首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Twenty-four isolates of turnip mosaic virus (TuMV) from spontaneously infectedSisymbriutn loeselii plants were collected in Bohemian localities. Single lesions on leaves ofNicotiana tabacum cv. Samsun served for inoculating petunia plants used as infection sources for twelve host species. In no case were two identical isolates obtained. 15 isolates could be transmitted toVicia faba, a new TuMV host. Almost all isolates infectedPhaseolus vulgaris cv. Prince locally andTrifolium incarnatum systemically. Seven isolates were transmissible toPisum sativum. No substantial differences between isolates were observed with infectedAn aranthus caudatus, Chenopodium quinoa, Datura innoxia andSinapis alba plants. Several isolates could not infectNicotiana glutinosa at all, other isolates caused in it latent systemic infection and some isolates only local infection contrary to normal local and systemic infections ofN. glutinosa. Attempts to transmit one isolate to cereals failed.  相似文献   

2.
Immunity to a UK isolate (UK 1) of turnip mosaic virus (TuMV) was studied in eight lines of oilseed rape selected from cv Rafal. Six of these lines were uniformly immune and two segregated. Segregation ratios in the F2 generation of reciprocal crosses between two uniformly immune lines and two uniformly susceptible cultivars (Mikado and Yeoman) showed that immunity was controlled by a dominant nuclear allele. The immunity was confirmed by the inability to detect virus particles in mechanically inoculated plants by back inoculations, ELISA and ISEM tests. Plants were immune to repeated inoculations and aphid transmissions. The immunity was effective against one other UK isolate and two German isolates of TuMV. Another UK isolate (UK 3) and a Greek isolate partially overcame the immunity causing local infection and a Canadian and a Danish isolate overcame it completely causing systemic mosaic-type symptoms. When these immunity-breaking strains were tested against swede line 165 which is also immune to UK 1 TuMV, the Canadian isolate overcame the immunity whereas the Danish isolate did not. Using this swede line, one susceptible and one immune line of oilseed rape as differentials, four distinct groups of TuMV isolates could be identified. Selections of oilseed rape immune to UK TuMV isolates were more severely affected by the Canadian TuMV than UK TuMV susceptible selections. The gene determining immunity to TuMV had no pleiotropic effect on susceptibility to cauliflower mosaic virus. The implications on these findings in relation to breeding for virus resistance are discussed.  相似文献   

3.
The Natural Occurrence of Turnip Mosaic Potyvirus in Allium ampeloprasum   总被引:1,自引:0,他引:1  
A. Gera    D.-E. Lesemann    J. Cohen    A. Franck    S. Levy  R. Salomon 《Journal of Phytopathology》1997,145(7):289-293
An isolate of turnip mosaic potyvirus (TuMV) was obtained from Allium ampeloprasum grown in commercial greenhouses in Israel. Symptoms on infected plants include systemic chlorosis and yellow stripes, accompanied by growth reduction. Leaves were distorted, often showing necrotic flecking. The virus was readily transmitted mechanically, and in a non-persistent manner by aphids, among Allium, Chenopodium. Gomphrena and some Nicotiana spp. Purified preparations contained numerous filamentous particles similar to those observed in crude extracts of infected leaves. Particles from crude plant extracts had a normal length of 806 nm. Cells of infected plants contained cylindrical cytoplasmic inclusions with pinwheel, scrolls and laminated aggregates which indicated the presence of a potyvirus of Edwardson's subgroup III. and which resemble those of turnip mosaic virus (TuMV), The virus reacted strongly with antiserum to typical isolates of TuMV in immunoelectron microscopy and western blotting but not with antisera to several other potyviruses. Based on serological reactivity, electron microscopy, aphid transmission and cytopathology, the virus was identified as an isolate of TuMV.  相似文献   

4.
Turnip mosaic virus (TuMV) is the major virus infecting Brassica crops. A dominant gene, TuRB01, that confers extreme resistance to some isolates of TuMV on Brassica napus (oilseed rape), has been mapped genetically. The mapping employed a set of doubled-haploid lines extracted from a population used previously to develop a reference RFLP map of the B. napus genome. The positioning of TuRB01 on linkage group N6 of the B. napus A–genome indicated that the gene probably originated from Brassica rapa. Resistance phenotypes were confirmed by indirect plate-trapped antigen ELISA using a monoclonal antibody raised against TuMV. The specificity of TuRB01 was determined using a wide range of TuMV isolates, including representatives of the European and American/Taiwanese pathotyping systems. Some isolates of TuMV that did not normally infect B. napus plants possessing TuRB01 produced mutant viruses able to overcome the action of the resistance gene. TuRB01 is the first gene for host resistance to TuMV to be mapped in a Brassica crop. A second locus, TuRB02, that appeared to control the degree of susceptibility to the TuMV isolate CHN 1 in a quantitative manner, was identified on the C-genome linkage group N14. The mapping of other complementary genes and the selective combining of such genes, using marker-assisted breeding, will make durable resistance to TuMV a realisable breeding objective. Received: 14 December 1998 / Accepted: 10 April 1999  相似文献   

5.
Two different isolates of Turnip mosaic virus (TuMV: UK 1 and JPN 1) belonging to different virus strains were tested on three different Brassica species, namely turnip (Brassica rapa L.), Indian mustard (Brassica juncea L.) and Ethiopian mustard (Brassica carinata A. Braun). Although all three hosts were readily infected by isolate UK 1, isolate JPN 1 was able to establish a visible systemic infection only in the first two. Ethiopian mustard plants showed no local or systemic symptoms, and no virus antigens could be detected by enzyme‐linked immunosorbent assay (ELISA). Thus, this species looks like a non‐host for JPN 1, an apparent situation of non‐host resistance (NHR). Through an experimental approach involving chimeric viruses made by gene interchange between two infectious clones of both virus isolates, the genomic region encoding the C‐terminal domain of viral protein P3 was found to bear the resistance determinant, excluding any involvement of the viral fusion proteins P3N‐PIPO and P3N‐ALT in the resistance. A further determinant refinement identified two adjacent positions (1099 and 1100 of the viral polyprotein) as the main determinants of resistance. Green fluorescent protein (GFP)‐tagged viruses showed that the resistance of Ethiopian mustard to isolate JPN 1 is only apparent, as virus‐induced fluorescence could be found in discrete areas of both inoculated and non‐inoculated leaves. In comparison with other plant–virus combinations of extreme resistance, we propose that Ethiopian mustard shows an apparent NHR to TuMV JPN 1, but not complete immunity or extreme resistance.  相似文献   

6.
Brassicaceae crops in eight provinces of the North‐west Iran were surveyed for Turnip mosaic virus (TuMV) infection during 2011 and 2012. Many symptomatic plants (38%; 226 of 598) were found to be infected with TuMV. The highest frequency was in turnip (61%), followed by radish (55%), oilseed rape (38%), and brassica weeds including annual bastard cabbage (42%), small tumbleweed‐mustard (50%) and wild radish (45%), but not Brassica oleracea and Lepidium sativum. Using biological assays, Iranian TuMV isolates grouped in three [B], [B(R)] and [BR] host‐infecting types. Phylogenetic analysis using complete coat protein (CP) gene nucleotide sequences showed that the Iranian isolates belonged to the Basal‐B and Asian‐BR populations. No evidence of recombination was found in these isolates using different recombination‐detecting programmes. To our knowledge, our study shows for the first time the occurrence of TuMV Asian‐BR subpopulation in the mid Eurasian region of Iran. The data suggest that the Asian‐BR subtype population is found across southern Eurasia and might be a continuous population in East Asia (mostly Japan and China) and Minor Asia (Turkey), the places considered to be one of the origins of TuMV populations.  相似文献   

7.
矮牵牛是一种草本花卉,主要用来布置花坛,但病毒侵染却严重地影响其观赏价值。国内外有关危害矮牵牛的病毒报道较多[1,2],但较系统研究矮牵牛病毒病的报道较少,本文从矮牵牛病毒鉴定、优势病毒种类确定及防治矮牵牛病毒病进行了初步研究,现报道如下:材料与方法...  相似文献   

8.
Turnip mosaic virus (TuMV) is one of the most devastating threats to oilseed rape by causing serious crop losses. A total of 86 leaf samples of oilseed rape from eight different locations in Shaanxi, China, were tested by RT‐PCR for TuMV; the results revealed an infection level of 43% by TuMV. The complete coat protein (CP) gene of 32 TuMV isolates was cloned and sequenced. Analysis of the CP gene with sequences from the database allowed the genetic classification of 170 TuMV isolates or sequences. Four genetic clusters were obtained: MB (mostly Brassica isolates), MR (mostly Radish isolates), IBR (mostly Intermediate between Brassica and Radish clusters) and OBR (mostly outside Brassica and Radish clusters). All subgroups were slightly related to the hosts, but unrelated to geographical origins. Most of Shaanxi TuMV isolates were on separate branches, compared with the 138 known isolates originating from other parts of the world. Our results help provide a better understanding of the genetic diversity of TuMV isolates infecting oilseed rape in Shaanxi, China.  相似文献   

9.
Provvidenti,R.(1980)和Green,S.K.(1985)先后用同一套鉴别寄主谱,研究了美国和我国台湾省的TuMV株系分化情况。本文用Green的方法,对由十省(市)7,982份病样中筛选出的19个TuMV主流分离物,在同一条件下进行了鉴定。结果表明,属于C_1株系的有黑_3分离物;属于C_4株系的有京_2、京_3、冀_2、宁_1(南京)、粤_1和川_1共6个分离物;属于C_5株系的有黑_1、辽_1、京_1、冀_1、沪_1、鲁_1、鲁_2共7个分离物。未检出C_2和C_3株系。黑_2、沪_2、宁_2和秦_1(陕西)共4个性状相近的分离物和冀_3分离物尚不能按Green的标准归类,暂分别定为C_(3-2)和C_6株系。此外,对Green氏方法应用于我国十字花科蔬菜TuMV株系分化研究中存在的问题作了讨论。  相似文献   

10.
A new source of resistance to the pathotype 4 isolate of Turnip mosaic virus (TuMV) CDN 1 has been identified in Brassica napus (oilseed rape). Analysis of segregation of resistance to TuMV isolate CDN 1 in a backcross generation following a cross between a resistant and a susceptible B. napus line showed that the resistance was dominant and monogenic. Molecular markers linked to this dominant resistance were identified using amplified fragment length polymorphism (AFLP) and microsatellite bulk segregant analysis. Bulks consisted of individuals from a BC1 population with the resistant or the susceptible phenotype following challenge with CDN 1. One AFLP and six microsatellite markers were associated with the resistance locus, named TuRB03, and these mapped to the same region on chromosome N6 as a previously mapped TuMV resistance gene TuRB01. Further testing of TuRB03 with other TuMV isolates showed that it was not effective against all pathotype 4 isolates. It was effective against some, but not all pathotype 3 isolates tested. It provided further resolution of TuMV pathotypes by sub-dividing pathotypes 3 and 4. TuRB03 also provides a new source of resistance for combining with other resistances in our attempts to generate durable resistance to this virus.  相似文献   

11.
A small open reading frame (ORF), pipo, overlaps with the P3 coding region of the potyviral polyprotein ORF. Previous evidence suggested a requirement for pipo for efficient viral cell-to-cell movement. Here, we provide immunoblotting evidence that the protein PIPO is expressed as a trans-frame protein consisting of the amino-terminal half of P3 fused to PIPO (P3N-PIPO). P3N-PIPO of Turnip mosaic virus (TuMV) fused to GFP facilitates its own cell-to-cell movement. Using a yeast two-hybrid screen, co-immunoprecipitation assays, and bimolecular fluorescence complementation (BiFC) assays, we found that P3N-PIPO interacts with host protein PCaP1, a cation-binding protein that attaches to the plasma membrane via myristoylation. BiFC revealed that it is the PIPO domain of P3N-PIPO that binds PCaP1 and that myristoylation of PCaP1 is unnecessary for interaction with P3N-PIPO. In PCaP1 knockout mutants (pcap1) of Arabidopsis, accumulation of TuMV harboring a GFP gene (TuMV-GFP) was drastically reduced relative to the virus level in wild-type plants, only small localized spots of GFP were visible, and the plants showed few symptoms. In contrast, TuMV-GFP infection in wild-type Arabidopsis yielded large green fluorescent patches, and caused severe stunting. However, viral RNA accumulated to high level in protoplasts from pcap1 plants indicating that PCaP1 is not required for TuMV RNA synthesis. In contrast to TuMV, the tobamovirus Oilseed rape mosaic virus did not require PCaP1 to infect Arabidopsis plants. We conclude that potyviral P3N-PIPO interacts specifically with the host plasma membrane protein PCaP1 to participate in cell-to-cell movement. We speculate that PCaP1 links a complex of viral proteins and genomic RNA to the plasma membrane by binding P3N-PIPO, enabling localization to the plasmodesmata and cell-to-cell movement. The PCaP1 knockout may contribute to a new strategy for recessive resistance to potyviruses.  相似文献   

12.
A collection of 24 isolates of Verticillium dahliae and 10 isolates of Verticillium longisporum originating from nine different host plants and from several geographic regions was tested for host specificity on 11 economically important crops such as potato, tomato, strawberry, linseed, three legumes and four Brassica species. In order to reveal host specificity the potential of each isolate to induce disease and affect plant yield was recorded for all isolate–host combinations. The collected data were statistically processed by means of a cluster analysis. As a result, the host range of individual isolates was found to be more dependent on the vegetative compatibility group (VCG) of the isolate than on its original host plant provenance. Twenty‐two out of 24 V. dahliae isolates belonged to either VCG 2B or 4B. VCG 2B isolates showed specificity for legumes, strawberry, potato and linseed, whereas VCG 4B was specifically virulent on potato, strawberry and linseed. Subgroups within VCG 2B and 4B almost lacking any host preference were designated 2B* and 4B*. Three isolates from VCG 2B*, however, severely attacked tomato which is a host outside the authentic host range of VCG 2B. The pathogenicity of V. longisporum isolates was restricted to cruciferous hosts. Conversely, cruciferous plants were not affected by isolates from VCGs 2B and 4B of V. dahliae. This lack of cross‐infectivity of certain subpopulations of V. dahliae and of V. longisporum may be useful in the management of this soil‐borne wilt disease.  相似文献   

13.
Y.-P. Tian  X.-P. Zhu  J.-L. Liu    X.-Q. Yu    J. Du    J. Kreuze    X.-D. Li 《Journal of Phytopathology》2007,155(6):333-341
Turnip mosaic virus (TuMV; genus Potyvirus, family Potyviridae) causes great losses to cruciferous crop production worldwide. The 3′‐terminal genomic sequences of eight TuMV isolates from eastern China were compared with those of 74 other Chinese TuMV isolates of known host origin in the GenBank and isolated during the past 25 years. The reported sequences of the eight TuMV isolates are 1125 or 1126‐nucleotides (nt) long excluding the poly(A) tail. They all contain one partial open reading frame of 912 nt, encoding 304 amino acids, followed by a stop codon and a non‐translated region of 209–210 nt. Results of phylogenetic analyses showed that Chinese TuMV isolates clustered into three groups: basal‐BR, Asian‐BR and world‐B. The ratios of non‐synonymous and synonymous substitutions and results of amino acid alignment provided evidence for purifying or negative selection in TuMV populations of China.  相似文献   

14.
15.
Genetic polymorphisms of encoding antigen B2 gene (AgB2) in Echinococcus granulosus were studied using PCR-RFLP and DNA sequencing among 20 Egyptian isolates. Five isolates from different host origins (humans, camels, pigs, and sheep) were collected and used. All examined isolates of each host group gave very similar patterns of PCR-RFLP after restriction enzyme digestion with AluI, with the gene size of approximately 140 bp and 240 bp for sheep and human isolates, and approximately 150 bp and 250 bp for pig and camel isolates. No digestion pattern was obtained after incubation of all studied isolates with EcoRI. These results reveal high intra-group homogeneity. DNA sequence analysis highlighted that human infecting strain showed 100% identity with respect to sheep infecting isolate, 96% and 99% with pig and camel infecting isolates, respectively.  相似文献   

16.
Virulence of entomopathogens is often measured at the individual level using a single host individual or a group of host individuals. To what extent these virulence assessments reflect the impact of an entomopathogen on their host in the field remains largely untested, however. A methodology was developed to induce epizootics of the cassava green mite fungal pathogen Neozygites tanajoae under controlled conditions to evaluate population-level virulence of two (one Beninese and one Brazilian) isolates of the entomopathogen—which had shown similar individual-level virulence but different field impacts. In unrepeated separate experiments we inoculated mite-infested potted cassava plants with either 50 or 25 live mites (high and low inoculum) previously exposed to spores of N. tanajoae and monitored the development of fungal infections for each isolate under the same conditions. Both isolates caused mite infections and an associated decline in host mite populations relative to the control (without fungus) in all experiments, but prevalence of the fungus varied with isolate and increased with inoculum density. Peak infection levels were 90% for the Beninese isolate and 36% for the Brazilian isolate at high inoculum density, and respectively 17% and 25% at low inoculum density. We also measured dispersal from inoculated plants and found that spore dispersal increased with host infection levels, independent of host densities, whereas mite dispersal varied between isolates. These results demonstrate that epizootiology of N. tanajoae can be studied under controlled conditions and suggest that virulence tests at the population level may help to better predict performance of fungal isolates than individual-level tests.  相似文献   

17.
18.
Genetic diversity of 40 isolates of Valsa malicola in Iran was investigated by MP-PCR. Isolates were obtained from different host plants in diverse regions during 2004–2010. Of the six microsatellite primers tested, only four primers; (ACTG)4, (GACA)4, (AC)8 and (CGA)5, were able to amplify DNA fragments. With these four primers, 120 loci were identified; of which eight were monomorphic (6.7%) and 112 were polymorphic (93.3%). Approximate size of amplified DNA fragments ranged from 0.2 to 3?kb. Observed high genetic diversity in isolates of V. malicola indicates the eligibility of the marker to investigate ranks below the species level. The results of cluster analysis indicated that isolates are related to each other with 45.63% similarity and four groups (1, 2, 3 and 4) were identified in the dendrogram. Group 3 included 37 isolates that were obtained from different hosts and geographical regions and each of groups 1, 2 and 4 only had one isolate. Some correlations between identified groups and host origins or geographic distributions of the isolates were found.  相似文献   

19.
Variability and genetic structure of a novel Turnip mosaic virus (TuMV) population from horseradish (Cochlearia armoracia L.) were examined. Over 60 horseradish plants were tested to identify a total of 28 TuMV isolates, constituting the Cochlearia ARmoracia (CAR) TuMV population. Two subgroups of the CAR TuMV isolates could be distinguished: subgroup N did not infect oilseed rape (Brassica napus var. oleifera) cv. Westar plants, while subgroup A infected these plants systemically. Two types of infection of oilseed rape plants were induced by inoculation with the CAR TuMV isolates: systemic mosaic infection and systemic necrotic lesions. The complete sequences of isolates CAR37 (subgroup N) and CAR37A (subgroup A) were determined and compared. The sequences of HC-Pro and CP genes of CAR37 and CAR37A and other isolates of TuMV from other countries were compared to provide some insight into their relatedness. CAR37A, initially regarded as a variant, proved to be very different from CAR37. Re-sequencing after repeated passages confirmed the genetic stability of both isolates.  相似文献   

20.
Fungal endophytic communities and potential host preference of root-inhabiting fungi of boreal forest understory plants are poorly known. The objective of this study was to find out whether two neighboring plant species, Deschampsia flexuosa (Poaceae) and Trientalis europaea (Primulaceae), share similar root fungal endophytic communities and whether the communities differ between two sites. The study was carried out by analysis of pure culture isolates and root fungal colonization percentages. A total of 84 isolates from D. flexuosa and 27 isolates from T. europaea were obtained. The roots of D. flexuosa harbored 16 different isolate types based on macromorphological characteristics, whereas only 4 isolate types were found in T. europaea. The root colonization by dark septate and hyaline septate hyphae correlated with isolate numbers being higher in D. flexuosa compared to T. europaea. The different isolate types were further identified on the basis of internal transcribed spacer sequence and phylogenetic analysis. An isolate type identified as dark septate endophyte Phialocephala fortinii colonized 50 % of the T. europaea and 21 % of the D. flexuosa specimens. In addition, Meliniomyces variabilis, Phialocephala sphaeroides, and Umbelopsis isabellina were found colonizing the grass, D. flexuosa, for the first time and Mycena sp. was confirmed as an endophyte of D. flexuosa. Site-specific differences were observed in the abundance and diversity of endophytic fungi in the roots of both study plants, but the differences were not as predominant as those between plant species. It is concluded that D. flexuosa harbors both higher amount and more diverse community of endophytic fungi in its roots compared to T. europaea.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号