首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
We have produced 17 lines of transgenic mice by microinjecting a full-length cDNA clone of an altered dihydrofolate reductase (dhfr) gene. The protein specified by this gene carries a point mutation which triples its Km for dihydrofolate and reduces substrate turnover 20-fold relative to the wild-type enzyme. Transgenic mice from different pedigrees, several of which carry a single copy of this gene in different integration sites, manifest an array of similar developmental abnormalities including growth stunting, reduced fertility, pigmentation changes, and skeletal defects. These defects appear in animals heterozygous for the foreign gene. RNA analyses demonstrate significant expression of the cDNA in newborn mice and adult tissues. These findings show that the additional dhfr gene exerts its mutational effects in a dominant fashion, and therefore the data indicate that transgenic mice can serve as models for elucidating mechanisms of dominant mutagenesis.  相似文献   

3.
4.
Methotrexate (MTX)-resistant mutants of the parasitic protozoan Leishmania have been used as models for the mechanism and genetic basis of drug resistance in trypanosomatids and other cells. Three resistance mechanisms to MTX, a dihydrofolate reductase inhibitor, have been described in Leishmania: decreased uptake and accumulation of MTX via the folate/MTX transporter, amplification and overexpression of the dihydrofolate reductase-thymidylate synthase gene, and extrachromosomal amplification of H region DNA. We have now identified hmtxr as the H region gene conferring MTX resistance using a transfection-based approach. Data base searches show that the predicted HMTXr protein is related to members of the polyol dehydrogenase/carbonyl reductase family of aldoketo reductases, whose substrates include polyols, quinones, steroids, prostaglandins, fatty acids, and pterins. We therefore propose that HMTXr is also an oxidoreductase and suggest several biochemical mechanisms of resistance in Leishmania that could be exploited in the design of parasite-specific inhibitors.  相似文献   

5.
We have investigated different parameters characterizing carcinogen-mediated enhancement of methotrexate resistance in Chinese hamster ovary (CHO) cells and in simian virus 40-transformed Chinese hamster embryo (C060) cells. We show that this enhancement reflects dihydrofolate reductase (dhfr) gene amplification. The carcinogens used in this work are alkylating agents and UV irradiation. Both types of carcinogens induce a transient enhancement of methotrexate resistance which increases gradually from the time of treatment to 72 to 96 h later and decreases thereafter. Increasing doses of carcinogens decrease cell survival and increase the enhancement of methotrexate resistance. Enhancement was observed when cells were treated at different stages in the cell cycle, and it was maximal when cells were treated during the early S phase. These studies of carcinogen-mediated dhfr gene amplification coupled with our earlier studies on viral DNA amplification in simian virus 40-transformed cells demonstrate that the same parameters characterize the amplification of both genes. Possible cellular mechanisms responsible for the carcinogen-mediated gene amplification phenomenon are discussed.  相似文献   

6.
7.
Site-directed mutagenesis was used to generate mutants of recombinant mouse dihydrofolate reductase to test the role of some amino acids in the binding of two inhibitors, methotrexate and trimethoprim. Eleven mutations changing eight amino acids at positions all involved in hydrogen bonding or hydrophobic interactions with dihydrofolate or one of the two inhibitors were tested. Nine mutants were obtained by site-directed mutagenesis and two were spontaneous mutants previously obtained by in vivo selection (Grange, T., Kunst, F., Thillet, J., Ribadeau-Dumas, B., Mousseron, S., Hung, A., Jami, J., and Pictet, R. (1984) Nucleic Acids Res. 12, 3585-3601). The choice of the mutated positions was based on the knowledge of the active site of chicken dihydrofolate reductase established by x-ray crystallographic studies since the sequences of all known eucaryotic dihydrofolate reductases are greatly conserved. Enzymes were produced in great amounts and purified using a plasmid expressing the mouse cDNA into a dihydrofolate reductase-deficient Escherichia coli strain. The functional properties of recombinant mouse dihydrofolate reductase purified from bacterial extracts were identical to those of dihydrofolate reductase isolated from eucaryotic cells. The Km(NADPH) values for all the mutants except one (Leu-22----Arg) were only slightly modified, suggesting that the mutations had only minor effects on the ternary conformation of the enzyme. In contrast, all Km(H2folate) values were increased, since the mutations were located in the dihydrofolate binding site. The catalytic activity was also modified for five mutants with, respectively, a 6-, 10-, 36-, and 60-fold decrease of Vmax for Phe-31----Arg, Ile-7----Ser, Trp 24----Arg and Leu-22----Arg mutants and a 2-fold increase for Val-115----Pro. All the mutations affected the binding of methotrexate and six, the binding of trimethoprim: Ile-7----Ser, Leu-22----Arg, Trp-24----Arg, Phe-31----Arg, Gln-35----Pro and Phe-34----Leu. The relative variation of Ki for methotrexate and trimethoprim were not comparable from one mutant to the next, reflecting the different binding modes of the two inhibitors. The mutations which yielded the greatest increases in Ki are those which involved amino acids making hydrophobic contacts with the inhibitor.  相似文献   

8.
Although antifolates such as trimethoprim are used in the clinical treatment of Stenotrophomonas maltophilia infection, the dihydrofolate reductase (DHFR) of this microorganism is scarcely known because it has never been isolated. Here, we describe the purification of this enzyme and kinetically characterize its inhibition by methotrexate (MTX). Upon MTX treatment, time-dependent, slow-binding inhibition was observed due to the generation of a long-lived, slowly dissociating enzyme-NADPH-inhibitor complex. Kinetic analysis revealed a one-step inhibition mechanism (K(I) = 28.9 +/- 1.9 pM) with an association rate constant (k(i)) of 3.8 x 10(7) M(-1)s(-1). Possible mechanisms for MTX binding to S. maltophilia DHFR are discussed.  相似文献   

9.
Methotrexate-resistant forms of human dihydrofolate reductase have the potential to protect healthy cells from the toxicity of methotrexate (MTX), to improve prognosis during cancer therapy. It has been shown that synergistic MTX-resistance can be obtained by combining two active-site mutations that independently confer weak MTX-resistance. In order to obtain more highly MTX-resistant human dihydrofolate reductase (hDHFR) variants for this application, we used a semi-rational approach to obtain combinatorial active-site mutants of hDHFR that are highly resistant towards MTX. We created a combinatorial mutant library encoding various amino acids at residues Phe31, Phe34 and Gln35. In vivo library selection was achieved in a bacterial system on medium containing high concentrations of MTX. We characterized ten novel MTX-resistant mutants with different amino acid combinations at residues 31, 34 and 35. Kinetic and inhibition parameters of the purified mutants revealed that higher MTX-resistance roughly correlated with a greater number of mutations, the most highly-resistant mutants containing three active site mutations (Ki(MTX)=59-180 nM; wild-type Ki(MTX)<0.03 nM). An inverse correlation was observed between resistance and catalytic efficiency, which decreased mostly as a result of increased KM toward the substrate dihydrofolate. We verified that the MTX-resistant hDHFRs can protect eukaryotic cells from MTX toxicity by transfecting the most resistant mutants into DHFR-knock-out CHO cells. The transfected variants conferred survival at concentrations of MTX between 100-fold and >4000-fold higher than the wild-type enzyme, the most resistant triple mutant offering protection beyond the maximal concentration of MTX that could be included in the medium. These highly resistant variants of hDHFR offer potential for myeloprotection during administration of MTX in cancer treatment.  相似文献   

10.
A U.V.-sensitive, DNA repair-deficient mutant of Chinese hamster ovary cells was tested for its response to the lethal effects of X-irradiation and simulated solar light, and to the mutagenic actions of X-rays. A slight sensitivity to killing by X-rays and a greater sensitivity to solar light was observed relative to the wild-type CHO cells. More mutations were induced at a given dose of X-rays in the sensitive cell line than in the wild-type. These results are interpreted in terms of overlap in the repair processes which take place after U.V. damage in mammalian cells with those that take place after other types of radiation damage.  相似文献   

11.
12.
M Bourouis  B Jarry 《The EMBO journal》1983,2(7):1099-1104
Transformed Drosophila Kc cell lines, resistant to methotrexate, an inhibitor of de novo purine and pyrimidine synthesis, have been obtained by calcium phosphate transfection of plasmids containing a sequence coding for a methotrexate-resistant dihydrofolate reductase enzyme (DHFR). The introduced DNA is stably maintained in the cells as head-to-tail multimeric structures of the initial DNA sequence even after several months of culture in the presence of the selective agent. The introduced sequences are present at a high copy number in the transformed cells and express cytoplasmic RNAs transcribed from the DHFR gene.  相似文献   

13.
During stepwise increases in the methotrexate concentration in culture medium, we selected Chinese hamster ovary cells that contained elevated dihydrofolate reductase levels which were proportional to the number of dihydrofolate reductase gene copies (i.e., gene amplification). We studied the dihydrofolate reductase levels in individual cells that underwent the initial steps of methotrexate resistance by using the fluorescence-activated cell sorter technique. Such cells constituted a heterogeneous population with differing dihydrofolate reductase levels, and they characteristically lost the elevated enzyme levels when they were grown in the absence of methotrexate. The progeny of individual cells with high enzyme levels behaved differently and could lose all or variable numbers of the amplified genes.  相似文献   

14.
The grapevine downy mildew, Plasmopara viticola, is one of the most devastating pathogens in viticulture. Effective control is mainly based on fungicide treatments, although resistance development in this pathogen is reported for a number of fungicides. In this study we describe for the first time the molecular mechanism of resistance to a carboxylic acid amide (CAA) fungicide. We identified a family of four cellulose synthase (CesA) genes containing conserved domains that are found in all processive glycosyltransferases. Phylogenetic analysis revealed their close relationship to the cellulose synthases of Phytophthora sp. Sequencing of the CesA genes in a CAA- resistant and -sensitive field isolate revealed five single nucleotide polymorphisms (SNPs) affecting the amino acid structure of the proteins. SNP inheritance in F1-, F2- and F3-progeny confirmed resistance to be correlated with one single SNP located in PvCesA3. Only if present in both alleles, this SNP led to the substitution of a glycine for a serine residue at position 1105 (G1105S) in the deduced amino acid sequence, thus conferring CAA- resistance. Our data demonstrate that the identified genes are putative cellulose synthases and that one recessive mutation in PvCesA3 causes inheritable resistance to the CAA fungicide mandipropamid.  相似文献   

15.
PG19T3 mouse melanoma cells were selected for resistance to methotrexate. Nine sub-lines that are resistant to concentrations of methotrexate ranging from 1.27×10–7 M, to 1×10–4M methotrexate were selected and characterised in terms of their content of dihydrofolate reductase activity and their chromosomes. The intracellular level of dihydrofolate reductase activity increases with increasing resistance such that at the highest level of resistance PG19T3:MTXR 10–4 M cells contain approximately 1,000 fold more enzyme activity than the parental PG19T3 cells. It is shown that the enhanced activity is due to an increase in the amount of the enzyme rather than any structural change to the enzyme in resistant cellls. Comparisons of pH activity profiles, profiles under different activating conditions and titrations with methotrexate suggest that the sensitive and resistant cells contain identical dihydrofolate reductases. Analysis of the chromosomes of resistant cells shows the presence of up to 5 large marker chromosomes which contain homogeneously staining regions after G-banding. These same regions stain intensely after C-banding and fluoresce brightly after staining with Hoechst 33258. The size of homogeneously staining regions increases throughout the process of selection. For one marker chromosome this increase may have been mediated via a ring chromosome.  相似文献   

16.
Development of transformable vectors for thermophilic archaea requires the characterization of appropriate selectable marker genes. Many antibiotic inhibitors of protein biosynthesis are known to bind to rRNA; therefore, we screened 14 for their capacity to inhibit growth of the thermophilic archaeon Sulfolobus acidocaldarius. Carbomycin, celesticetin, chloramphenicol, puromycin, sparsomycin, tetracycline, and thiostrepton all inhibited growth by different degrees. Spontaneous drug-resistant mutants were isolated from plates containing celesticetin or chloramphenicol. Six mutants from each plate exhibited a C-2585-to-U transition in the peptidyl transferase loop of 23S rRNA (corresponding to C-2452 in Escherichia coli 23S rRNA). The single-site mutation also conferred resistance to carbomycin. The mutated 23S rRNA gene provides a potentially useful and dominant marker for a thermophilic archael vector.  相似文献   

17.
The genetic basis for the Ara-C resistance of CCRF-CEM Ara-C/8C leukemia cells was investigated. DNA sequencing revealed that these cells expressed an equilibrative nucleoside transporter 1 (ENT1) with a single missense mutation resulting in glycine to arginine replacement (G24R). To test the importance of this residue, additional G24 mutants were created and examined for [3H]-uridine and [3H]-Ara-C uptake. Both a G24E and G24A mutant showed reduced ENT1-dependent activity. An EGFP-tagged G24R ENT1 displayed plasma membrane localization even though it was unable to bind [3H]-NBMPR, an ENT1-specific inhibitor. These results define G24 as critical amino acid for ENT1 nucleoside uptake and suggest that mutations in TM1 may provide a mechanism for Ara-C resistance in CCRF-CEM Ara-C/8C cells.  相似文献   

18.
J P Vaughn  P A Dijkwel  J L Hamlin 《Cell》1990,61(6):1075-1087
We have used two complementary two-dimensional gel electrophoretic methods to localize replication inititation sites and to determine replication fork direction in the amplified 240 kb dihydrofolate reductase domain of the methotrexate-resistant CHO cell line CHOC 400. Surprisingly, our analysis indicates that replication begins at many sites in several restriction fragments distributed throughout a previously defined 28 kb initiation locus, including a fragment containing a matrix attachment region. Initiation sites were not detected in regions lying upstream or downstream of this locus. Our results suggest that initiation reactions in mammalian chromosomal origins may be more complex than in the origins of simple microorganisms.  相似文献   

19.
20.
Alpha-amanitin resistance: a dominant mutation in CHO cells.   总被引:4,自引:0,他引:4  
P E Lobban  L Siminovitch 《Cell》1975,4(2):167-172
Hybrids of CHO cells were constructed consisting of either a 1:1 or 1:2 ratio of alpha-amanitin-resistant and sensitive cells, respectively. The resistance of such hybrids to killing by the drug was similar but slightly less than that of the resistant parent. The hybrids contained both resistant and wild-type RNA polymerase II, in amounts related to the expected gene dosage. The alpha-amanitin marker therefore is expressed codominantly.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号