrane and the peptides is dominated by the hydrophobicity of the peptide core rather than the electrostatic interactions between the Lys and the head groups of the lipids. The overall findings indicate that peptoid residues are effective surrogates for Lys as uncharged water-solubilizing tags and, as such, provide a potentially valuable feature of design of membrane-interactive peptides.  相似文献   

8.
Weller K  Lauber S  Lerch M  Renaud A  Merkle HP  Zerbe O 《Biochemistry》2005,44(48):15799-15811
Pep-1 is a tryptophane-rich cell-penetrating peptide (CPP) that has been previously proposed to bind protein cargoes by hydrophobic assembly and translocate them across cellular membranes. To date, however, the molecular mechanisms responsible for cargo binding and translocation have not been clearly identified. This study was conducted to gain insight into the interaction between Pep-1 with its cargo and the biological membrane to identify the thereby involved structural elements crucial for translocation. We studied three peptides differing in their N- and C-termini: (i) Pep-1, carrying an acetylated N-terminus and a C-terminal cysteamine elongation, (ii) AcPepWAmide, with an acetylated N-terminus and an amidated C-terminus, and (iii) PepW, with two free termini. Thioredoxin (TRX) and beta-galactosidase were used as protein cargoes. To study CPP-membrane interactions, we performed biophysical as well as biological assays. To mimic biological membranes, we used phospholipid liposomes in a dye leakage assay and surfactant micelles for high-resolution NMR studies. In addition, membrane integrity, cell viability, and translocation efficiency were analyzed in HeLa cells. An alpha-helical structure was found for all peptides in the hydrophobic N-terminal region encompassing residues 4-13, whereas the hydrophilic region remained unstructured in the presence of micelles. Our results show that the investigated peptides interacted with the micelles as well as with the protein cargo via their tryptophan-rich domain. All peptides displayed an orientation parallel to the micelle surface. The C-terminal cysteamine group formed an additional membrane anchor, leading to more efficient translocation properties in cells. No membrane permeabilization was observed, and our data were largely compatible with an endocytic pathway for cellular uptake.  相似文献   

9.
Booth V  Waring AJ  Walther FJ  Keough KM 《Biochemistry》2004,43(48):15187-15194
Although the membrane-associated surfactant protein B (SP-B) is an essential component of lung surfactant, which is itself essential for life, the molecular basis for its activity is not understood. SP-B's biophysical functions can be partially mimicked by subfragments of the protein, including the C-terminus. We have used NMR to determine the structure of a C-terminal fragment of human SP-B that includes residues 63-78. Structure determination was performed both in the fluorinated alcohol hexafluoro-2-propanol (HFIP) and in sodium dodecyl sulfate (SDS) micelles. In both solvents, residues 68-78 take on an amphipathic helical structure, in agreement with predictions made by comparison to homologous saposin family proteins. In HFIP, the five N-terminal residues of the peptide are largely unstructured, while in SDS micelles, these residues take on a well-defined compact conformation. Differences in helical residue side chain positioning between the two solvents were also found, with better agreement between the structures for the hydrophobic face than the hydrophilic face. A paramagnetic probe was used to investigate the position of the peptide within the SDS micelles and indicated that the peptide is located at the water interface with the hydrophobic face of the helix oriented inward, the hydrophilic face of the helix oriented outward, and the N-terminal residues even farther from the micelle center than those on the hydrophilic face of the alpha-helix. Interactions of basic residues of SP-B with anionic lipid headgroups are known to have an impact on function, and these studies demonstrate structural ramifications of such interactions via the differences observed between the peptide structures determined in HFIP and SDS.  相似文献   

10.
We previously reported that the 18-mer amphiphilic alpha-helical peptide, Hel 13-5, consisting of 13 hydrophobic residues and five hydrophilic amino acid residues, can induce neutral liposomes (egg yolk phosphatidylcholine) to adopt long nanotubular structures and that the interaction of specific peptides with specific phospholipid mixtures induces the formation of membrane structures resembling cellular organelles such as the Golgi apparatus. In the present study we focused our attention on the effects of peptide sequence and chain length on the nanotubule formation occurring in mixture systems of Hel 13-5 and various neutral and acidic lipid species by means of turbidity measurements, dynamic light scattering measurements, and electron microscopy. We designed and synthesized two sets of Hel 13-5 related peptides: 1) Five peptides to examine the role of hydrophobic or hydrophilic residues in amphiphilic alpha-helical structures, and 2) Six peptides to examine the role of peptide length, having even number residues from 12 to 24. Conformational, solution, and morphological studies showed that the amphiphilic alpha-helical structure and the peptide chain length (especially 18 amino acid residues) are critical determinants of very long tubular structures. A mixture of alpha-helix and beta-structures determines the tubular shapes and assemblies. However, we found that the charged Lys residues comprising the hydrophilic regions of amphiphilic structures can be replaced by Arg or Glu residues without a loss of tubular structures. This suggests that the mechanism of microtubule formation does not involve the charge interaction. The immersion of the hydrophobic part of the amphiphilic peptides into liposomes initially forms elliptic-like structures due to the fusion of small liposomes, which is followed by a transformation into tubular structures of various sizes and shapes.  相似文献   

11.
Recent biochemical and genetic studies have demonstrated that an essential step of the herpes simplex virus type 1 capsid assembly pathway involves the interaction of the major capsid protein (VP5) with either the C terminus of the scaffolding protein (VP22a, ICP35) or that of the protease (Pra, product of UL26). To better understand the nature of the interaction and to further map the sequence motif, we expressed the C-terminal 30-amino-acid peptide of ICP35 in Escherichia coli as a glutathione S-transferase fusion protein (GST/CT). Purified GST/CT fusion proteins were then incubated with 35S-labeled herpes simplex virus type 1-infected cell lysates containing VP5. The interaction between GST/CT and VP5 was determined by coprecipitation of the two proteins with glutathione Sepharose beads. Our results revealed that the GST/CT fusion protein specifically interacts with VP5, suggesting that the C-terminal domain alone is sufficient for interaction with VP5. Deletion analysis of the GST/CT binding domain mapped the interaction to a minimal 12-amino-acid motif. Substitution mutations further revealed that the replacement of hydrophobic residues with charged residues in the core region of the motif abolished the interaction, suggesting that the interaction is a hydrophobic one. A chaotropic detergent, 0.1% Nonidet P-40, also abolished the interaction, further supporting the hydrophobic nature of the interaction. Computer analysis predicted that the minimal binding motif could form a strong alpha-helix structure. Most interestingly, the alpha-helix model maximizes the hydropathicity of the minimal domain so that all of the hydrophobic residues are centered around a Phe residue on one side of the alpha-helix. Mutation analysis revealed that the Phe residue is absolutely critical for the binding, since changes to Ala, Tyr, or Trp abrogated the interaction. Finally, in a peptide competition experiment, the C-terminal 25-amino-acid peptide, as well as a minimal peptide derived from the binding motif, competed with GST/CT for interaction with VP5. In addition, a cyclic analog of the minimal peptide which is designed to stabilize an alpha-helical structure competed more efficiently than the minimal peptide. The evidence suggests that the C-terminal end of ICP35 forms an alpha-helical secondary structure, which may bind specifically to a hydrophobic pocket in VP5.  相似文献   

12.
Phytophenols were solubilized in nonionic surfactant micelles to form antimicrobially active and thermodynamically stable microemulsions. Formulation of phytophenols in microemulsions has previously been shown to improve their antimicrobial activity in model microbiological and food systems. Carvacrol and eugenol were incorporated in micellar solutions of two nonionic surfactants (Surfynol® 485W and Surfynol® 465) by mixing at room temperature. Particle size of formed microemulsions was determined by dynamic light scattering, and structural information about the mixed micellar system was obtained by nuclear magnetic resonance spectroscopy (NMR). Uptake of carvacrol and eugenol in surfactant micelles as determined by ultrasonic velocity measurements was very rapid, e.g., below the maximum additive concentration, the phytophenols were completely solubilized in the micelles in less than 30 min. Depending on the surfactant–phytophenol combination, the self-assembled surfactant–phytophenol aggregates had mean particle diameters between 3 and 17 nm. Elucidation of the structure of aggregates by 1H NMR studies indicated that micelles had a “bracket-like” structure with phytophenols being located inside the palisade layer of the micelle in direct contact with adjacent surfactant monomers. Encapsulation of phytophenols in surfactant micelles enables the incorporation of large amounts of hydrophobic antimicrobials in aqueous phases. Formulation of antimicrobial microemulsions may thus offer a means to deliver high concentrations of phytophenols to the bacterial surfaces of foodborne pathogens to affect kill.  相似文献   

13.
E Bairaktari  D F Mierke  S Mammi  E Peggion 《Biochemistry》1990,29(43):10097-10102
The heptadecapeptides bombolitin I and bombolitin III are two of a series of peptides postulated to be biologically active within a membrane environment. In the preceding paper [Bairaktari, E., Mierke, D.F., Mammi, S., & Peggion, E. (1990) Biochemistry (preceding paper in this issue)] the conformational preferences of these peptides in the presence of SDS surfactant micelles, a mimetic for biological membranes, were examined. During these studies the conformations of these peptides were investigated in aqueous solutions by circular dichroism and nuclear magnetic resonance. A large difference was observed for the two peptides. Bombolitin I lacks any observable secondary structure in aqueous solution, independent of temperature, pH, and concentration. In striking contrast, bombolitin III adopts a well-defined alpha-helix at concentrations greater than 1.3 mM. This is indeed surprising given the great similarity of the two peptides. The alpha-helix of bombolitin III is pH dependent, with a great decrease in the observed secondary structure at pH values below 3.5. This observation could only be due to the protonation of the Asp residue at the fifth position. These findings suggest that the secondary structure arises from molecular aggregation of bombolitin III through the formation of a salt bridge involving the Asp side chain. The alpha-helix observed at "high" concentration (greater than 2.5 mM) has been characterized by CD and by the NOE's measured throughout a majority of the peptide. The experimentally determined structure has been energy refined with restrained molecular dynamics. The conformational results from this study are then compared with the conformations found in the presence of surfactant micelles.  相似文献   

14.
We have designed and synthesized of carbohydrate-binding peptides, gramicidin S analogues. Asn/Asp/Gln and Trp residues in the peptides were employed as the binding sites for carbohydrates by hydrogen-bonding interaction and the creation units for hydrophobic pocket to promote the interaction, respectively. The data of fluorescence spectroscopy and affinity column chromatography indicated that the peptides possessed the binding ability for some carbohydrates in aqueous medium. As a result of 1H NMR study, nuclear Overhauser effects between aromatic side chains of a peptide, [Gln(1,1'),Trp(3,3')]-gramisidin S and mannose were observed, indicating that the interaction of the peptide with the sugar occurred in the hydrophobic environment formed by Trp and Phe residues.  相似文献   

15.
C Nicot  M Vacher  M Vincent  J Gallay  M Waks 《Biochemistry》1985,24(24):7024-7032
The solubility, reactivity, and conformational dynamics of myelin basic protein (MBP) from bovine brain were studied in reverse micelles of sodium bis(2-ethylhexyl) sulfosuccinate (AOT)-isooctane and water. Such a membrane-mimetic system resembles the aqueous spaces of native myelin sheath in terms of physicochemical properties as reflected in the high affinity of MBP for interfacial bound water. This is marked by the unusual profile of the solubility curve of the protein in reverse micelles, which shows optimal solubility at a much lower molar ratio of water to surfactant ([ H2O]/[AOT] = w0) than that reported for other water-soluble proteins. The role of counterions and/or charged polar head groups in the solubilization process is revealed by comparison of the solubility of MBP in nonionic surfactant micellar solutions. Whereas MBP is unfolded in aqueous solutions, insertion into reverse micelles generates a more folded structure, characterized by the presence of 20% alpha-helix. This conformation is unaffected by variations in the water content of the system (in the 2.0-22.4 w0 range). The reactivity of epsilon-amino groups of lysine residues with aqueous solutions of o-phthalaldehyde demonstrates that segments of the peptide chain are accessible to water. Similar results were obtained with the sequence involved in heme binding. In contrast, the sole tryptophan residue, Trp-117, is shielded from the aqueous solvent, as indicated by lack of reaction with N-bromosuccinimide. The invariance of the wavelength maximum emission in the fluorescence spectra as a function of w0 is consistent with this result.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
Conformations of model peptides in membrane-mimetic environments.   总被引:1,自引:0,他引:1       下载免费PDF全文
The influence of a membrane environment on the conformational energetics of a polypeptide chain has been investigated through studies of model peptides in a variety of membrane-mimetic media. Nuclear magnetic resonance (NMR) and circular dichroism (CD) data have been obtained for the peptides in bulk hydrophobic solvents, normal micelles, and reversed micelles. Several hydrophobic peptides which are sparingly soluble in water have been solubilized in aqueous sodium dodecyl sulfate (SDS) solution. NMR and CD data indicate that the micelle-solubilized peptides experience an environment with the conformational impact of bulk methanol, and have decreased conformational freedom. The site of residence of the peptides interacting with the micelles appears to be near the surfactant head groups, in a region permeated by water, and not in the micelle core. Strongly hydrophilic peptides have been solubilized in nonpolar solvents by reversed micelles. These peptides are located in small water pools in close association with the head groups of the surfactant. NMR and CD data show that there is a conformational impact of this interfacial water region on peptide solubilizates distinct from that of bulk water.  相似文献   

17.
We have used two-dimensional 1H nuclear magnetic resonance spectroscopy to determine the structure of the synthetic inhibitory peptide N alpha-acetyl TnI(104-115) amide bound to calcium-saturated skeletal troponin C (TnC). Conformational changes in the peptide induced by the formation of the troponin I (TnI) peptide-TnC complex were followed by the study of the transferred nuclear Overhauser effect, a technique that allows one to determine the structure of a ligand bound to a macromolecule. The structure of the bound TnI peptide reveals an amphiphilic alpha-helix, distorted around the two central proline residues. The central bend in the peptide functions to bring the residues on the hydrophobic face into closer proximity with each other, thereby forming a small hydrophobic pocket. The hydrophilic, basic residues extend off the opposite face of the peptide. Hydrophobic surfaces on TnC that become exposed upon binding of calcium are involved in the binding of the TnI peptide, but electrostatic interactions also contribute to the strength of the interaction. The role of amphiphilic helices in the targeting of calcium-binding proteins such as troponin C will be discussed.  相似文献   

18.
Improvement of the methods for oligonucleotide delivery into cells is necessary for the development of antisense therapy. In the present work, a new strategy for oligonucleotide delivery into cells was tested using cationic peptides as a vector. At first, to understand what structure of the peptide is required for binding with an oligonucleotide, several kinds of alpha-helical and non-alpha-helical peptides containing cationic amino acids were employed. As a result, the amphiphilic alpha-helix peptides were best for binding with the oligonucleotide, and the long chain length and large hydrophobic region in the amphiphilic structure of the peptide were necessary for the binding and forming of aggregates with the oligonucleotide. In the case of non-alpha-helical peptides, no significant binding ability was observed even if their chain lengths and number of cationic amino acid residues were equal to those of the alpha-helical peptides. The remarkable ability of oligonucleotide delivery into COS-7 cells was observed in the alpha-helical peptides with a long chain length and large hydrophobic region in the amphiphilic structure, but was not observed in the non-alpha-helical peptides. It is considered that such alpha-helical peptides could form optimum aggregates with the ODN for uptake into cells. Based on these results, the alpha-helical peptide with a long chain length and large hydrophobic region is applicable as a vector for the delivery of oligonucleotides into cells.  相似文献   

19.
We have studied the interactions between calmodulin (CaM) and three target peptides from the death-associated protein kinase (DAPK) protein family using both experimental and modeling methods, aimed at determining the details of the underlying biological regulation mechanisms. Experimentally, calorimetric binding free energies were determined for the complexes of CaM with peptides representing the DAPK2 wild-type and S308D mutant, as well as DAPK1. The observed affinity of CaM was very similar for all three studied peptides. The DAPK2 and DAPK1 peptides differ significantly in sequence and total charge, while the DAPK2 S308D mutant is designed to model the effects of DAPK2 Ser308 phosphorylation. The crystal structure of the CaM-DAPK2 S308D mutant peptide is also reported. The structures of CaM-DAPK peptide complexes present a mode of CaM-kinase interaction, in which bulky hydrophobic residues at positions 10 and 14 are both bound to the same hydrophobic cleft. To explain the microscopic effects underlying these interactions, we performed free energy calculations based on the approximate MM-PBSA approach. For these highly charged systems, standard MM-PBSA calculations did not yield satisfactory results. We proposed a rational modification of the approach which led to reasonable predictions of binding free energies. All three complexes are strongly stabilized by two effects: electrostatic interactions and buried surface area. The strong favorable interactions are to a large part compensated by unfavorable entropic terms, in which vibrational entropy is the largest contributor. The electrostatic component of the binding free energy followed the trend of the overall peptide charge, with strongest interactions for DAPK1 and weakest for the DAPK2 mutant. The electrostatics was dominated by interactions of the positively charged residues of the peptide with the negatively charged residues of CaM. The nonpolar binding free energy was comparable for all three peptides, the largest contribution coming from the Trp305. About two-thirds of the buried surface area corresponds to nonpolar residues, showing that hydrophobic interactions play an important role in these CaM-peptide complexes. The simulation results agree with the experimental data in predicting a small effect of the S308D mutation on CaM interactions with DAPK2, suggesting that this mutation is not a good model for the S308 phosphorylation.  相似文献   

20.
Type XIV collagen, a fibril-associated collagen with interrupted triple helices (FACIT), interacts with the surrounding extracellular matrix and/or with cells via its binding to glycosaminoglycans (GAGs). To further characterize such interactions in the NC1 domain of chicken collagen XIV, we identified amino acids essential for heparin binding by affinity chromatography analysis after proteolytic digestion of the synthetic peptide NC1(84-116). The 3D structure of this peptide was then obtained using circular dichroism and NMR. The NC1(84-116) peptide appeared poorly structured in water, but the stabilization of its conformation by the interaction with hydrophobic surfaces or by using cosolvents (TFE, SDS) revealed a high propensity to adopt an alpha-helical folding. A 3D structure model of NC1(84-116), calculated from NMR data recorded in a TFE/water mixture, showed that the NC1-heparin binding site forms a amphipathic alpha-helix exhibiting a twisted basic groove. It is structurally similar to the consensus spatial alpha-helix model of heparin-binding [Margalit et al. (1993) J. Biol. Chem. 268, 19228-19231], except that the GAG binding domain of NC1 may be extended over 18 residues, that is, the NC1(94-111) segment. In addition, the formation of a hydrophobic groove upon helix formation suggests the contribution of additional sequences to ensure the stability of the GAG-binding domain. Overall the NC1(84-116) model exhibits a nativelike conformation which presents suitably oriented residues for the interaction with a specific GAG.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号