首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Saccharomyces cerevisiae REV3/7-encoded polymerase zeta and Rev1 are central to the replicative bypass of DNA lesions, a process called translesion synthesis (TLS). While yeast polymerase zeta extends from distorted DNA structures, Rev1 predominantly incorporates C residues from across a template G and a variety of DNA lesions. Intriguingly, Rev1 catalytic activity does not appear to be required for TLS. Instead, yeast Rev1 is thought to participate in TLS by facilitating protein-protein interactions via an N-terminal BRCT motif. In addition, higher eukaryotic homologs of Rev1 possess a C terminus that interacts with other TLS polymerases. Due to a lack of sequence similarity, the yeast Rev1 C-terminal region, located after the polymerase domain, had initially been thought not to play a role in TLS. Here, we report that elevated levels of the yeast Rev1 C terminus confer a strong dominant-negative effect on viability and induced mutagenesis after DNA damage, highlighting the crucial role that the C terminus plays in DNA damage tolerance. We show that this phenotype requires REV7 and, using immunoprecipitations from crude extracts, demonstrate that, in addition to the polymerase-associated domain, the extreme Rev1 C terminus and the BRCT region of Rev1 mediate interactions with Rev7.  相似文献   

2.
To maintain genomic integrity cells have to respond properly to a variety of exogenous and endogenous factors that produce genome injuries and interfere with DNA replication. DNA integrity checkpoints coordinate this response by slowing cell cycle progression to provide time for the cell to repair the damage, stabilizing replication forks and stimulating DNA repair to restore the original DNA sequence and structure. In addition, there are also mechanisms of damage tolerance, such as translesion synthesis (TLS), which are important for survival after DNA damage. TLS allows replication to continue without removing the damage, but results in a higher frequency of mutagenesis. Here, we investigate the functional contribution of the Dot1 histone methyltransferase and the Rad53 checkpoint kinase to TLS regulation in Saccharomyces cerevisiae. We demonstrate that the Dot1-dependent status of H3K79 methylation modulates the resistance to the alkylating agent MMS, which depends on PCNA ubiquitylation at lysine 164. Strikingkly, either the absence of DOT1, which prevents full activation of Rad53, or the expression of an HA-tagged version of RAD53, which produces low amounts of the kinase, confer increased MMS resistance. However, the dot1Δ rad53-HA double mutant is hypersensitive to MMS and shows barely detectable amounts of activated kinase. Furthermore, moderate overexpression of RAD53 partially suppresses the MMS resistance of dot1Δ. In addition, we show that MMS-treated dot1Δ and rad53-HA cells display increased number of chromosome-associated Rev1 foci. We propose that threshold levels of Rad53 activity exquisitely modulate the tolerance to alkylating damage at least by controlling the abundance of the key TLS factor Rev1 bound to chromatin.  相似文献   

3.
Rev1 is a eukaryotic DNA polymerase of the Y family involved in translesion synthesis (TLS), a major damage tolerance pathway that allows DNA replication at damaged templates. Uniquely amongst the Y family polymerases, the N-terminal part of Rev1, dubbed the BRCA1 C-terminal homology (BRCT) region, includes a BRCT domain. While most BRCT domains mediate protein-protein interactions, Rev1 contains a predicted α-helix N-terminal to the BRCT domain and in human Replication Factor C (RFC) such a BRCT region endows the protein with DNA binding capacity. Here, we studied the DNA binding properties of yeast and mouse Rev1. Our results show that the BRCT region of Rev1 specifically binds to a 5' phosphorylated, recessed, primer-template junction. This DNA binding depends on the extra α-helix, N-terminal to the BRCT domain. Surprisingly, a stretch of 20 amino acids N-terminal to the predicted α-helix is also critical for high-affinity DNA binding. In addition to 5' primer-template junction binding, Rev1 efficiently binds to a recessed 3' primer-template junction. These dual DNA binding characteristics are discussed in view of the proposed recruitment of Rev1 by 5' primer-template junctions, downstream of stalled replication forks.  相似文献   

4.
Replicative DNA polymerases are frequently stalled by DNA lesions. The resulting replication blockage is released by homologous recombination (HR) and translesion DNA synthesis (TLS). TLS employs specialized TLS polymerases to bypass DNA lesions. We provide striking in vivo evidence of the cooperation between DNA polymerase η, which is mutated in the variant form of the cancer predisposition disorder xeroderma pigmentosum (XP-V), and DNA polymerase ζ by generating POLη−/−/POLζ−/− cells from the chicken DT40 cell line. POLζ−/− cells are hypersensitive to a very wide range of DNA damaging agents, whereas XP-V cells exhibit moderate sensitivity to ultraviolet light (UV) only in the presence of caffeine treatment and exhibit no significant sensitivity to any other damaging agents. It is therefore widely believed that Polη plays a very specific role in cellular tolerance to UV-induced DNA damage. The evidence we present challenges this assumption. The phenotypic analysis of POLη−/−/POLζ−/− cells shows that, unexpectedly, the loss of Polη significantly rescued all mutant phenotypes of POLζ−/− cells and results in the restoration of the DNA damage tolerance by a backup pathway including HR. Taken together, Polη contributes to a much wide range of TLS events than had been predicted by the phenotype of XP-V cells.  相似文献   

5.
DNA polymerase ζ (Pol ζ) plays a key role in DNA translesion synthesis (TLS) and mutagenesis in eukaryotes. Previously, a two-subunit Rev3–Rev7 complex had been identified as the minimal assembly required for catalytic activity in vitro. Herein, we show that Saccharomyces cerevisiae Pol ζ binds to the Pol31 and Pol32 subunits of Pol δ, forming a four-subunit Pol ζ4 complex (Rev3–Rev7–Pol31–Pol32). A [4Fe-4S] cluster in Rev3 is essential for the formation of Pol ζ4 and damage-induced mutagenesis. Pol32 is indispensible for complex formation, providing an explanation for the long-standing observation that pol32Δ strains are defective for mutagenesis. The Pol31 and Pol32 subunits are also required for proliferating cell nuclear antigen (PCNA)-dependent TLS by Pol ζ as Pol ζ2 lacks functional interactions with PCNA. Mutation of the C-terminal PCNA-interaction motif in Pol32 attenuates PCNA-dependent TLS in vitro and mutagenesis in vivo. Furthermore, a mutant form of PCNA, encoded by the mutagenesis-defective pol30-113 mutant, fails to stimulate Pol ζ4 activity, providing an explanation for the observed mutagenesis phenotype. A stable Pol ζ4 complex can be identified in all phases of the cell cycle suggesting that this complex is not regulated at the level of protein interactions between Rev3-Rev7 and Pol31-Pol32.  相似文献   

6.
DNA damages hinder the advance of replication forks because of the inability of the replicative polymerases to synthesize across most DNA lesions. Because stalled replication forks are prone to undergo DNA breakage and recombination that can lead to chromosomal rearrangements and cell death, cells possess different mechanisms to ensure the continuity of replication on damaged templates. Specialized, translesion synthesis (TLS) polymerases can take over synthesis at DNA damage sites. TLS polymerases synthesize DNA with a high error rate and are responsible for damage-induced mutagenesis, so their activity must be strictly regulated. However, the mechanism that allows their replacement of the replicative polymerase is unknown. Here, using protein complex purification and yeast genetic tools, we identify Def1 as a key factor for damage-induced mutagenesis in yeast. In in vivo experiments we demonstrate that upon DNA damage, Def1 promotes the ubiquitylation and subsequent proteasomal degradation of Pol3, the catalytic subunit of the replicative polymerase δ, whereas Pol31 and Pol32, the other two subunits of polymerase δ, are not affected. We also show that purified Pol31 and Pol32 can form a complex with the TLS polymerase Rev1. Our results imply that TLS polymerases carry out DNA lesion bypass only after the Def1-assisted removal of Pol3 from the stalled replication fork.  相似文献   

7.
The tobacco-specific nitrosamine 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) is a potent human carcinogen. Metabolic activation of NNK generates a number of DNA adducts including O2-methylthymidine (O2-Me-dT) and O2-[4-(3-pyridyl)-4-oxobut-1-yl]thymidine (O2-POB-dT). To investigate the biological effects of these O2-alkylthymidines in humans, we have replicated plasmids containing a site-specifically incorporated O2-Me-dT or O2-POB-dT in human embryonic kidney 293T (HEK293T) cells. The bulkier O2-POB-dT exhibited high genotoxicity and only 26% translesion synthesis (TLS) occurred, while O2-Me-dT was less genotoxic and allowed 55% TLS. However, O2-Me-dT was 20% more mutagenic (mutation frequency (MF) 64%) compared to O2-POB-dT (MF 53%) in HEK293T cells. The major type of mutations in each case was targeted T  A transversions (56% and 47%, respectively, for O2-Me-dT and O2-POB-dT). Both lesions induced a much lower frequency of T  G, the dominant mutation in bacteria. siRNA knockdown of the TLS polymerases (pols) indicated that pol η, pol ζ, and Rev1 are involved in the lesion bypass of O2-Me-dT and O2-POB-dT as the TLS efficiency decreased with knockdown of each pol. In contrast, MF of O2-Me-dT was decreased in pol ζ and Rev1 knockdown cells by 24% and 25%, respectively, while for O2-POB-dT, it was decreased by 44% in pol ζ knockdown cells, indicating that these TLS pols are critical for mutagenesis. Additional decrease in both TLS efficiency and MF was observed in cells deficient in pol ζ plus other Y-family pols. This study provided important mechanistic details on how these lesions are bypassed in human cells in both error-free and error-prone manner.  相似文献   

8.
Translesion DNA synthesis (TLS) and homologous DNA recombination (HR) are two major postreplicational repair (PRR) pathways. The REV3 gene of Saccharomyces cerevisiae encodes the catalytic subunit of DNA polymerase zeta, which is involved in mutagenic TLS. To investigate the role of REV3 in vertebrates, we disruped the gene in chicken DT40 cells. REV3(-/-) cells are sensitive to various DNA-damaging agents, including UV, methyl methanesulphonate (MMS), cisplatin and ionizing radiation (IR), consistent with its role in TLS. Interestingly, REV3(-/-) cells showed reduced gene targeting efficiencies and significant increase in the level of chromosomal breaks in the subsequent M phase after IR in the G(2) phase, suggesting the involvement of Rev3 in HR-mediated double-strand break repair. REV3(-/-) cells showed significant increase in sister chromatid exchange events and chromosomal breaks even in the absence of exogenous genotoxic stress. Furthermore, double mutants of REV3 and RAD54, genes involved in HR, are synthetic lethal. In conclusion, Rev3 plays critical roles in PRR, which accounts for survival on naturally occurring endogenous as well as induced damages during replication.  相似文献   

9.
Translesion DNA synthesis (TLS) is one of the mechanisms involved in lesion bypass during DNA replication. Three TLS polymerases (Pol) are present in the yeast Saccharomyces cerevisiae: Pol zeta, Pol eta and the product of the REV1 gene. Rev1 is considered a deoxycytidyl transferase because it almost exclusively inserts a C residue in front of the lesion. Even though REV1 is required for most of the UV-induced and spontaneous mutagenesis events, the role of Rev1 is poorly understood since its polymerase activity is often dispensable. Rev1 interacts with several TLS polymerases in mammalian cells and may act as a platform in the switching mechanism required to substitute a replicative polymerase with a TLS polymerase at the sites of DNA lesions. Here we show that yeast Rev1 is a phosphoprotein, and the level of this modification is cell cycle regulated under normal growing conditions. Rev1 is unphosphorylated in G1, starts to be modified while cells are passing S phase and it becomes hyper-phosphorylated in mitosis. Rev1 is also hyper-phosphorylated in response to a variety of DNA damaging agents, including treatment with a radiomimetic drug mostly causing double-strand breaks (DSB). By using the chromosome spreading technique we found the Rev1 is bound to chromosomes throughout the cell cycle, and its binding does not significantly increase in response to genotoxic stress. Therefore, Rev1 phosphorylation does not appear to modulate its binding to chromosomes, suggesting that such modification may influence other aspects of the TLS process. Rev1 binding under damaged and undamaged conditions, is at least partially dependent on MEC1, a gene playing a pivotal role in the DNA damage checkpoint cascade. This genetic dependency may suggest a role for MEC1 in spontaneous mutagenesis events, which require a functional REV1 gene.  相似文献   

10.
The Rev1-Polζ pathway is believed to be the major mechanism of translesion DNA synthesis and base damage-induced mutagenesis in eukaryotes. While it is widely believed that Rev1 plays a non-catalytic function in translesion synthesis, the role of its dCMP transferase activity remains uncertain. To determine the relevance of its catalytic function in translesion synthesis, we separated the Rev1 dCMP transferase activity from its non-catalytic function in yeast. This was achieved by mutating two conserved amino acid residues in the catalytic domain of Rev1, i.e. D467A/E468A, where its catalytic function was abolished but its non-catalytic function remained intact. In this mutant strain, whereas translesion synthesis and mutagenesis of UV radiation were fully functional, those of a site-specific 1,N6-ethenoadenine were severely deficient. Specifically, the predominant A→G mutations resulting from C insertion opposite the lesion were abolished. Therefore, translesion synthesis and mutagenesis of 1,N6-ethenoadenine require the catalytic function of the Rev1 dCMP transferase, in contrast to those of UV lesions, which only require the non-catalytic function of Rev1. These results show that the catalytic function of the Rev1 dCMP transferase is required in a lesion-specific manner for translesion synthesis and base damage-induced mutagenesis.  相似文献   

11.
Rev1, a Y family DNA polymerase (Pol) functions together with Polzeta, a B family Pol comprised of the Rev3 catalytic subunit and Rev7 accessory subunit, in promoting translesion DNA synthesis (TLS). Extensive genetic studies with Saccharomyces cerevisiae have indicated a requirement of both Polzeta and Rev1 for damage-induced mutagenesis, implicating their involvement in mutagenic TLS. Polzeta is specifically adapted to promote the extension step of lesion bypass, as it proficiently extends primer termini opposite DNA lesions, and it is also a proficient extender of mismatched primer termini on undamaged DNAs. Since TLS through UV-induced lesions and various other DNA lesions does not depend upon the DNA-synthetic activity of Rev1, Rev1 must contribute to Polzeta-dependent TLS in a nonenzymatic way. Here, we provide evidence for the physical association of Rev1 with Polzeta and show that this binding is mediated through the C terminus of Rev1 and the polymerase domain of Rev3. Importantly, a rev1 mutant that lacks the C-terminal 72 residues which inactivate interaction with Rev3 exhibits the same high degree of UV sensitivity and defectiveness in UV-induced mutagenesis as that conferred by the rev1Delta mutation. We propose that Rev1 binding to Polzeta is indispensable for the targeting of Polzeta to the replication fork stalled at a DNA lesion. In addition to this structural role, Rev1 binding enhances the proficiency of Polzeta for the extension of mismatched primer termini on undamaged DNAs and for the extension of primer termini opposite DNA lesions.  相似文献   

12.
Replicative polymerases (Pols) arrest at damaged DNA nucleotides, which induces ubiquitination of the DNA sliding clamp PCNA (PCNA-Ub) and DNA damage signaling. PCNA-Ub is associated with the recruitment or activation of translesion synthesis (TLS) DNA polymerases of the Y family that can bypass the lesions, thereby rescuing replication and preventing replication fork collapse and consequent formation of double-strand DNA breaks. Here, we have used gene-targeted mouse embryonic fibroblasts to perform a comprehensive study of the in vivo roles of PCNA-Ub and of the Y family TLS Pols η, ι, κ, Rev1 and the B family TLS Polζ in TLS and in the suppression of DNA damage signaling and genome instability after exposure to UV light. Our data indicate that TLS Pols ι and κ and the N-terminal BRCT domain of Rev1, that previously was implicated in the regulation of TLS, play minor roles in TLS of DNA photoproducts. PCNA-Ub is critical for an early TLS pathway that replicates both strongly helix-distorting (6-4) pyrimidine-pyrimidone ((6-4)PP) and mildly distorting cyclobutane pyrimidine dimer (CPD) photoproducts. The role of Polη is mainly restricted to early TLS of CPD photoproducts, whereas Rev1 and, in particular, Polζ are essential for the bypass of (6-4)PP photoproducts, both early and late after exposure. Thus, structurally distinct photoproducts at the mammalian genome are bypassed by different TLS Pols in temporally different, PCNA-Ub-dependent and independent fashions.  相似文献   

13.
Translesion synthesis (TLS) is a DNA damage tolerance mechanism that allows replicative bypass of DNA lesions, including DNA adducts formed by cancer chemotherapeutics. Previous studies demonstrated that suppression of TLS can increase sensitivity of cancer cells to first-line chemotherapeutics and decrease mutagenesis linked to the onset of chemoresistance, marking the TLS pathway as an emerging therapeutic target. TLS is mediated by a heteroprotein complex consisting of specialized DNA polymerases, including the Y-family DNA polymerase Rev1. Previously, we developed a screening assay to identify the first small molecules that disrupt the protein–protein interaction between the C-terminal domain of Rev1 (Rev1-CT) and the Rev1-interacting region (RIR) present in multiple DNA polymerases involved in TLS. Herein we report additional hit scaffolds that inhibit this key TLS PPI. In addition, through a series of biochemical, computational, and cellular studies we have identified preliminary structure–activity relationships and determined initial pharmacokinetic parameters for our original hits.  相似文献   

14.
Unrepaired DNA lesions often stall replicative DNA polymerases and are bypassed by translesion synthesis (TLS) to prevent replication fork collapse. Mechanisms of TLS are lesion- and species-specific, with a prominent role of specialized DNA polymerases with relaxed active sites. After nucleotide(s) are incorporated across from the altered base(s), the aberrant primer termini are typically extended by DNA polymerase ζ (pol ζ). As a result, pol ζ is responsible for most DNA damage-induced mutations. The mechanisms of sequential DNA polymerase switches in vivo remain unclear. The major replicative DNA polymerase δ (pol δ) shares two accessory subunits, called Pol31/Pol32 in yeast, with pol ζ. Inclusion of Pol31/Pol32 in the pol δ/pol ζ holoenzymes requires a [4Fe–4S] cluster in C-termini of the catalytic subunits. Disruption of this cluster in Pol ζ or deletion of POL32 attenuates induced mutagenesis. Here we describe a novel mutation affecting the catalytic subunit of pol ζ, rev3ΔC, which provides insight into the regulation of pol switches. Strains with Rev3ΔC, lacking the entire C-terminal domain and therefore the platform for Pol31/Pol32 binding, are partially proficient in Pol32-dependent UV-induced mutagenesis. This suggests an additional role of Pol32 in TLS, beyond being a pol ζ subunit, related to pol δ. In search for members of this regulatory pathway, we examined the effects of Maintenance of Genome Stability 1 (Mgs1) protein on mutagenesis in the absence of Rev3–Pol31/Pol32 interaction. Mgs1 may compete with Pol32 for binding to PCNA. Mgs1 overproduction suppresses induced mutagenesis, but had no effect on UV-mutagenesis in the rev3ΔC strain, suggesting that Mgs1 exerts its inhibitory effect by acting specifically on Pol32 bound to pol ζ. The evidence for differential regulation of Pol32 in pol δ and pol ζ emphasizes the complexity of polymerase switches.  相似文献   

15.
BRCA1 C-terminal domain (BRCT)-containing proteins are found widely throughout the animal and bacteria kingdoms where they are exclusively involved in cell cycle regulation and DNA metabolism. Whereas most BRCT domains are involved in protein-protein interactions, a small subset has bona fide DNA binding activity. Here, we present the solution structure of the BRCT region of the large subunit of replication factor C bound to DNA and a model of the structure-specific complex with 5′-phosphorylated double-stranded DNA. The replication factor C BRCT domain possesses a large basic patch on one face, which includes residues that are structurally conserved and ligate the phosphate in phosphopeptide binding BRCT domains. An extra α-helix at the N terminus, which is required for DNA binding, inserts into the major groove and makes extensive contacts to the DNA backbone. The model of the protein-DNA complex suggests 5′-phosphate recognition by the BRCT domains of bacterial NAD+-dependent ligases and a nonclamp loading role for the replication factor C complex in DNA transactions.  相似文献   

16.
Telomere capture, a rare event that stabilizes chromosome breaks, is associated with certain genetic abnormalities in humans. Studies pertaining to the generation, maintenance, and biological effects of telomere formation are limited in metazoans. A mutation, mu2a, in Drosophila melanogaster decreases the rate of repair of double strand DNA breaks in oocytes, thus leading to chromosomes that have lost a natural telomere and gained a new telomere. Amino acid sequence, domain architecture, and protein interactions suggest that MU2 is an ortholog of human MDC1. The MU2 protein is a component of meiotic recombination foci and localizes to repair foci in S2 cells after irradiation in a manner similar to that of phosphorylated histone variant H2Av. Domain searches indicated that the protein contains an N-terminal FHA domain and a C-terminal tandem BRCT domain. Peptide pull-down studies showed that the BRCT domain interacts with phosphorylated H2Av, while the FHA domain interacts with the complex of MRE11, RAD50, and NBS. A frameshift mutation that eliminates the MU2 BRCT domain decreases the number and size of meiotic phospho-H2Av foci. MU2 is also required for the intra-S checkpoint in eye-antennal imaginal discs. MU2 participates at an early stage in the recognition of DNA damage at a step that is prerequisite for both DNA repair and cell cycle checkpoint control. We propose a model suggesting that neotelomeres may arise when radiation-induced chromosome breaks fail to be repaired, fail to arrest progression through meiosis, and are deposited in the zygote, where cell cycle control is absent and rapid rounds of replication and telomere formation ensue.  相似文献   

17.
Lee DH  Pfeifer GP 《Mutation research》2008,641(1-2):19-26
7,8-Dihydro-8-oxo-2′-deoxyguanosine (8-oxo-dG) is one of the most common DNA lesions induced by oxidative stress. This lesion can be bypassed by DNA polymerase eta (Pol η) using in vitro translesion synthesis (TLS) reactions. However, the role that Pol η plays in vivo contributing to 8-oxo-dG mutagenesis remains unclear. To clarify the role of Pol η in 8-oxo-dG mutagenesis, we have used an siRNA knockdown approach in combination with a supF shuttle vector (pSP189) which replicates in mammalian cells. The pSP189 plasmid was treated with methylene blue plus light (MBL), which produces predominantly 8-oxo-dG in DNA, and was then replicated in GM637 cells in presence of siRNA that knocks down the expression of Pol η, or in XP-V cells, which lack functional Pol η. The mutant frequencies were increased in the Pol η siRNA knockdown cells and in XP-V cells relative to control, meaning that Pol η plays an important role in preventing 8-oxo-dG mutagenesis. In the same system, knockdown of OGG1 also led to an increase in mutagenesis. Neither the type of mutations nor their distribution along the supF gene were significantly different between control and target specific siRNA-transfected cells (or XP-V cells) and were predominantly G to T transversions. These results show that Pol η has an important role in error-free 8-oxo-dG lesion bypass and avoidance of oxidative stress-induced mutagenesis in vivo.  相似文献   

18.
Mitochondria-mediated nuclear mutator phenotype in Saccharomyces cerevisiae   总被引:2,自引:0,他引:2  
Using Saccharomyces cerevisiae as a model organism, we analyzed the consequences of disrupting mitochondrial function on mutagenesis of the nuclear genome. We measured the frequency of canavanine-resistant colonies as a measure of nuclear mutator phenotype. Our data suggest that mitochondrial dysfunction leads to a nuclear mutator phenotype (i) when oxidative phosphorylation is blocked in wild-type yeast at mitochondrial complex III by antimycin A and (ii) in mutant strains lacking the entire mitochondrial genome (rho0) or those with deleted mitochondrial DNA (rho). The nuclear mutation frequencies obtained for antimycin A-treated cells as well as for rho and rho0 cells were ~2- to 3-fold higher compared to untreated control and wild-type cells, respectively. Blockage of oxidative phosphorylation by antimycin A treatment led to increased intracellular levels of reactive oxygen species (ROS). In contrast, inactivation of mitochondrial activity (rho and rho0) led to decreased intracellular levels of ROS. We also demonstrate that in rho0 cells the REV1, REV3 and REV7 gene products, all implicated in error-prone translesion DNA synthesis (TLS), mediate mutagenesis in the nuclear genome. However, TLS was not involved in nuclear DNA mutagenesis caused by inhibition of mitochondrial function by antimycin A. Together, our data suggest that mitochondrial dysfunction is mutagenic and multiple pathways are involved in this nuclear mutator phenotype.  相似文献   

19.
The C-terminal regions of several DNA repair and cell cycle checkpoint proteins are homologous to the breast-cancer-associated BRCA-1 protein C-terminal region. These regions, known as BRCT domains, have been found to mediate important protein-protein interactions. We produced the BRCT domain of DNA ligase IIIα (L3[86]) for biophysical and structural characterization. A glutathione S-transferase (GST) fusion with the L3[86] domain (residues 837–922 of ligase IIIα) was expressed in Escherichia coli and purified by glutathione affinity chromatography. The GST fusion protein was removed by thrombin digestion and further purification steps. Using this method, 15N-labeled and 13C/15N-double-labeled L3[86] proteins were prepared to enable a full determination of structure and dynamics using heteronuclear NMR spectroscopy. To obtain evidence of binding activity to the distal BRCT of the repair protein XRCC1 (X1BRCTb), as well as to provide insight into the interaction between these two BRCT binding partners, the corresponding BRCT heterocomplexes were also prepared and studied. Changes in the secondary structures (amount of helix and sheet components) of the two constituents were not observed upon complex formation. However, the melting temperature of the complex was significantly higher relative to the values obtained for the L3[86] or X1BRCTb proteins alone. This increased thermostability imparted by the interaction between the two BRCT domains may explain why cells require XRCC1 to maintain ligase IIIα activity.  相似文献   

20.
Defects in the gene encoding human Polη result in xeroderma pigmentosum variant (XP-V), an inherited cancer-prone syndrome. Polη catalyzes efficient and accurate translesion DNA synthesis (TLS) past UV-induced lesions. In addition to Polη, human cells have multiple TLS polymerases such as Polι, Polκ, Polζ and REV1. REV1 physically interacts with other TLS polymerases, but the physiological relevance of the interaction remains unclear. Here we developed an antibody that detects the endogenous REV1 protein and found that human cells contain about 60,000 of REV1 molecules per cell as well as Polη. In un-irradiated cells, formation of nuclear foci by ectopically expressed REV1 was enhanced by the co-expression of Polη. Importantly, the endogenous REV1 protein accumulated at the UV-irradiated areas of nuclei in Polη-expressing cells but not in Polη-deficient XP-V cells. UV-irradiation induced nuclear foci of REV1 and Polη proteins in both S-phase and G1 cells, suggesting that these proteins may function both during and outside S phase. We reconstituted XP-V cells with wild-type Polη or with Polη mutants harboring substitutions in phenylalanine residues critical for interaction with REV1. The REV1-interaction-deficient Polη mutant failed to promote REV1 accumulation at sites of UV-irradiation, yet (similar to wild-type Polη) corrected the UV sensitivity of XP-V cells and suppressed UV-induced mutations. Interestingly however, spontaneous mutations of XP-V cells were only partially suppressed by the REV1-interaction deficient mutant of Polη. Thus, Polη–REV1 interactions prevent spontaneous mutations, probably by promoting accurate TLS past endogenous DNA lesions, while the interaction is dispensable for accurate Polη-mediated TLS of UV-induced lesions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号