首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Carbohydrate-starved cultures of Lactococcus lactis subsp. lactis IL1403 showed enhanced resistance to heat, ethanol, acid, osmotic, and oxidative stresses. This cross-protection seems to be established progressively during the transitional growth phase, with maximum resistance occurring when cells enter the stationary phase. Chloramphenicol or rifamycin treatment does not abolish the development of a tolerant cell state but, on the contrary, seems to provoke this response in L. lactis subsp. lactis.  相似文献   

3.
The heat shock response in Lactococcus lactis subsp. lactis was characterized with respect to synthesis of a unique set of proteins induced by thermal stress. A shift in temperature from 30 to 42°C was sufficient to arrest the growth of L. lactis subsp. lactis, but growth resumed after a shift back to 30°C. Heat shock at 50°C reduced the viable cell population by 103; however, pretreatment of the cells at 42°C made them more thermoresistant to exposure at 50°C. The enhanced synthesis of approximately 13 proteins was observed in cells labeled with 35S upon heat shock at 42°C. Of these heat shock-induced proteins, two appeared to be homologs of GroEL and DnaK, based on their molecular weights and reactivity with antiserum against the corresponding Escherichia coli proteins. Therefore, we conclude that L. lactis subsp. lactis displays a heat shock response similar to that observed in other mesophilic bacteria.  相似文献   

4.
Relatedness between Lactococcus lactis subsp. cremoris and L. lactis subsp. lactis was assessed by Southern hybridization analysis, with cloned chromosomal genes as probes. The results indicate that strains of the two subspecies form two distinct groups and that the DNA sequence divergence between L. lactis subsp. lactis and L. lactis subsp. cremoris is estimated to be between 20 and 30%. The previously used phenotypic criteria do not fully discriminate between the groups; therefore, we propose a new classification which is based on DNA homology. In agreement with this revised classification, the L. lactis subsp. lactis and L. lactis subsp. cremoris strains from our collection have distinct phage sensitivities.  相似文献   

5.
A nucleoside N-deoxyribosyltransferase-homologous gene was detected by homological search in the genomic DNA of Lactococcus lactis subsp. lactis. The gene yejD is composed of 477 nucleotides encoding 159 amino acids with only 25% identity, which is low in comparison to the amino acid sequences of the N-deoxyribosyltransferases from other lactic acid bacteria, i.e. Lactobacillus leichmannii and Lactobacillus helveticus. The residues responsible for catalytic and substrate-binding sites in known enzymes are conserved at Gln49, Asp73, Asp93 (or Asp95), and Glu101, respectively. The recombinant YejD expressed in Escherichia coli shows a 2-deoxyribosyl transfer activity to and from both bases of purine and pyrimidine, showing that YejD should be categorized as a class II N-deoxyribosyltransferase. Interestingly, the base-exchange activity as well as the heat stability of YejD was enhanced by the presence of monovalent cations such as K(+), NH(4)(+), and Rb(+), indicating that the Lactococcus enzyme is a K(+)-activated Type II enzyme. However, divalent cations including Mg(2+) and Ca(2+) significantly inhibit the activity. Whether or not the yejD gene product actually participates in the nucleoside salvage pathway of Lc. lactis remains unclear, but the lactic acid bacterium possesses the gene coding for the nucleoside N-deoxyribosyltransferase activated by K(+) on its genome.  相似文献   

6.
Previously we showed that glutathione (GSH) can protect Lactococcus lactis against oxidative stress (Y. Li et al., Appl. Environ. Microbiol. 69:5739-5745, 2003). In the present study, we show that the GSH imported by L. lactis subsp. cremoris SK11 or produced by engineered L. lactis subsp. cremoris NZ9000 can protect both strains against a long-term mild acid challenge (pH 4.0) and a short-term severe acid challenge (pH 2.5). This shows for the first time that GSH can protect a gram-positive bacterium against acid stress. During acid challenge, strain SK11 containing imported GSH and strain NZ9000 containing self-produced GSH exhibited significantly higher intracellular pHs than the control. Furthermore, strain SK11 containing imported GSH had a significantly higher activity of glyceraldehyde-3-phosphate dehydrogenase than the control. These results suggest that the acid stress resistance of starter culture can be improved by selecting L. lactis strains capable of producing or importing GSH.  相似文献   

7.
Histidine biosynthesis genes in Lactococcus lactis subsp. lactis.   总被引:4,自引:5,他引:4       下载免费PDF全文
The genes of Lactococcus lactis subsp. lactis involved in histidine biosynthesis were cloned and characterized by complementation of Escherichia coli and Bacillus subtilis mutants and DNA sequencing. Complementation of E. coli hisA, hisB, hisC, hisD, hisF, hisG, and hisIE genes and the B. subtilis hisH gene (the E. coli hisC equivalent) allowed localization of the corresponding lactococcal genes. Nucleotide sequence analysis of the 11.5-kb lactococcal region revealed 14 open reading frames (ORFs), 12 of which might form an operon. The putative operon includes eight ORFs which encode proteins homologous to enzymes involved in histidine biosynthesis. The operon also contains (i) an ORF encoding a protein homologous to the histidyl-tRNA synthetases but lacking a motif implicated in synthetase activity, which suggests that it has a role different from tRNA aminoacylation, and (ii) an ORF encoding a protein that is homologous to the 3'-aminoglycoside phosphotransferases but does not confer antibiotic resistance. The remaining ORFs specify products which have no homology with proteins in the EMBL and GenBank data bases.  相似文献   

8.
Summary Cell wall-associated proteinases were isolated from Lactococcus lactis subsp. cremoris AC1 and subsp. lactis NCDO 763 in order to compare their specificities towards different caseins. Two purification strategies were applied. Cells grown in casein-free M17 medium were a suitable starting material for purification, since electrophoretic purity could be achieved after one chromatographic step. Both enzymes has an apparent molecular mass of about 145000 daltons as judged by sodium dodecyl sulphate-polyacrylamide gel electrophoresis. Electrophoresis and reversed phase HPLC patterns of hydrolysates of s1-, s2-, -, and K-caseins indicated that both proteinases had a similar specificity. The enzyme of L. lactis subsp. lactis split s1- and s2-caseins more extensively than that of L. lactis subsp. cremoris.  相似文献   

9.
Summary The cell wall proteinases of Lactococcus lactis subsp. lactis NCDO 763 and L. lactis subsp. cremoris AC1 hydrolyse -casein with a similar specificity even though some quantitative differences can be observed for a few degradation products analysed by reverse phase HPLC and sodium dodecyl sulphate-polyacrylamide gel electrophoresis. The main peptides soluble in 1.1% trifluoroacetic acid and liberated by the two proteinases were identified and have been found to be the same for the two enzymes. They are located in two areas of the -casein sequence (53–93 and the C-terminal part: 129–209) and they include bitter tasting or physiologically active fragments. No narrow specificity was observed for these proteinases. However, glutamine and serine residues are more frequently encountered in position P1 and P1 of the sensitive peptide bond and the close environment (position P2 to P4 and P2 to P4) of the cleaved bond is mainly hydrophobic.  相似文献   

10.
11.
DNA fragments with promoter activity were isolated from the chromosome of Lactococcus lactis subsp. lactis. For the isolation, a promoter probe vector based on the cat gene was constructed, which allowed direct selection with chloramphenicol in Bacillus subtilis and L. lactis. Four of the putative promoters (P1, P2, P10, and P21) were analyzed further by sequencing, mapping of the 5' end of the mRNA, Northern (RNA blot) hybridization, and chloramphenicol acetyltransferase activity measurements. From these fragments, -10 and -35 regions resembling the consensus Escherichia coli sigma 70 and B. subtilis sigma 43 promoters were identified. Another set of promoters, together with a signal sequence, were also isolated from the same organism. These fragments promoted secretion of TEM beta-lactamase from L. lactis. When the two sets of promoters were compared, it was found that the ones isolated with the cat vector were more efficient (produced more mRNA). By changing the promoter part of the promoter-signal sequence fragment giving the best TEM beta-lactamase secretion into a more efficient one (P2), a 10-fold increase in enzyme production was obtained.  相似文献   

12.
DNA fragments with promoter activity were isolated from the chromosome of Lactococcus lactis subsp. lactis. For the isolation, a promoter probe vector based on the cat gene was constructed, which allowed direct selection with chloramphenicol in Bacillus subtilis and L. lactis. Four of the putative promoters (P1, P2, P10, and P21) were analyzed further by sequencing, mapping of the 5' end of the mRNA, Northern (RNA blot) hybridization, and chloramphenicol acetyltransferase activity measurements. From these fragments, -10 and -35 regions resembling the consensus Escherichia coli sigma 70 and B. subtilis sigma 43 promoters were identified. Another set of promoters, together with a signal sequence, were also isolated from the same organism. These fragments promoted secretion of TEM beta-lactamase from L. lactis. When the two sets of promoters were compared, it was found that the ones isolated with the cat vector were more efficient (produced more mRNA). By changing the promoter part of the promoter-signal sequence fragment giving the best TEM beta-lactamase secretion into a more efficient one (P2), a 10-fold increase in enzyme production was obtained.  相似文献   

13.
Resistance to a broad class of isometric bacteriophages that infect strains of Lactococcus lactis has been engineered into a dairy starter by expression of antisense mRNA targeted against a conserved bacteriophage gene. Maximum protection is obtained only when the entire 1,654-bp coding sequence for a 51-kDa protein is positioned in the antisense orientation with respect to a promoter sequence that functions in L. lactis subsp. lactis. Expression of the antisense mRNA results in more than 99% reduction of the total number of PFU. Plaques that do form are characterized by their relatively small size and irregular shape. A variety of truncated genes, including the open reading frame expressed in the sense orientation, fail to provide any significant measure of resistance as compared with that of the intact open reading frame. Southern hybridization with probes specific for the conserved region reveal that the [ill] plasmid constructs are maintained despite the presence of a large complement of other indigenous plasmids. Strains harboring the antisense mRNA plasmid construct grow and produce acid at a rate equivalent to that of the host strain alone, suggesting that antisense expression is not deleterious to normal cellular metabolism.  相似文献   

14.
Unlike other lactic acid bacteria, Lactococcus lactis subsp. lactis NCDO 2118 was able to grow in a medium lacking glutamate and the amino acids of the glutamate family. Growth in such a medium proceeded after a lag phase of about 2 days and with a reduced growth rate (0.11 h−1) compared to that in the reference medium containing glutamate (0.16 h−1). The enzymatic studies showed that a phosphoenolpyruvate carboxylase activity was present, while the malic enzyme and the enzymes of the glyoxylic shunt were not detected. As in most anaerobic bacteria, no α-ketoglutarate dehydrogenase activity could be detected, and the citric acid cycle was restricted to a reductive pathway leading to succinate formation and an oxidative branch enabling the synthesis of α-ketoglutarate. The metabolic bottleneck responsible for the limited growth rate was located in this latter pathway. As regards the synthesis of glutamate from α-ketoglutarate, no glutamate dehydrogenase was detected. While the glutamate synthase-glutamine synthetase system was detected at a low level, high transaminase activity was measured. The conversion of α-ketoglutarate to glutamate by the transaminase, the reverse of the normal physiological direction, operated with different amino acids as nitrogen donor. All of the enzymes assayed were shown to be constitutive.  相似文献   

15.
A plasmid known to be associated with mupirocin resistance of Staphylococcus aureus has been isolated and a restriction enzyme map constructed. An EcoRI fragment of 4.05 kb from this plasmid has been cloned into an Escherichia coli-Staphylococcus aureus shuttle vector and shown to carry the gene for resistance to mupirocin. The DNA sequence of a small section of the gene has been determined and the derived amino acid sequence compared with a data bank. The amino acid sequence is identical for eight amino acids with the sequence of isoleucyl tRNA synthetase of E. coli. This finding adds to the evidence that mupirocin resistance is the result of a modified isoleucyl tRNA synthetase.  相似文献   

16.
The occurrence of the acmA gene, encoding the lactococcal N-acetylmuramidase in new lactococcal isolates from raw milk cheeses, has been determined. Isolates were genotypically identified to the subspecies level with a PCR technique. On the basis of PCR amplification of the acmA gene, the presence or absence of an additional amplicon of approximately 700 bp correlated with Lactococcus lactis subspecies. L. lactis subsp. lactis exhibits both the expected 1,131-bp product and the additional amplicon, whereas L. lactis subsp. cremoris exhibits a single 1,131-bp fragment.  相似文献   

17.
The alpha-acetolactate decarboxylase gene aldB is clustered with the genes for the branched-chain amino acids (BCAA) in Lactococcus lactis subsp. lactis. It can be transcribed with BCAA genes under isoleucine regulation or independently of BCAA synthesis under the control of its own promoter. The product of aldB is responsible for leucine sensibility under valine starvation. In the presence of more than 10 microM leucine, the alpha-acetolactate produced by the biosynthetic acetohydroxy acid synthase IlvBN is transformed to acetoin by AldB and, consequently, is not available for valine synthesis. AldB is also involved in acetoin formation in the 2,3-butanediol pathway, initiated by the catabolic acetolactate synthase, AlsS. The differences in the genetic organization, the expression, and the kinetics parameters of these enzymes between L. lactis and Klebsiella terrigena, Bacillus subtilis, or Leuconostoc oenos suggest that this pathway plays a different role in the metabolism in these bacteria. Thus, the alpha-acetolactate decarboxylase from L. lactis plays a dual role in the cell: (i) as key regulator of valine and leucine biosynthesis, by controlling the acetolactate flux by a shift to catabolism; and (ii) as an enzyme catalyzing the second step of the 2,3-butanediol pathway.  相似文献   

18.
The occurrence of the acmA gene, encoding the lactococcal N-acetylmuramidase in new lactococcal isolates from raw milk cheeses, has been determined. Isolates were genotypically identified to the subspecies level with a PCR technique. On the basis of PCR amplification of the acmA gene, the presence or absence of an additional amplicon of approximately 700 bp correlated with Lactococcus lactis subspecies. L. lactis subsp. lactis exhibits both the expected 1,131-bp product and the additional amplicon, whereas L. lactis subsp. cremoris exhibits a single 1,131-bp fragment.  相似文献   

19.
20.
Bacterial isolates from bean-sprouts were screened for anti- Listeria monocytogenes bacteriocins using a well diffusion method. Thirty-four of 72 isolates inhibited the growth of L.monocytogenes Scott A. One, HPB 1688, which had the biggest inhibition zone against L.monocytogenes Scott A, was selected for subsequent analysis. Both ribotyping and DNAsequencing of 16S ribosomal RNA gene demonstrated that the isolate was Lactococcus lactis subsp. lactis . Polymerase chain reaction and nucleotide sequencing revealed that thegenomic DNA of the bean-sprout isolates contained a nisin Z structural gene. In MRS broth,bean-sprout isolate HPB 1688 survived at 3–4·5°C for at least 20 d, grew at 4°Cand produced anti-listerial compoundsat 5°C. When co-cultured with L. monocytogenes in MRS broth, the isolate inhibited thegrowth of L. monocytogenes at 4°C after 14d and at 10°C after 2 d. When co-inoculatedwith 102cells g−1 of L.monocytogenes on fresh-cut ready-to-eat Caesar salad, L. lactis subsp. lactis (108cells g−1) was able to reduce the number of L. monocytogenes by 1–1·4 logs after storage for 10 d at 7° and 10°C. A bacteriocin-producing Enterococcusfaecium was also able to reduce the numbers of L. monocytogenes onCaesar salad, butdid not act synergistically when co-inoculated with L. lactis subsp. lactis .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号