首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The evolution of cooperation is a central problem in biology and the social sciences. While theoretical work using the iterated prisoner's dilemma (IPD) has shown that cooperation among non-kin can be sustained among reciprocal strategies (i.e. tit-for-tat), these results are sensitive to errors in strategy execution, cyclical invasions by free riders, and the specific ecology of strategies. Moreover, the IPD assumes that a strategy's probability of playing the PD game with other individuals is independent of the decisions made by others. Here, we remove the assumption of independent pairing by studying a more plausible cooperative dilemma in which players can preferentially interact with a limited set of known partners and also deploy longer-term accounting strategies that can counteract the effects of random errors. We show that cooperative strategies readily emerge and persist in a range of noisy environments, with successful cooperative strategies (henceforth, cliquers) maintaining medium-term memories for partners and low thresholds for acceptable cooperation (i.e. forgiveness). The success of these strategies relies on their cliquishness-a propensity to defect with strangers if they already have an adequate number of partners. Notably, this combination of medium-term accounting, forgiveness, and cliquishness fits with empirical studies of friendship and other long-term relationships among humans.  相似文献   

3.
Consider a two-player game in which each player contributes a costly resource to the common good of the pair. For such contests, the Nash equilibrium contribution, x*, is one for which neither player can increase its pay-off by unilaterally altering its contribution from x*. We study an elaboration of this game, which allows the players to exchange x-offers back and forth in a negotiation phase until they converge to a final pair of contributions, x1 and x2. A significant feature of such negotiation games, hitherto unrecognized, is the existence of a set of neutrally stable equilibrium points in negotiation phase space. To explore the long-term evolutionary outcome of such games, we simulate populations containing various mixtures of negotiation strategies and, contrary to previous results, we often find convergence to a contribution that is more cooperative than the Nash equilibrium. Mathematical analysis suggests why this might be happening, and provides a novel and robust explanation for cooperation, that negotiation can facilitate the evolution of cooperative behaviour.  相似文献   

4.
In the evolutionary Prisoner's dilemma (PD) game, agents play with each other and update their strategies in every generation according to some microscopic dynamical rule. In its spatial version, agents do not play with every other but, instead, interact only with their neighbours, thus mimicking the existing of a social or contact network that defines who interacts with whom. In this work, we explore evolutionary, spatial PD systems consisting of two types of agents, each with a certain update (reproduction, learning) rule. We investigate two different scenarios: in the first case, update rules remain fixed for the entire evolution of the system; in the second case, agents update both strategy and update rule in every generation. We show that in a well-mixed population the evolutionary outcome is always full defection. We subsequently focus on two-strategy competition with nearest-neighbour interactions on the contact network and synchronised update of strategies. Our results show that, for an important range of the parameters of the game, the final state of the system is largely different from that arising from the usual setup of a single, fixed dynamical rule. Furthermore, the results are also very different if update rules are fixed or evolve with the strategies. In these respect, we have studied representative update rules, finding that some of them may become extinct while others prevail. We describe the new and rich variety of final outcomes that arise from this co-evolutionary dynamics. We include examples of other neighbourhoods and asynchronous updating that confirm the robustness of our conclusions. Our results pave the way to an evolutionary rationale for modelling social interactions through game theory with a preferred set of update rules.  相似文献   

5.

Background

We study the evolutionary Prisoner''s Dilemma on two social networks substrates obtained from actual relational data.

Methodology/Principal Findings

We find very different cooperation levels on each of them that cannot be easily understood in terms of global statistical properties of both networks. We claim that the result can be understood at the mesoscopic scale, by studying the community structure of the networks. We explain the dependence of the cooperation level on the temptation parameter in terms of the internal structure of the communities and their interconnections. We then test our results on community-structured, specifically designed artificial networks, finding a good agreement with the observations in both real substrates.

Conclusion

Our results support the conclusion that studies of evolutionary games on model networks and their interpretation in terms of global properties may not be sufficient to study specific, real social systems. Further, the study allows us to define new quantitative parameters that summarize the mesoscopic structure of any network. In addition, the community perspective may be helpful to interpret the origin and behavior of existing networks as well as to design structures that show resilient cooperative behavior.  相似文献   

6.
Animal cooperation has puzzled biologists for a long time as its existence seems to contravene the basic notion of evolutionary biology that natural selection favours ‘selfish’ genes that promote only their own well-being. Evolutionary game theory has shown that cooperators can prosper in populations of selfish individuals if they occur in clusters, interacting more frequently with each other than with the selfish. Here we show that social networks of primates possess the necessary social structure to promote the emergence of cooperation. By simulating evolutionary dynamics of cooperative behaviour on interaction networks of 70 primate groups, we found that for most groups network reciprocity augmented the fixation probability for cooperation. The variation in the strength of this effect can be partly explained by the groups’ community modularity—a network measure for the groups’ heterogeneity. Thus, given selective update and partner choice mechanisms, network reciprocity has the potential to explain socially learned forms of cooperation in primate societies.  相似文献   

7.
The kinetics of liposome and vesicle formation of a synthetic lecithin has been studied by light scattering techniques. It is shown, that by evaporation of alcohol from a lipid-alcohol-water mixture, the aggregates formed undergo several changes in shape. A hypothesis is presented, visualising the formation of liposomes or vesicles from monomers, which is consistent with the experimental observations.  相似文献   

8.
We consider evolutionary game dynamics in a finite population subdivided into two demes with both unequal deme sizes and different migration rates. Assuming viability differences in the population according to a linear game within each deme as a result of pairwise interactions, we specify conditions for weak selection favoring a mutant strategy to go to fixation, under the structured-coalescent assumptions, and their connections with evolutionary stability concepts. In the framework of the Iterated Prisoner's Dilemma with strategy ‘tit-for-tat’ as mutant strategy and ‘always defect’ as resident strategy, we deduce a condition under which the emergence of cooperation is favored by selection, when the game matrix is the same in both demes. We show how this condition extends the one-third law for a panmictic population and when an asymmetry in the spatial structure of a two-deme population facilitates the emergence of the cooperative tit-for-tat strategy in comparison with both its symmetric and panmictic population structure counterparts. We find that the condition is less stringent in the asymmetric scenario versus the symmetric scenario if both the fraction of the population in the deme where the mutant was initially introduced, and the expected proportion of migrant offspring in this deme among all migrant offspring after population regulation, are smaller than, or equal to, , provided they are not too small. On the other hand, the condition is less stringent than the one-third law, which holds in the panmictic case, if the latter proportion remains not too close to 1.  相似文献   

9.
A necessary property of cooperative behaviour in the animal kingdom is the reciprocal (or multilateral) dependence of the animals on one another for the purpose of (joint) competition for limited resources. The emergence of such patterns of dependent behaviour, whether cooperative or not, is often concurrent with the emergence of communication structures between the animals. Animal communication is always local, thus introducing an aspect of spatial localization into an otherwise homogenous population (deme structure, Wright 1945). In order to investigate the relation between emergent cooperation and communication, we introduce a model of primitive organisms living and reproducing in colonies (demes) connected by migration. Different migration structures are considered. Exposed to an environment in which the food resource supply is not deterministically fixed but stochastic, we first investigate whether the resulting supply uncertainty adversely affects the total carrying capacity of the colonies. We show that this is not always the case and provide a necessary and sufficient criterion. Modelling the supply uncertainty by a simple Markov process, we next explore whether a certain type of emergent communication (e.g. communication by means of waste metabolites) helps reverse the potentially adverse effect of food supply uncertainty. We distinguish between excitatory and inhibitory signalling and show that in the context of our model it is the inhibitory interpretation which provides the selective advantage. It will be shown that the higher the fidelity of the transmitted information, the larger the fitness differential derived. The paper develops a useful combination of (elementary) perturbation and stochastic averaging techniques (the first order dynamics is used to average second order terms) which may be of interest outside the application reported here.  相似文献   

10.
Effects of rabbit anti-embryonal carcinoma IgG on embryonal carcinoma cells and their differentiated derivatives were studied at different levels of cell-cell interaction. Fab fragments of anti-EC IgG were found to inhibit aggregation of the majority of EC cell lines. Two, however, were insensitive. Anti-EC Fab fragments act also on the transfer of metabolites between EC cells: the rescue of HPRT? EC cells by HPRT+ EC cells in selective medium is abolished. These findings are correlated with the disappearance of tight and gap junctions from the surface of EC cells (Dunia et al., 1979). The presence of the surface structure involved in the action of anti-EC Fab fragments was tested by absorption experiments followed by decompaction test on PCC4 Aza R1 cells. All EC cell lines and two embryonic cell lines—a trophectodermal and an endodermal line—were found to bear material absorbing the decompacting activity. The results are discussed in terms of state of differentiation of the cell lines and of complexity of aggregation of embyronic cells.  相似文献   

11.
Spatial aggregation and association of conspecific and allospecific eggs over resource patches have often been estimated based on emergence data. However, intra-specific competition reduces the number of emergents of conspecifics, and inter-specific competition reduces the number of emergents of allospecifics, causing biases in the estimation of spatial distribution of eggs using emergence data. The present study investigated, by laboratory experiments using drosophilids and simulation models, how the use of emergence data causes such biases. In the laboratory experiments, females were allowed to oviposit over resource patches, and spatial aggregation and association of eggs were examined. The number of emergents from each resource patch was then estimated from the density-survival relationship, and spatial aggregation and association of emerging adults thus estimated were compared with those of eggs. In the simulation models, the spatial distributions of adults emerging from eggs that varied in their degree of spatial aggregation were evaluated under different intensities of intra- and/or inter-specific competition. Both laboratory experiments and simulations indicate that the use of emergence data always causes an underestimation of spatial aggregation and association of eggs. Relaxation of intra- and inter-specific competition by addition of extra resources would improve the estimation of spatial egg distribution based on emergence data.  相似文献   

12.
Previous work has shown that in many mycelial fermentations the predominant morphological form is clumps (aggregates) which cannot be further reduced by dilution. During fermentation, the clump size and shape is affected by fragmentation, which in turn depends on agitation conditions. This paper addresses the question of whether mycelial aggregation can also occur during a fermentation. The dynamics of changes in mycelial morphology due to aggregation were investigated in 5.3-L chemostat cultures of Aspergillus oryzae by imposing a step decrease in agitation speed from 1,000 to 550 rpm under conditions of controlled non-limiting dissolved oxygen tension, with a steady-state biomass concentration of 2 g/L. The mean projected area (size) of the mycelia, measured using image analysis, increased from 5,300녘 µm2 (at 1,000 rpm) to 9,400덌 µm2 (at 550 rpm). This change occurred too rapidly for it to be solely caused by mycelial growth. Instead, it is proposed that the increase in size was indeed due to aggregation, probably due to physico-chemical affects such as hydrophobicity or charge interactions. Aggregation was also shown to occur in 4-L aerated batch cultures at higher biomass concentrations (5.3 and 11.2 g/L) in which the agitation speed was decreased from 1,100 to 550 rpm. Experiments were also conducted off-line in a mixing vessel in the absence of oxygen. In this case, aggregation was not observed. Thus, though the cause of aggregation at this stage is not clear, aerobic metabolism appears to be required.  相似文献   

13.
14.
Rat pups (Rattus norvegicus) are born blind and deaf yet manage to wriggle about in a huddle, dynamically adjusting their positions and thereby displaying thermoregulation and energy conservation at the level of the group. As pups develop, their activity and mobility outpace the development of their visual and auditory systems making it increasingly difficult to aggregate and maintain aggregation while still blind and deaf. The developmental emergence of coupled activity may be one mechanism that facilitates aggregation. Our previous research has shown that the activity of a seven-day-old pup is independent of the activity of the litter mates it contacts. However, we hypothesized that, by day 10, more active and mobile pups will exhibit coupled activity, becoming increasingly quiescent when in contact with other behaviourally quiescent pups. In order to test this hypothesis, we used individual-based modelling. Because the structure of the model was complex, we used a Darwinian algorithm for evolving a model that behaved like ten-day-old pups aggregating in an arena. Sensitivity to quiescent individuals was manifested in some litters by the transitory spreading of quiescence across aggregates of both real and virtual pups (a contagion effect). As pups develop, individual behaviour becomes increasingly contingent on the behaviour of others revealing what may be a basic component in the development of cooperative behaviour.  相似文献   

15.

Background  

Recent work on the complexity of life highlights the roles played by evolutionary forces at different levels of individuality. One of the central puzzles in explaining transitions in individuality for entities ranging from complex cells, to multicellular organisms and societies, is how different autonomous units relinquish control over their functions to others in the group. In addition to the necessity of reducing conflict over effecting specialized tasks, differentiating groups must control the exploitation of the commons, or else be out-competed by more fit groups.  相似文献   

16.
Accumulation of alpha-synuclein resulting in the formation of oligomers and protofibrils has been linked to Parkinson's disease and Lewy body dementia. In contrast, beta-synuclein (beta-syn), a close homologue, does not aggregate and reduces alpha-synuclein (alpha-syn)-related pathology. Although considerable information is available about the conformation of alpha-syn at the initial and end stages of fibrillation, less is known about the dynamic process of alpha-syn conversion to oligomers and how interactions with antiaggregation chaperones such as beta-synuclein might occur. Molecular modeling and molecular dynamics simulations based on the micelle-derived structure of alpha-syn showed that alpha-syn homodimers can adopt nonpropagating (head-to-tail) and propagating (head-to-head) conformations. Propagating alpha-syn dimers on the membrane incorporate additional alpha-syn molecules, leading to the formation of pentamers and hexamers forming a ring-like structure. In contrast, beta-syn dimers do not propagate and block the aggregation of alpha-syn into ring-like oligomers. Under in vitro cell-free conditions, alpha-syn aggregates formed ring-like structures that were disrupted by beta-syn. Similarly, cells expressing alpha-syn displayed increased ion current activity consistent with the formation of Zn(2+)-sensitive nonselective cation channels. These results support the contention that in Parkinson's disease and Lewy body dementia, alpha-syn oligomers on the membrane might form pore-like structures, and that the beneficial effects of beta-synuclein might be related to its ability to block the formation of pore-like structures.  相似文献   

17.
Interplay between predator and prey is a complex process in ecosystems due to its nature. The population dynamics can be affected by many extrinsic and intrinsic factors. In this paper, we make an attempt to uncover the effects from environmental disturbances when populations are subject to habitat complexity and aggregation effect. We firstly propose a stochastic predator-prey model with habitat complexity and aggregation efficiency for prey. We then mathematically analyze the model, to demonstrate the existence, uniqueness and the stochastically ultimately boundedness of the global positive solution, and to establish sufficient conditions for the existence of ergodic stationary distribution of the solution. We also establish sufficient conditions under which either only predator population dies out or the entire predator-prey model becomes extinct. Our theoretical and numerical results indicate that: (1) the environmental noises are disadvantage for the survival of biological populations; (2) when the density of prey is greater than one, prey aggregation can heighten the capability of predator species to capture prey and reduce the effect of environmental fluctuations, while when the density of prey is less than one, the results are opposite; (3) habitat complexity is propitious to the survival of prey population and may seriously threaten the persistence of the predator population.  相似文献   

18.
Membrane interaction in aggregating cells of Dictyostelium discoideum can be blocked by univalent antibodies directed against specific membrane sites. Using a quantitative technique for measuring cell association, two classes of target sites for blocking antibodies were distinguished and their developmental dynamics studied. One class of these sites is specific for aggregation-competent cells, their quantity rising from virtually 0-level during growth, with a steep increase shortly before cell aggregation. The serological activity of these structures is species specific; they are not detectable in a nonaggregating mutant, but present in a revertant undergoing normal morphogenesis. Patterns of cell assembly in the presence of antibodies show that selective blockage of these membrane sites abolishes the preference for end-to-end association which is typical for aggregating cells. A second class of target sites is present in comparable quantities in particle fractions from both growth-phase and aggregation-competent cells. Blockage of these sites leads to aggregation patterns in which the side-by-side contacts of aggregating cells are abolished. The target sites of aggregation-inhibiting antibodies are suggested to be identical or associated with the molecular units of the cell membrane that mediate cell-to-cell contacts during aggregation. The results indicate that in one cell, two independent classes of contact sites can be simultaneously active.  相似文献   

19.
Microbial consortium is a complex adaptive system with higher‐order dynamic characteristics that are not present by individual members. To accurately predict the social interactions, we formulate a set of unstructured kinetic models to quantitatively capture the dynamic interactions of multiple microbial species. By introducing an interaction coefficient, we analytically derived the steady‐state solutions for the interacting species and the substrate‐depleting profile in the chemostat. We analyzed the stability of the possible coexisting states defined by competition, parasitism, amensalism, commensalism, and cooperation. Our model predicts that only parasitism, commensalism, and cooperation could lead to stable coexisting states. We also determined the optimal social interaction criteria of microbial coculture when sequential metabolic reactions are compartmentalized into two distinct species. Coupled with Luedeking–Piret and Michaelis–Menten equations, accumulation of metabolic intermediates in one species and formation of end‐product in another species could be derived and assessed. We discovered that parasitism consortia disfavor the bioconversion of intermediate to final product; and commensalism consortia could efficiently convert metabolic intermediates to final product and maintain metabolic homeostasis with a broad range of operational conditions (i.e., dilution rates); whereas cooperative consortia leads to highly nonlinear pattern of precursor accumulation and end‐product formation. The underlying dynamics and emergent properties of microbial consortia may provide critical knowledge for us to understand ecological coexisting states, engineer efficient bioconversion process, deliver effective gut therapeutics as well as elucidate probiotic‐pathogen or tumor‐host interactions in general.  相似文献   

20.
Two spin-labeled derivatives of the ion conductive peptide alamethicin were synthesized and used to examine its binding and state of aggregation. One derivative was spin labeled at the C-terminus and the other, a leucine analogue, was spin labeled at the N-terminus. In methanol, both the C and N terminal labeled peptides were monomeric. In aqueous solution, the C-terminal derivative was monomeric at low concentrations, but aggregated at higher concentrations with a critical concentration of 23 microM. In the membrane, the C-terminal label was localized to the membrane-aqueous interface using 13C-NMR, and could assume more than one orientation. The membrane binding of the C-terminal derivative was examined using EPR, and it exhibited a cooperativity seen previously for native alamethicin. However, this cooperativity was not the result of an aggregation of the peptide in the membrane. When the spectra of either the C or N-terminal labeled peptide were examined over a wide range of membrane lipid to peptide ratios, no evidence for aggregation could be found and the peptides remained monomeric under all conditions examined. Because electrical measurements on this peptide provide strong evidence for an ion-conductive aggregate, the ion-conductive form of alamethicin likely represents a minor fraction of the total membrane bound peptide.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号