首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
1. A crude cellulase extract was prepared from the hepatopancreas of a marine mollusc, Dolabella sp., and partially purified by ammonium sulphate fractionation. 2. The optimum pH values of the partially purified preparation were 6.5 and 8.0 for Walseth cellulose and CM-cellulose respectively. It was most stable at pH6.0 and showed moderate thermostability. 3. The partially purified preparation was subjected to starch-zone electrophoresis, and incompletely resolved into several fractions that contained one or more cellulase components of different substrate specificity. 4. Some of these cellulase fractions showed practically no aryl beta-glucosidase activity and hydrolysed aryl beta-cellobioside with difficulty. From substrates such as higher cello-oligosaccharides, cellodextrin, CM-cellulose, Walseth cellulose and cotton fibre, they produced cellobiose as the major and cellotriose as the minor end products, both of which were resistant to further attack by cellulase. 5. From the slope of the curves of viscosity-reducing power for CM-cellulose, the cellulase components from Dolabella were presumed to be of a ;more-random' or a ;less-random' type in the mode of action. 6. In the hepatopancreas of this mollusc, beta-glucosidases were also present, which hydrolysed cellobiose as well as aryl beta-glucosides. The optimum pH values of these enzymes were about 5.5.  相似文献   

2.
A cellulase component of Avicelase type was obtained from Driselase, a commercial enzyme preparation from a wood-rotting fungus Irpex lacteus (Polyporus tulipiferae). It showed a single band on SDS-polyacrylamide electrophoresis. The amino acid composition of this cellulase resembled those of cellulase components of endo-type from the same fungus. However, it produced exclusively cellobiose from CMC as well as from water-insoluble celluloses such as Avicel or cotton at earlier stages of hydrolysis. In addition, the hydrolysis of CMC practically stopped after an initial rapid stage. The cellulase showed a strong synergistic action with an endo-cellulase of higher randomness (typical CMCase-type) in the hydrolysis of CMC as well as Avicel. In contrast to cellotriose and -tetraose, cellopentaose and -hexaose were attacked very rapidly, and only cellobiose was produced. These results suggest that the cellulase is an exo-type component. However, it mutarotated the products from cellopentaitol in the same direction as endo-cellulases. it represented a relatively large portion of the total cellulase activity, and may play an important role in the degradation of native cellulose in vivo.  相似文献   

3.
A cellulase (endo-beta-1,4-glucanase, EC 3.2.1.4) was purified from the gut of larvae of the yellow-spotted longicorn beetle Psacothea hilaris by acetone precipitation and elution from gels after native PAGE and SDS/PAGE with activity staining. The purified protein formed a single band, and the molecular mass was estimated to be 47 kDa. The purified cellulase degraded carboxymethylcellulose (CMC), insoluble cello-oligosaccharide (average degree of polymerization 34) and soluble cello-oligosaccharides longer than cellotriose, but not crystalline cellulose or cellobiose. The specific activity of the cellulase against CMC was 150 micro mol.min-1.(mg protein)-1. TLC analysis showed that the cellulase produces cellotriose and cellobiose from insoluble cello-oligosaccharides. However, a glucose assay linked with glucose oxidase detected a small amount of glucose, with a productivity of 0.072 micro mol.min-1.(mg protein)-1. The optimal pH of P. hilaris cellulase was 5.5, close to the pH in the midgut of P. hilaris larvae. The N-terminal amino-acid sequence of the purified P. hilaris cellulase was determined and a degenerate primer designed, which enabled a 975-bp cDNA clone containing a typical polyadenylation signal to be obtained by PCR and sequencing. The deduced amino-acid sequence of P. hilaris cellulase showed high homology to members of glycosyl hydrolase family 5 subfamily 2, and, in addition, a signature sequence for family 5 was found. Thus, this is the first report of a family 5 cellulase from arthropods.  相似文献   

4.
The specific properties have been examined of the 1,4-beta-glucanase component of Trichoderma koningii that participates in an early and effective stage of random breakdown of native cellulose to short fibres. The enzyme was purified and freed from associated components of the cellulase complex (particularly beta-glucosidase) that interfere with, and complicate interpretation of, the action of such enzymes. Purification increased the specific activity 25-fold over culture filtrates; the enzyme hydrolysed CM-cellulose faster than the purified beta-glucosidase from the same organism hydrolysed any of its substrates (cellobiose or cellodextrins). The specificity of the glucanase was directed towards soluble derivatives of cellulose, CM-cellulose and cellodextrins, and not to insoluble cellulose or alpha-linked polymers. The approximate Km was 2.5 mg of CM-cellulose . ml-1 at 37 degrees C at the optimum pH, 5.5, where enzymic activity was maximal with 6--7 mg of CM-cellulose . ml-1 and inhibited by higher concentrations. The temperature optimum was 60 degrees C. The glucanase attacked larger cellodextrins (cellohexaose to cellotetraose, in that order) much more readily than smaller dextrins (cellobiose and cellotriose) and released a mixture of products, glucose up to cellopentaose, which was quantitatively determined after chromatography on charcoal. Similar examination of hydrolysates of the reduced cellodextrins showed clearly the high specificity of the enzyme for the central bond of its natural substrates (the cellodextrins), whatever their chain length, and indicated the nature of the enzyme as an endoglucanase. Outer bonds shared a weaker, but similar, susceptibility to enzymic cleavage. Transferase activity was absent and no larger dextrins than the initial substrate were formed.  相似文献   

5.
A cellulase [EC 3.2.1.4] component was purified from a crude cellulase preparation of Trichoderma viride (Meicelase) by consecutive column chromatography procedures, and was designated as cellulase III. The enzyme was homogeneous on polyacrylamide gel disc electrophoresis. The molecular weight of the enzyme was estimated to be about 45,000 by gel filtration. The optimum pH and temperature of the enzyme were pH 4.5-5.0 and 50 degrees, respectively. The enzyme was stable over the range of pH 4.5-7.5 at 4 degrees for 24 hr, and retained 40% of the original carboxymethylcellulose-saccharifying activity after heating at 100 degrees for 10 min. The enzyme was completely inactivated by 1 mM Hg2+, and partially by 1 mM Ag+ and Cu2+. The enzyme was characterized as a less-random type cellulase on the basis of its action on carboxymethylcellulose. The enzyme split cellohexaose, retaining the beta-configuration of the anomeric carbon atoms in the hydrolysis products. The Km values of cellulase III for cellooligosaccharides decreased in parallel with increase of the chain length of the substrates, while Vmax values showed a tendency to increase. The enzyme produced predominantly cellobiose and glucose from various cellulosic substrates as well as from higher cellooligosaccharides. Cellulase III preferentially attacked the aglycone linkage of p-nitrophenyl beta-D-cellobioside. The enzyme was found to catalyze the rapid synthesis of cellotetraose from cellobiose (condensation action).  相似文献   

6.
《Insect Biochemistry》1986,16(6):929-932
The cellulase from the termite Nasutitermes walkeri consists of two enzymes. Each has broad specificity with predominantly one activity. One enzyme is an endo-gb-1,4-glucanase (EC 3.2.1.4) which predominantly cleaves cellulose randomly to glucose, cellobiose and cellotriose. It hydrolyses cellotetraose to cellobiose but will not hydrolyse cellobiose or cellotriose. The second enzyme component is a β-1,4-glucosidase (EC 3.2.1.21) as its major activity is to hydrolyse cellobiose, cellotriose and cellotetraose to glucose; it has some exoglucosidase activity as glucose is the only product produced from cellulose. Its cellobiase activity is inhibited by glucono-δ-lactone.  相似文献   

7.
Covalent linkages between peptidoglycan and cellodextrins in the cell walls of Rhizobium were defined by the analysis of lysozyme split products. Digestion of peptidoglycan with lysozyme resulted in the liberation, beside disaccharide tetrapeptide fragments composed of glucosamine, muramic acid, alanine, glutamic acid and diaminopimelic acid in a molar ratio 1:1:2:1:1, also significant amounts of glucose and its polymers. The neutral carbohydrates composed of glucose, were further purified and determined as cellobiose, cellotriose and cellotetrose. Peptidoglycans pretreated with cellulase, which librated glucose and cellobiose, still contains glucose linked by lysozyme sensitive but cellulase insensitive bond.  相似文献   

8.
Badal C. Saha   《Process Biochemistry》2004,39(12):1871-1876
A newly isolated strain of the fungus, Mucor circinelloides (NRRL 26519), when grown on lactose, cellobiose, or Sigmacell 50 produces complete cellulase (endoglucanase, cellobiohydrolase, and β-glucosidase) system. The extracellular endoglucanase (EG) was purified to homogeneity from the culture supernatant by ethanol precipitation (75%, v/v), CM Bio-Gel A column chromatography, and Bio-Gel A-0.5 m gel filtration. The purified EG (specific activity 43.33 U/mg protein) was a monomeric protein with a molecular weight of 27 000. The optimum temperature and pH for the action of the enzyme were at 55 °C and 4.0–6.0, respectively. The purified enzyme was fully stable at pH 4.0–7.0 and temperature up to 60 °C. It hydrolysed carboxymethyl cellulose and insoluble cellulose substrates (Avicel, Solka-floc, and Sigmacell 50) to soluble cellodextrins. No glucose, cellobiose, and short chain cellooligosaccarides were formed from these substrates. The purified EG could not degrade oat spelt xylan and larch wood xylan. It bound to Avicell, Solka-floc, and Sigmacell 50 at pH 5.0 and the bound enzyme was released by changing the pH to 8.0. The enzyme activity was enhanced by 27±5 and 44±14% by the addition of 5 mM MgCl2 and 0.5 mM CoCl2, respectively, to the reaction mixture. Comparative properties of this enzyme with other fungal EGs are presented.  相似文献   

9.
An endogenous cellulase gene (CfEG3a) of Coptotermes formosanus, an economically important pest termite, was cloned and overexpressed in both native form (nCfEG) and C-terminal His-tagged form (tCfEG) in Escherichia coli. Both forms of recombinant cellulases showed hydrolytic activity on cellulosic substrates. The nCfEG was more active and stable than tCfEG even though the latter could be purified to near homogeneity with a simple procedure. The differential activities of nCfEG and tCfEG were also evidenced by hydrolytic products they produced on different substrates. On CMC, both acted as an endoglucanase, randomly hydrolyzing internal β-1,4-glycosidic bonds and resulting in a smear of polymers with different lengths, although cellobiose, cellotriose, and cellotetraose equivalents were noticeable. The hydrolytic products of tCfEG were one unit sugar less than those produced by nCfEG. Using filter paper as substrate, however, the major hydrolytic products of nCfEG were cellobiose, cellotriose and trace of glucose; those of tCfEG were cellobiose, cellotriose and trace of cellotetraose, indicating a property similar to that of cellobiohydrolase, an exoglucanase. The results presented in this report uncovered the biochemical properties of the recombinant cellulase derived from the intact gene of Formosan subterranean termites. The recombinant cellulase would be useful in designing cellulase-inhibiting termiticides and incorporating into a sugar-based biofuel production program.  相似文献   

10.
Two highly purified cellulases [EC 3.2.1.4], II-A, and II-B, were obtained from the cellulase system of Trichoderma viride. Both cellulases split cellopentaose retaining the beta-configuration of the anomeric carbon atoms in the hydrolysis products at both pH 3.5 and 5.0. The Km values of cellulases II-A and II-B for cellotetraose were different, but their Vmax values were similar and those for cellooligosaccharides increased in parallel with chain length. Both cellulases produced predominantly cellobiose and glucose from various cellulosic substrates as well as from higher cellooligosaccharides. Cellulase II-A preferentially attacked the holoside linkage of rho-nitrophenyl beta-D-cellobioside, whereas cellulase II-B attacked mainly the aglycone linkage of this cellobioside. Both cellulases were found to catalyze the synthesis of cellotriose from rho-nitrophenyl beta-D-cellobioside by transfer of a glucosyl residue, possibly to cellobiose produced in the reaction mixture. They were also found to catalyze the rapid synthesis of cellotetraose from cellobiose, with accompanying formation of cellotriose and glucose, which seemed to be produced by secondary random hydrolysis of the cellotetraose produced. The capacity to synthesize cellotetraose from cellobiose appeared to be greater with cellulase II-B than with cellulase II-A.  相似文献   

11.
Location and Formation of Cellulases in Trichoderma viride   总被引:5,自引:1,他引:4  
The location and formation of cellulases and β-glucosidase in the fungus Trichoderma viride were studied on different substrates. The cellulases were found to be cell-bound during active growth on cellulose, CMC, and cellobiose. On CMC, much CM-cellulase was found cell-free but sonication released cellulase from the washed mycelium. Analysis of the carbohydrates of the mycelial cell wall after hydrolysis revealed glucose, mannose, and galactose—the same carbohydrates as reported to be present in purified cellulase from the same organism. Glucose repressed the formation of both CM-cellulase and Avicelase and cellobiose apparently the formation of Avicelase. Relatively little CM-cellulase was formed on cellobiose but a straight line was obtained when a differential plot of CM-cellulase versus protein was made.  相似文献   

12.
Cellulomonas flavigena CDBB-531 was found to secrete a bifunctional cellulase/xylanase with a molecular mass of 49 kDa and pI 4.3. This enzyme was active on Remazol brilliant blue-carboxymethylcellulose (RBB-CMC) and Remazol brilliant blue-xylan (RBB-X). Based on thin-layer chromatographic analysis of the degradation products, the cellulase activity produced glucose, cellobiose, cellotriose, and cellotetraose from CMC as the substrate. When xylan from birchwood was used, end products were xylose, arabinose, and xylobiose. The bifunctional enzyme showed a pH optimum of 6 for cellulase activity and 9 for xylanase activity, which pointed out that this enzyme had separate sites for each activity. In both cases, the apparent optimum temperature was 50 degrees C. The predicted amino acid sequence of purified protein showed similarity with the catalytic domain of several glycosyl hydrolases of family 10.  相似文献   

13.
Candida peltata (NRRL Y-6888) produced beta-glucosidase when grown in liquid culture on various substrates (glucose, xylose, L-arabinose, cellobiose, sucrose, and maltose). An extracellular beta-glucosidase was purified 1,800-fold to homogeneity from the culture supernatant of the yeast grown on glucose by salting out with ammonium sulfate, ion-exchange chromatography with DEAE Bio-Gel A agarose, Bio-Gel A-0.5m gel filtration, and cellobiose-Sepharose affinity chromatography. The enzyme was a monomeric protein with an apparent molecular weight of 43,000 as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and gel filtration. It was optimally active at pH 5.0 and 50 degrees C and had a specific activity of 108 mumol.min-1.mg of protein-1 against p-nitrophenyl-beta-D-glucoside (pNP beta G). The purified beta-glucosidase readily hydrolyzed pNP beta G, cellobiose, cellotriose, cellotetraose, cellopentaose, and cellohexaose, with Km values of 2.3, 66, 39, 35, 21, and 18 mM, respectively. The enzyme was highly tolerant to glucose inhibition, with a Ki of 1.4 M (252 mg/ml). Substrate inhibition was not observed with 40 mM pNP beta G or 15% cellobiose. The enzyme did not require divalent cations for activity, and its activity was not affected by p-chloromercuribenzoate (0.2 mM), EDTA (10 mM), or dithiothreitol (10 mM). Ethanol at an optimal concentration (0.75%, vol/vol) stimulated the initial enzyme activity by only 11%. Cellobiose (10%, wt/vol) was almost completely hydrolyzed to glucose by the purified beta-glucosidase (1.5 U/ml) in both the absence and presence of glucose (6%). Glucose production was enhanced by 8.3% when microcrystalline cellulose (2%, wt/vol) was treated for 24 h with a commercial cellulase preparation (cellulase, 5 U/ml; beta-glucosidase, 0.45 U/ml) that was supplemented with purified beta-glucosidase (0.4 U/ml).  相似文献   

14.
E Morag  I Halevy  E A Bayer    R Lamed 《Journal of bacteriology》1991,173(13):4155-4162
In the anaerobic, thermophilic, cellulolytic bacterium Clostridium thermocellum, efficient solubilization of the insoluble cellulose substrate is accomplished largely through the action of a cellulose-binding multienzyme complex, the cellulosome. A major cellobiohydrolase activity from the cellulosome has been traced to its Mr 75,000 S8 subunit, and an active fragment of this subunit was prepared by a novel procedure involving limited proteolytic cleavage. The truncated Mr 68,000 fragment, termed S8-tr, was purified by gel filtration and high-performance ion-exchange chromatography. The purified protein adsorbed weakly to amorphous cellulose, and its enzymatic action yielded cellobiose as the major end product from both amorphous and crystalline cellulose preparations. The high ratio of exo- to endo-beta-glucanase activities was supported by viscosimetric measurements. The use of model substrates showed that the smallest cellodextrin to be degraded was cellotetraose, but cellopentaose was degraded at a much greater rate. Cellobiose dramatically inhibited the cellulolytic activities. In the absence of calcium or other bivalent metal ions, both the truncated cellobiohydrolase activity of S8-tr and the true cellulase activity of the parent cellulosome were relatively unstable at temperatures above 50 degrees C. Cysteine further enhanced the stabilizing effect of calcium. This is the first report of a defined cellobiohydrolase in C. thermocellum. Its association with the cellulosome and the correspondence of several of their major distinctive properties suggest that this cellobiohydrolase plays a key role in the solubilization of cellulose by the intact cellulosomal complex.  相似文献   

15.
一株嗜热毛壳菌β-葡萄糖苷酶的分离纯化及特性   总被引:5,自引:2,他引:5  
研究了液体发酵嗜热毛壳菌Chaetomium thermophile产生的β-葡萄糖苷酶的分离纯化及特性。粗酶液经硫酸铵沉淀、DEAE-Sepharose Fast Flow阴离子层析、Phenyl-Sepharose 疏水层析、Sephacryl S-100分子筛层析等步骤后获得凝胶电泳均一的β-葡萄糖苷酶。经12.5%SDS-PAGE和凝胶过滤层析方法分别测得该酶的分子量大小约为78.4kDa和81kDa。该酶反应的最适温度和pH值分别为60℃和4.5-5.0。有较好的酸稳定性和热稳定性。金属离子对β-葡萄糖苷酶的活性影响较大, 其中Ca2+对酶有激活作用, 而Ag+、Cu2+ 、Hg2+对酶有显著的抑制作用。该酶对水杨苷具有很强的底物特异性。  相似文献   

16.
Biological utilization of cellulose is a complex process involving the coordinated expression of different cellulases, often in a synergistic manner. One possible means of inducing an organism-level change in cellulase activity is to use laboratory adaptive evolution. In this study, evolved strains of the cellulolytic actinobacterium, Thermobifida fusca, were generated for two different scenarios: continuous exposure to cellobiose (strain muC) or alternating exposure to cellobiose and glucose (strain muS). These environmental conditions produced a phenotype specialized for growth on cellobiose (muC) and an adaptable, generalist phenotype (muS). Characterization of cellular phenotypes and whole genome re-sequencing were conducted for both the muC and muS strains. Phenotypically, the muC strain showed decreased cell yield over the course of evolution concurrent with decreased cellulase activity, increased intracellular ATP concentrations, and higher end-product secretions. The muS strain increased its cell yield for growth on glucose and exhibited a more generalist phenotype with higher cellulase activity and growth capabilities on different substrates. Whole genome re-sequencing identified 48 errors in the reference genome and 18 and 14 point mutations in the muC and muS strains, respectively. Among these mutations, the site mutation of Tfu_1867 was found to contribute the specialist phenotype and the site mutation of Tfu_0423 was found to contribute the generalist phenotype. By conducting and characterizing evolution experiments on Thermobifida fusca, we were able to show that evolutionary changes balance ATP energetic considerations with cellulase activity. Increased cellulase activity is achieved in stress environments (switching carbon sources), otherwise cellulase activity is minimized to conserve ATP.  相似文献   

17.
An exo-type cellulase (Ex-1) was extracted from Irpex lacteus (Polyporus tulipiferae) and purified essentially to homogeneity. This cellulase attacked cellulosic substrates in an exo-wise fashion to produce almost exclusively cellobiose. In contrast, Ex-1 was found to attack beta-glucans having beta-(1----3)- and beta-(1----4)-mixed linkages in a way similar to an endo-type cellulase. The products formed from barley glucan by Ex-1 were 3(2)-O-beta-D-cellobiosyl-cellobiose much greater than 3(2)-O-beta-D-glucosyl-cellobiose greater than cellobiose much greater than or equal to cellotriose much greater than glucose in the early stage, but no laminaribiose was produced. An endo-type cellulase (En-1) obtained from the same fungus also hydrolyzed beta-glucans but in a typical endo-wise fashion and the products from barley glucan were 3(2)-O-beta-D-glucosyl-cellobiose much greater than 3(2)-O-beta-D-cellobiosyl-cellobiose greater than cellobiose much greater than laminaribiose; no glucose or cellotriose was produced. Thus, it seems likely that En-1 can attack any intramolecular linkage of beta-glucan, while Ex-1 requires the presence of at least cellobiosyl residues adjacent to a beta-(1----3)-D-linked glucosyl residue. This finding, together with the mode of hydrolysis of cellulosic substrates by Ex-1, suggests that the stereochemical structure of successive beta-(1----4)-cellobiosyl residues inserted by beta-(1----3)-D-glucosidic linkage is permissible in the action of Ex-1, although this enzyme prefers the beta-(1----4)-linked cellobiosyl sequence.  相似文献   

18.
β-葡萄糖苷酶的分离纯化和性质研究   总被引:12,自引:0,他引:12  
β-葡萄糖苷酶是纤维素酶的重要组分之一,它不仅可水解纤维二糖和寡糖,更可解除纤维二糖对β-1,4-内切葡聚糖酶和外切葡聚糖酶的抑制,提高水解速率和程度.利用SephadexG-150和DEAE-SephadexA-50层析法从黑曲霉变异株L-22中分离提纯了β-葡萄糖苷酶,该酶是由两个分子量相同的亚基组成的二聚体,每个亚基分子量为203kD.该酶最适pH为4.8,pH稳定范围在3.6~6.4;最适温度是60℃,温度稳定范围为4~60℃;酶分子含糖量为8.35%.它是一个酸性β-葡萄糖苷水解酶,专一性地水解β-糖苷键.而不水解α-糖苷键,对短链底物表现了相对高的活力.用动力学分析和共价化学修饰方法探讨了与该酶活力有关的必需基团.由pH对lgVm和lgVm/Km的影响,推测出酶活性部位至少有两个可解离基团为酶活性所必需,它们在酶-底物复合物中的pKes1和pKes2的值分别为4.0和5.6,在游离酶中的pK值分别为4.2和5.9.由此可初步判断这两个可解离基团可能为组氨酸和含羧基的氨基酸,它们与酶的催化和底物结合可能有关.  相似文献   

19.
The endoglucanase activity of cells and extracellular culture fluid of Fibrobacter succinogenes S85 grown on glucose, cellobiose, soluble polysaccharides (beta-glucan, lichenan) and intact plant polysaccharides, was compared. The specific activity of cells grown on cellulose or forages was 6- to 20-fold higher than that of cells grown on soluble substrates, suggesting an induction of endoglucanases by the insoluble substrates. The ratios of cells to extracellular culture fluid endoglucanase activities measured in cultures grown on sugars or insoluble polysaccharides suggested that the endoglucanases induced by the insoluble polysaccharides remained attached to the cells. The mRNA of all the F. succinogenes glycoside hydrolase genes sequenced so far were then quantified in cells grown on glucose, cellobiose or cellulose. The results show that all these genes were transcribed in growing cells, and that they are all overexpressed in cultures grown on cellulose. Endoglucanase-encoding endB and endA(FS) genes, and xylanase-encoding xynC gene appeared the most expressed genes in growing cells. EGB and ENDA are thus likely to play a major role in cellulose degradation in F. succinogenes.  相似文献   

20.
The cellulase system of Bacteroides cellulosolvens was subjected to both catabolite repression and feedback inhibition by cellobiose. Cellulose-solubilizing activity was 50% inhibited at a cellobiose concentration of 2.6 g/L and completely inhibited by 12 g/L. Glucose at 12 g/L (the highest concentration tested) had no effect on cellulase activity. Supplementation of B. cellulosolvens cellulase with beta-glucosidase resulted in increased conversion of cellobiose to glucose; however, a constant cellobiose pool size of approximately 7 g/L was maintained.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号