首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In monogamous animals, males are usually the predominant competitors for mates. However, a strictly monogamous pipefish Corythoichthys haematopterus exceptionally exhibits a reversed sex role. To understand why its sex role is reversed, we measured the adult sex ratio and the potential reproductive rate (PRR), two principal factors influencing the operational sex ratio (OSR), in a natural population of southern Japan. The adult sex ratio was biased towards females throughout the breeding season, but the PRR, which increased with water temperature, did not show sexual difference. We found that an alternative index of the OSR (Sf/Sm: sex ratio of 'time in') calculated from the monthly data was consistently biased towards females. The female-biased OSR associated with sex-role reversal has been reported in some polyandrous or promiscuous pipefish, but factors biasing the OSR differed between these pipefish and C. haematopterus. We concluded that the similar PRR between the sexes in C. haematopterus does not confer reproductive benefit of polygamous mating on either sex, resulting in strict monogamous mating, and its female-biased adult sex ratio promotes female-female competition for a mate, resulting in sex-role reversal.  相似文献   

2.
Females tend to be smaller than males in woody dioecious plant species, but they tend to be larger in herbs. The smaller size of females in woody species has been attributed to higher reproductive costs, yet no satisfactory explanation has been provided for their larger size in herbs. Because herbs have higher nitrogen concentrations in their tissues than woody plants, and because pollen is particularly rich in nitrogen, we predicted that male growth would be more compromised by reproduction than female growth. To test this hypothesis, we conducted three experiments on the annual dioecious herb Mercurialis annua. First, we compared the timing of reproduction between males and females and found that males started flowering earlier than females; early flowering is expected to compromise growth more than later flowering. Second, we compared plants allowed to flower with those prevented from flowering by experimental debudding and found that males incurred a higher reproductive cost than females in terms of both biomass and, particularly, nitrogen. Third, we grew plants under varying levels of nitrogen availability and found that although sexual size dimorphism was unaffected by nitrogen, females, but not males, decreased their relative allocation to both roots and reproduction under high nitrogen availability. We propose that males deal with the high cost of pollen production in terms of nitrogen by allocating biomass to nitrogen-harvesting roots, whereas females pay for carbon-rich seeds and fruits by investing in photosynthetic organs. Sexual dimorphism would thus seem to be the outcome of allocation to above- versus below-ground sinks that supply resources (carbon versus nitrogen) limiting the female and male reproduction differentially.  相似文献   

3.
Parthenogenesis-inducing (PI) Wolbachia belong to a class of intracellular symbionts that distort the offspring sex ratio of their hosts toward a female bias. In many PI Wolbachia-infected species sex ratio distortion has reached its ultimate expression-fixation of infection and all-female populations. This is only possible with thelytokous PI symbionts as they provide an alternative form of reproduction and remove the requirement for males and sexual reproduction. Many populations fixed for PI Wolbachia infection have lost the ability to reproduce sexually, even when cured of the infection. We examine one such population in the species Trichogramma pretiosum. Through a series of backcrossing experiments with an uninfected Trichogramma pretiosum population we were able to show that the genetic basis for the loss of female sexual function could be explained by a dominant nuclear effect. Male sexual function had not been completely lost, though some deterioration of male sexual function was also evident when males from the infected population (created through antibiotic curing of infected females) were mated to uninfected females. We discuss the dynamics of sex ratio selection in PI Wolbachia-infected populations and the evolution of non-fertilizing mutations.  相似文献   

4.
Wolbachia are endosymbiotic bacteria known to manipulate the reproduction of their hosts. Some populations of the parasitoid wasp Asobara japonica are infected with Wolbachia and reproduce parthenogenetically, while other populations are not infected and reproduce sexually. Wolbachia-infected A. japonica females regularly produce small numbers of male offspring. Because all females in the field are infected and infected females are not capable of sexual reproduction, male production seems to be maladaptive. We investigated why these females nevertheless produce males. We tested three hypotheses: high rearing temperatures could result in higher offspring sex ratios (more males), low Wolbachia titer of the mother could lead to higher offspring sex ratios and/or the Wolbachia infection is of relatively recent origin and not enough time has passed to allow complete coadaptation between Wolbachia and host. In all, 33% of the Wolbachia-infected females produced males and 56% of these males were also infected with Wolbachia. Neither offspring sex ratio nor male infection frequency was significantly affected by rearing temperature or Wolbachia concentration of the mother. The mitochondrial DNA sequence of one of the uninfected populations was identical to that of two of the infected populations. Therefore, the initial Wolbachia infection of A. japonica must have occurred recently. Mitochondrial sequence variation among the infected populations suggests that the spread of Wolbachia through the host populations involved horizontal transmission. We conclude that the occasional male production by Wolbachia-infected females is most likely a maladaptive side effect of incomplete coevolution between symbiont and host in this relatively young infection.  相似文献   

5.
Sexual selection is responsible for the evolution of male ornaments and armaments, but its role in the evolution of cognition—the ability to process, retain and use information—is largely unexplored. Because successful courtship is likely to involve processing information in complex, competitive sexual environments, we hypothesized that sexual selection contributes to the evolution and maintenance of cognitive abilities in males. To test this, we removed mate choice and mate competition from experimental populations of Drosophila melanogaster by enforcing monogamy for over 100 generations. Males evolved under monogamy became less proficient than polygamous control males at relatively complex cognitive tasks. When faced with one receptive and several unreceptive females, polygamous males quickly focused on receptive females, whereas monogamous males continued to direct substantial courtship effort towards unreceptive females. As a result, monogamous males were less successful in this complex setting, despite being as quick to mate as their polygamous counterparts with only one receptive female. This diminished ability to use past information was not limited to the courtship context: monogamous males (but not females) also showed reduced aversive olfactory learning ability. Our results provide direct experimental evidence that the intensity of sexual selection is an important factor in the evolution of male cognitive ability.  相似文献   

6.
The hypothesis that females of socially monogamous species obtain indirect benefits (good or compatible genes) from extra-pair mating behaviour has received enormous attention but much less generally accepted support. Here we ask whether selection for adult survival and fecundity or sexual selection contribute to indirect selection of the extra-pair mating behaviour in socially monogamous coal tits (Periparus ater). We tracked locally recruited individuals with known paternity status through their lives predicting that the extra-pair offspring (EPO) would outperform the within-pair offspring (WPO). No differences between the WPO and EPO recruits were detected in lifespan or age of first reproduction. However, the male WPO had a higher lifetime number of broods and higher lifetime number of social offspring compared with male EPO recruits, while no such differences were evident for female recruits. Male EPO recruits did not compensate for their lower social reproductive success by higher fertilization success within their social pair bonds. Thus, our results do not support the idea that enhanced adult survival, fecundity or within-pair fertilization success are manifestations of the genetic benefits of extra-pair matings. But we emphasize that a crucial fitness component, the extra-pair fertilization success of male recruits, has yet  相似文献   

7.
Monogamous species are usually considered to be less likely to exhibit sex differences in behavior or brain structure. Most previous studies examining sex differences in stress hormone responses have used relatively sexually dimorphic species such as rats. We examined the stress hormone responses of monogamous California mice (Peromyscus californicus) to resident-intruder tests. We also tested males and females under different photoperiods, because photoperiod has been shown to affect both aggression and stress hormone responses. Females, but not males showed a significant increase in corticosterone levels immediately following a resident-intruder test. Males but not females showed elevated corticosterone levels under short days. Females tested in aggression tests also showed a significant increase in plasma oxytocin levels, but only when housed in long days. This was consistent with our observation that females but not males had more oxytocin positive cells in the paraventricular nucleus (PVN) when housed under long days. Our data show that sex differences in glucocorticoid responses identified in other rodents are present in a monogamous species.  相似文献   

8.
Costs of reproduction on survival have captured the attention of researchers since life history theory was formulated. Adults of long-lived species may increase survival by reducing their breeding effort or even skipping reproduction. In this study, we aimed to evaluate the costs of current reproduction on survival and whether skipping reproduction increases adult survival in a long-lived seabird. We used capture–mark–recapture data (1450 encounters) from two populations of Bulwer''s petrel (Bulweria bulwerii), breeding in the Azores and Canary Islands, North Atlantic Ocean. Using a multi-event model with two different breeding statuses (breeders versus non-breeders), we calculated probabilities of survival and of transitions between breeding statuses, evaluating potential differences between sexes. Females had lower survival probabilities than males, independent of their breeding status. When considering breeding status, breeding females had lower survival probabilities than non-breeding females, suggesting costs of reproduction on survival. Breeding males had higher survival probabilities than non-breeding males, suggesting that males do not incur costs of reproduction on survival and that only the highest quality males have access to breeding. The highest and the lowest probabilities of skipping reproduction were found in breeding males from the Azores and in breeding males from the Canary Islands, respectively. Intermediate values were observed in the females from both populations. This result is probably due to differences in the external factors affecting both populations, essentially predation pressure and competition. The existence of sex-specific costs of reproduction on survival in several populations of this long-lived species may have important implications for species population dynamics.  相似文献   

9.
We studied female preferences for familiar and unfamiliar males. The subjects were laboratory-born house mice: (1) non-commensal Mus musculus domesticus from the eastern part of Syria along the Euphrates River; and (2) commensal M. m. musculus from the Czech Republic. Pair-choice preference tests have revealed that oestrous females of both populations sniffed towards unfamiliar males more than familiar males. In the case of females exhibiting postpartum oestrus, this preference was less pronounced and statistically not significant. Thus, our mice clearly exhibited the behavioural pattern known from commensal populations of polygynous and/or promiscuous M. m. domesticus. We found no inverse tendency to seek proximity to the familiar male that has been previously reported from closely related and presumably monogamous aboriginal mouse Mus spicilegus. We conclude that neither commensal M. m. musculus, nor non-commensal M. m. domesticus, are likely to share a monogamous mating system with mound-building mice.  相似文献   

10.

Background and Aims

The males and females of many dioecious plant species differ from one another in important life-history traits, such as their size. If male and female reproductive functions draw on different resources, for example, one should expect males and females to display different allocation strategies as they grow. Importantly, these strategies may differ not only between the two sexes, but also between plants of different age and therefore size. Results are presented from an experiment that asks whether males and females of Mercurialis annua, an annual plant with indeterminate growth, differ over time in their allocation of two potentially limiting resources (carbon and nitrogen) to vegetative (below- and above-ground) and reproductive tissues.

Methods

Comparisons were made of the temporal patterns of biomass allocation to shoots, roots and reproduction and the nitrogen content in the leaves between the sexes of M. annua by harvesting plants of each sex after growth over different periods of time.

Key Results and Conclusions

Males and females differed in their temporal patterns of allocation. Males allocated more to reproduction than females at early stages, but this trend was reversed at later stages. Importantly, males allocated proportionally more of their biomass towards roots at later stages, but the roots of females were larger in absolute terms. The study points to the important role played by both the timing of resource deployment and the relative versus absolute sizes of the sinks and sources in sexual dimorphism of an annual plant.  相似文献   

11.
Sex differences in lifespan and aging are widespread among animals. Since investment in current reproduction can have consequences on other life-history traits, the sex with the highest cost of breeding is expected to suffer from an earlier and/or stronger senescence. This has been demonstrated in polygynous species that are highly dimorphic. However in monogamous species where parental investment is similar between sexes, sex-specific differences in aging patterns of life-history traits are expected to be attenuated. Here, we examined sex and age influences on demographic traits in a very long-lived and sexually dimorphic monogamous species, the wandering albatross (Diomedea exulans). We modelled within the same model framework sex-dependent variations in aging for an array of five life-history traits: adult survival, probability of returning to the breeding colony, probability of breeding and two measures of breeding success (hatching and fledging). We show that life-history traits presented contrasted aging patterns according to sex whereas traits were all similar at young ages. Both sexes exhibited actuarial and reproductive senescence, but, as the decrease in breeding success remained similar for males and females, the survival and breeding probabilities of males were significantly more affected than females. We discuss our results in the light of the costs associated to reproduction, age-related pairing and a biased operational sex-ratio in the population leading to a pool of non-breeders of potentially lower quality and therefore more subject to death or breeding abstention. For a monogamous species with similar parental roles, the patterns observed were surprising and when placed in a gradient of observed age/sex-related variations in life-history traits, wandering albatrosses were intermediate between highly dimorphic polygynous and most monogamous species.  相似文献   

12.
The trade-off between lifespan and reproduction is commonly explained by differential allocation of limited resources. Recent research has shown that the ratio of protein to carbohydrate (P : C) of a fly''s diet mediates the lifespan–reproduction trade-off, with higher P : C diets increasing egg production but decreasing lifespan. To test whether this P : C effect is because of changing allocation strategies (Y-model hypothesis) or detrimental effects of protein ingestion on lifespan (lethal protein hypothesis), we measured lifespan and egg production in Queensland fruit flies varying in reproductive status (mated, virgin and sterilized females, virgin males) that were fed one of 18 diets varying in protein and carbohydrate amounts. The Y-model predicts that for sterilized females and for males, which require little protein for reproduction, there will be no effect of P : C ratio on lifespan; the lethal protein hypothesis predicts that the effect of P : C ratio should be similar in all groups. In support of the lethal protein hypothesis, and counter to the Y-model, the P : C ratio of the ingested diets had similar effects for all groups. We conclude that the trade-off between lifespan and reproduction is mediated by the detrimental side-effects of protein ingestion on lifespan.  相似文献   

13.
Life-history theory suggests that the variation in the seasonal timing of reproduction within populations may be explained on the basis of individual optimization. Optimal breeding times would vary between individuals as a result of trade-offs between fitness components. The existence of such trade-offs has seldom been tested empirically. We experimentally investigated the consequences of altered timing of current reproduction for future reproductive output in the European coot (Fulica atra). First clutches of different laying date were cross-fostered between nests, and parents thereby experienced a delay or an advance in the hatching date. The probability and success of a second brood, adult survival until and reproduction in the next season were then compared to the natural variation among control pairs. Among control pairs the probability of a second brood declined with the progress of season. Delayed pairs were less likely and advanced pairs were more likely to produce a second brood. These changes were quantitatively as predicted from the natural seasonal decline. The number of eggs in the second clutch was positively related to egg number in the first clutch and negatively related to laying date. Compared to the natural variation, delayed females had more and advanced females had fewer eggs in their second clutch. The size of the second brood declined with season, but there was no significant effect of delay or advance. Local adult survival was higher following a delay and reduced following an advance. The effect of the experiment on adult survival was independent of sex. Laying date and clutch size of females breeding in the next year were not affected by treatment. The study demonstrates the existence of a trade-off between increased probability of a second brood and decreased parental survival for early breeding. Timing-dependent effects of current reproduction on future reproductive output may thus play an important role in the evolution of the seasonal timing of reproduction.  相似文献   

14.
Solicitation signals by offspring are well known to influence parental behaviour, and it is commonly assumed that this behavioural effect translates into an effect on residual reproduction of parents. However, this equivalence assumption concerning behavioural and reproductive effects caused by offspring signals remains largely untested. Here, we tested the effect of a chemical offspring signal of quality on the relative timing and amount of future reproduction in the European earwig (Forficula auricularia). We manipulated the nutritional condition of earwig nymphs and exposed females to their extract, or to solvent as a control. There were no significant main effects of exposure treatment on 2nd clutch production, but exposure to extracts of well-fed nymphs induced predictable timing of the 2nd relative to the 1st clutch. This result demonstrates for the first time that an offspring signal per se, in the absence of any maternal behaviour, affects maternal reproductive timing, possibly through an effect on maternal reproductive physiology.  相似文献   

15.
The mating system of callitrichids has been reported to be monogamous, polygynous and polyandrous. In Callithrix jacchus, groups with 2 breeding females and groups with 1 breeding female have been reported. Our purpose was to evaluate the occurrence of occasional reproduction by subordinate females in free-ranging C. jacchus groups characterized as monogamous. Four groups were monitored at a field site of IBAMA-Brazil for between 20 and 72 months. We recorded the birth of 7 sets of twins to subordinate females that had never reproduced before. Sexual activities were recorded opportunistically: dominant females copulated with only the resident male, while subordinates copulated with extra-group males. We suggest these were essentially monogamous groups that occasionally had 2 reproductive females. Between-group copulations seem to be an alternative strategy used by the subordinates. Despite the costs, there would probably be benefits as a result of scanning for vacancies for reproductive positions in neighbouring groups and the establishment of ties with extra-group males that might become a reproductive partner in the future.  相似文献   

16.
ANDRÉ A. DHONDT 《Ibis》1987,129(2):327-334
In a seven-year study of Blue Tits in optimal habitat near Antwerp, Belgium, 45 polygynous broods involving 22 males out of 667 successful first broods were found. In another 43 nests no male was found, although a major effort was made to trap all adults. The estimated proportion of polygynous males is 3.4%, if only confirmed cases are considered, but 10.8% if all possible cases are included. One male was paired simultaneously to three females.
Primary females (laying earliest in a triangle) were as successful as monogamous ones. Secondary (laying later in a triangle) and deserted females (nests in which no male was trapped), although still quite successful, raised fewer young and in one plot had a lower probability of recruiting offspring.
Both in males and females, the frequency of polygyny was independent of age. Adult survival did not differ between monogamous and polygynous males. Among females no effect of pairing status on survival was found in one plot, but in a second plot monogamous females survived better than others. It is concluded that in any study of Blue Tits in optimal habitat one could expect to find polygyny.  相似文献   

17.
Large mammals in seasonal environments have a pattern of high-reproductive synchrony in spring, but how the timing of reproduction affects resource allocation decisions at different stages of the reproductive cycle remains largely unexplored. By manipulating the timing of conception in reindeer (Rangifer tarandus), we tested how the timing of conception affected sex ratio, gestation length and weight development of mother and offspring. Females that conceived at their first ovulation within the rut had a 60.5% probability of producing a male; in contrast, females that conceived a cycle later had a 31.3% probability of producing a male. Late conceiving females had gestation times that were 10 days shorter and the calves were 0.6 kg (9.2%) lighter at birth and 7.4 kg (14.7%) lighter in autumn. Over the year, female weight changes was similar between the groups suggesting reindeer follow a bet-hedging strategy; reducing the quality of this year's offspring to ensure their own future reproduction and survival. Harvesting is often selective leading to skewed sex ratios and age structure, which may influence the timing of reproduction due to females hesitation to mate with young males. Whenever this hesitation is strong enough to increase the frequency of recycling, harvesting is likely to have profound life history consequences.  相似文献   

18.
Explanations for the evolution of delayed maturity usually invoke trade‐offs mediated by growth, but processes of reproductive maturation continue long after growth has ceased. Here, we tested whether sexual selection shapes the rate of posteclosion maturation in the fruit fly Drosophila melanogaster. We found that populations maintained for more than 100 generations under a short generation time and polygamous mating system evolved faster posteclosion maturation and faster egg‐to‐adult development of males, when compared to populations kept under short generations and randomized monogamy that eliminated sexual selection. An independent assay demonstrated that more mature males have higher fitness under polygamy, but this advantage disappears under monogamy. In contrast, for females greater maturity was equally advantageous under polygamy and monogamy. Furthermore, monogamous populations evolved faster development and maturation of females relative to polygamous populations, with no detectable trade‐offs with adult size or egg‐to‐adult survival. These results suggest that a major aspect of male maturation involves developing traits that increase success in sexual competition, whereas female maturation is not limited by investment in traits involved in mate choice or defense against male antagonism. Moreover, rates of juvenile development and adult maturation can readily evolve in opposite directions in the two sexes, possibly implicating polymorphisms with sexually antagonistic pleiotropy.  相似文献   

19.
Understanding the mating system and reproductive success of a species provides evidence for sexual selection. We examined the mating system and the reproductive success of captive adult black sea bream (Acanthopagrus schlegelii), using parentage assignment based on two microsatellites multiplex PCR systems, with 91.5% accuracy in a mixed family (29 sires, 25 dams, and 200 offspring). Based on the parentage result, we found that 93.1% of males and 100% of females participated in reproduction. A total of 79% of males and 92% of females mated with multiple partners (only 1 sire and 1 dam were monogamous), indicating that polygynandry best described the genetic mating system of black sea bream. For males, maximizing the reproductive success by multiple mating was accorded with the sexual selection theory while the material benefits hypothesis may contribute to explain the multiple mating for females. For both sexes, there was a significant correlation between mating success and reproductive success and the variance in reproductive success of males was higher than females. Variation in mating success is the greatest determinant to variation in reproductive success when the relationship is strongly positive. The opportunity for sexual selection of males was twice that of females, as well as the higher slope of the Bateman curve in males suggested that the intensity of intrasexual selection of males was higher than females. Thus, male–male competition would lead to the greater variation of mating success for males, which caused greater variation in reproductive success in males. The effective population number of breeders (Nb) was 33, and the Nb/N ratio was 0.61, slightly higher than the general ratio in polygynandrous fish populations which possibly because most individuals mated and had offspring with a low variance. The relatively high Nb contributes to the maintenance of genetic diversity in farmed black sea bream populations.  相似文献   

20.
Female philopatry and male dispersal are the norm for most mammals, and females that remain in their natal region often derive foraging or social benefits from proximity to female kin. However, other factors, such as constraints on group size or a shortage of potential mates, may promote female dispersal even when female kin associations would be beneficial. In these cases, female kin associations might develop, not through female philopatry, but through female emigration to the same group. To date, little attention has been focused on the potential for kin-biased behaviour between females in female-dispersing species. Here we investigate the genetic relationships among adults in eight wild groups of unhabituated western gorillas (Gorilla gorilla) at the Mondika Research Center using microsatellite genotyping of DNA collected from hair and faeces. We found that almost half (40%) of adult females had an adult female relative in the same group and average within-group relatedness among females was significantly higher than that expected under a model of random dispersal. This provides the first genetic evidence that females can maintain social associations with female relatives in spite of routine natal and secondary dispersal. In addition, we show that females appear to avoid related silverback males when making dispersal decisions, suggesting that a strategy of non-random female dispersal may also function to avoid inbreeding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号