首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
A genetic linkage map of markers for the short arm of human chromosome 8 has been constructed with 14 polymorphic DNA markers on the basis of genotypes obtained in 40 CEPH reference families. This unbroken map spans 45 cM in males and 79 cM in females. The 14 markers include three genes, MSR, LPL, and NEFL, and one anonymous DNA segment that were previously assigned to chromosome 8. The other 10 marker had been isolated from a chromosome 8-specific cosmid library and physically localized to chromosomal bands by fluorescence in situ hybridization. The order of loci determined by genetic linkage was consistent with their physical locations. This map will facilitate efficient linkage studies of human genetic diseases that may be segregating on chromosome 8p and will provide anchor points for development of high-resolution maps for this chromosomal region.  相似文献   

2.
Isolation and mapping of 88 new RFLP markers on human chromosome 8.   总被引:1,自引:0,他引:1  
M Emi  E Takahashi  K Koyama  K Okui  M Oshimura  Y Nakamura 《Genomics》1992,13(4):1261-1266
To obtain new RFLP markers for construction of a high-resolution map of human chromosome 8, a cosmid library was constructed from a somatic hybrid cell that contained chromosome 8 as the only human component in mouse genomic background. Eighty-eight new RFLP markers were isolated and characterized, and 71 of them were sublocalized to chromosomal bands by fluorescent in situ hybridization (FISH). Of these, 36 were localized to the short arm, 34 to the long arm, and 1 to the centromeric region. Five markers defined VNTR loci. This work represents the first extensive isolation and physical mapping of RFLP markers on human chromosome 8. These new markers will serve as useful resources for linkage mapping of loci for inherited diseases and for efforts to identify a putative tumor suppressor gene(s) on chromosome 8.  相似文献   

3.
To effectively use elite genes on the long arm of rye chromosome 6(the 6RL arm) in wheat breeding programs,precise and fast identification of 6RL chromatin in wheat backgrounds is necessary.PCR-based 6RL-specific markers can facilitate the detection of elite genes on 6RL in wheat breeding.However,only a limited number of 6RL-specific markers have been developed.In the present study.300 new PCR-based 6RL-specific markers were identified using specific length amplified fragment sequencing(SLAF-seq) technology,and were further physically mapped to four regions on the 6RL arm using 6R and 6RL deletion lines.Interestingly,127 of the 300 markers were physically localized to a region from the site between 2.3 and 2.5 to the telomere,the same region where the powdery mildew resistance gene was mapped.In addition,95 of the 300 markers exhibit polymorphisms,which can be used to investigate the diversity of rye 6RL arms.The markers developed in this study can be used to identify given segments of 6RL in wheat backgrounds and accelerate the utilization of elite genes on 6RL in wheat breeding.  相似文献   

4.
We report the localization of 92 new gene-based markers assigned to rat chromosome 1 by linkage or radiation hybrid mapping. The markers were chosen to enrich gene mapping data in a region of the rat chromosome known to contain several of the principal quantitative trait loci in rodent models of human multifactorial disease. The composite map reported here provides map information on a total of 139 known genes, including 80 that have been localized in mouse and 109 that have been localized in human, and integrates the gene-based markers with anonymous microsatellites. The evolutionary breakpoints identifying 16 segments that are homologous regions in the human genome are defined. These data will facilitate genetic and comparative mapping studies and identification of novel candidate genes for the quantitative trait loci that have been localized to the region.  相似文献   

5.
J Ahn  T W Won  A Zia  H Reutter  D E Kaplan  R Sparks  J R Gruen 《Genomics》2001,78(1-2):19-29
A gene for reading disability has been localized by nonparametric linkage to 6p21.3-p22 in several published reports. However, the lack of an uninterrupted genomic clone contig has made it difficult to determine accurate intermarker distances, precise marker order, and genetic boundaries and hinders direct comparisons of linkage. The search and discovery of the hemochromatosis gene (HFE) led to the creation of a bacterial artificial chromosome (BAC) and P-1 derived artificial chromosome (PAC) contig that extended physical maps 4 Mb from the MHC toward pter and localized new markers in that region [10-12]. Using this contig, we localized 124 sequence tagged sites, expressed sequence tags, and short tandem repeats including most of the markers in linkage with reading disability phenotypes, succinic semialdehyde dehydrogenase, GPLD1, prolactin, and 18 uncharacterized genes. This new contig joins and extends previously published physical maps to span the entire chromosome 6 reading disability genetic locus. Physical mapping data from the complete contig show overlap of the published linkage peaks for reading disability, provide accurate intermarker distances and order, and offer resources for generating additional markers and candidate genes for high resolution genetic studies in this region.  相似文献   

6.
两个大麦新矮秆基因的SSR标记   总被引:2,自引:1,他引:1  
采用SSR技术对沪95-2639和91冬27携带的两个新的矮秆基因进行了分子标记.在大麦4H染色体的长臂上,发现SSR标记位点HVM67同时与这两个新的矮秆基因连锁,距91冬27的较近,约10.0cM,离沪95-2639的较远,为23.3cM.初步绘制出大麦4H染色体上矮秆基因与SSR标记位点的遗传连锁图谱.  相似文献   

7.
Genetic linkage map of human chromosome 21   总被引:19,自引:0,他引:19  
Two of the most common disorders affecting the human nervous system, Down syndrome and Alzheimer's disease, involve genes residing on human chromosome 21. A genetic linkage map of human chromosome 21 has been constructed using 13 anonymous DNA markers and cDNAs encoding the genes for superoxide dismutase 1 (SOD1) and the precursor of Alzheimer's amyloid beta peptide (APP). Segregation of restriction fragment length polymorphisms (RFLPs) for these genes and DNA markers was traced in a large Venezuelan kindred established as a "reference" pedigree for human linkage analysis. The 15 loci form a single linkage group spanning 81 cM on the long arm of chromosome 21, with a markedly increased frequency of recombination occurring toward the telomere. Consequently, 40% of the genetic length of the long arm corresponds to less than 10% of its cytogenetic length, represented by the terminal half of 21q22.3. Females displayed greater recombination than males throughout the linkage group, with the difference being most striking for markers just below the centromere. Definition of the linkage relationships for these chromosome 21 markers will help refine the map position of the familial Alzheimer's disease gene and facilitate investigation of the role of recombination in nondisjunction associated with Down syndrome.  相似文献   

8.
 Using a recently developed polymerase chain reaction (PCR)-mediated approach for physical mapping of single-copy DNA sequences on microisolated chromosomes of barley, sequence-tagged sites of DNA probes that reveal restriction fragment length polymorphisms (RFLP) localized on the linkage maps of rice chromosomes 5 and 10 were allocated to cytologically defined regions of barley chromosome 5 (1H). The rice map of linkage group 5, of about 135 cM in size, falls into two separate parts, which are related to the distal portions of both the short and long arms of the barley chromosome. The markers on the rice map of chromosome 5 were found to be located within regions of the barley chromosome which show high recombination rates. The map of rice chromosome 10, of about 75 cM in size, on the other hand, is related to an interstitial segment of the long arm of chromosome 5 (1H) which is highly suppressed in recombination activity. For positional cloning of genes of this homoeologous region from the barley genome, the small rice genome will probably prove to be a useful tool. No markers located on rice chromosomes were detected within the pericentric Giemsa-positive heterochromatin of the barley chromosome, indicating that these barley-specific sequences form a block which separates the linkage segments conserved in rice. By our estimate approximately half of the barley-specific sequences of chromosome 5 (1H) show a dispersed distribution, while the other half separates the conserved linkage segments. Received: 29 February 1996 / Accepted: 28 June 1996  相似文献   

9.
A detailed genetic map of the long arm of chromosome 11   总被引:27,自引:0,他引:27  
We describe 14 new restriction fragment length polymorphisms, corresponding to 13 loci on the long arm of chromosome 11. A detailed genetic map of chromosome 11q has been constructed from these and other loci (a total of 31 loci) typed in 59 reference families. The 23 most informative markers were selected to establish a map with a strongly supported order; regional localizations are provided for eight other markers. The loci span 88 cM in males and 148 cM in females and form a dense continuum on 11q. These ordered polymorphic markers will be of help in studying the genes responsible for several diseases that have been localized to this region, including genes responsible for multiple endocrine neoplasia type I (MEN1), ataxia telangiectasia (AT), tuberous sclerosis (TSC), and some forms of asthma and rhinitis.  相似文献   

10.
A 64-centiMorgan linkage map of mouse chromosome 9 was developed using cloned DNA markers and an interspecific backcross between Mus spretus and the C57BL/6J inbred strain. This map was compared to conventional genetic maps using six markers previously localized in laboratory mouse strains. These markers included thymus cell antigen-1, cytochrome P450-3, dilute, transferrin, cholecystokinin, and the G-protein alpha inhibitory subunit. No evidence was seen for segregation distortion, chromosome rearrangements, or altered genetic distances in the results from interspecific backcross mapping. Regional map locations were determined for four genes that were previously assigned to chromosome 9 using somatic cell hybrids. These genes were glutathione S-transferase Ya subunit (Gsta), the T3 gamma subunit, the low density lipoprotein receptor, and the Ets-1 oncogene. The map locations for these genes establish new regions of synteny between mouse chromosome 9 and human chromosomes 6, 11, and 19. In addition, the close linkage detected between the dilute and Gsta loci suggests that the Gsta locus may be part of the dilute/short ear complex, one of the most extensively studied genetic regions of the mouse.  相似文献   

11.
A genetic linkage map of the long arm of human chromosome 22   总被引:17,自引:0,他引:17  
We have used a recombinant phage library enriched for chromosome 22 sequences to isolate and characterize eight anonymous DNA probes detecting restriction fragment length polymorphisms on this autosome. These were used in conjunction with eight previously reported loci, including the genes BCR, IGLV, and PDGFB, four anonymous DNA markers, and the P1 blood group antigen, to construct a linkage map for chromosome 22. The linkage group is surprisingly large, spanning 97 cM on the long arm of the chromosome. There are no large gaps in the map; the largest intermarker interval is 14 cM. Unlike several other chromosomes, little overall difference was observed for sex-specific recombination rates on chromosome 22. The availability of a genetic map will facilitate investigation of chromosome 22 rearrangements in such disorders as cat eye syndrome and DiGeorge syndrome, deletions in acoustic neuroma and meningioma, and translocations in Ewing sarcoma. This defined set of linked markers will also permit testing chromosome 22 for the presence of particular disease genes by family studies and should immediately support more precise mapping and identification of flanking markers for NF2, the defective gene causing bilateral acoustic neurofibromatosis.  相似文献   

12.
Fusarium head blight (FHB) resistance was evaluated in a set of recombinant inbred (RI) lines from a cross between Russia 6 (resistant) and H.E.S. 4 (susceptible), which had one of the widest differences of FHB resistance reactions among ca. 5,000 barley germplasm accessions in Okayama University. Field-grown spikes were sampled and inoculated by the ‘cut-spike test’. Resistance reactions on the parents and RI lines were scored by eleven grades, from resistant (0) to susceptible (10). Quantitative trait loci (QTL) analysis detected three QTL: two located on the long arm of chromosome 2H, and another on the short arm of chromosome 5H. A QTL located on chromosome 2H was coincident with the vrs1 locus, which governs inflorescence row type. The other QTL on chromosome 2H was positioned in the vicinity of cleistogamy locus (cly1 or Cly2) that determines inflorescence opening/closing. Resistant gene analog (RGA) and expressed sequence tag (EST) markers with homology for disease resistance genes were integrated into the high-density linkage map. Most of these markers were not localized near the identified resistance QTL, except for one RGA marker (FXLRRfor_XLRRrev170) localized in the vicinity of the cly1/Cly2 locus. Five AFLP markers localized in the vicinity of the identified QTL were sequenced to convert them into sequence tagged site (STS) markers. Genotyping of each RI line using two AFLP–STS markers and the vrs1 locus indicated that the RI lines with three Russia 6 QTL alleles exhibited the same level of high FHB resistance reactions as Russia 6. In contrast, RI lines with three susceptible alleles showed reactions close to H.E.S. 4. Therefore, the markers closely linked to the QTL can be efficiently used for the selection of resistance.  相似文献   

13.
We performed linkage analysis in a Belgian family with autosomal dominant midfrequency hearing loss, which has a prelingual onset and a nonprogressive course in most patients. We found LOD scores >6 with markers on chromosome 11q. Analysis of key recombinants maps this deafness gene (DFNA12) to a 36-cM interval on chromosome 11q22-24, between markers D11S4120 and D11S912. The critical regions for the recessive deafness locus DFNB2 and the dominant locus DFNA11, which were previously localized to the long arm of chromosome 11, do not overlap with the candidate interval of DFNA12.  相似文献   

14.
Summary Two families with X-linked dominant hypophosphatemia (McKusick No. *30780) were investigated for linkage of the disease locus with several marker genes defined by cloned, single-copy DNA sequences derived from defined regions of the X chromosome. Close linkage was found with DNA markers DXS41 (p99-6) and DXS43 (pD2) at Xp22, suggesting a location of the HPDR gene on the distal short arm of the X chromosome.  相似文献   

15.
Group 1 chromosomes of the Triticeae tribe have been studied extensively because many important genes have been assigned to them. In this paper, chromosome 1 linkage maps of Triticum aestivum, T. tauschii, and T. monococcum are compared with existing barley and rye maps to develop a consensus map for Triticeae species and thus facilitate the mapping of agronomic genes in this tribe. The consensus map that was developed consists of 14 agronomically important genes, 17 DNA markers that were derived from known-function clones, and 76 DNA markers derived from anonymous clones. There are 12 inconsistencies in the order of markers among seven wheat, four barley, and two rye maps. A comparison of the Triticeae group 1 chromosome consensus map with linkage maps of homoeologous chromosomes in rice indicates that the linkage maps for the long arm and the proximal portion of the short arm of group 1 chromosomes are conserved among these species. Similarly, gene order is conserved between Triticeae chromosome 1 and its homoeologous chromosome in oat. The location of the centromere in rice and oat chromosomes is estimated from its position in homoeologous group 1 chromosomes of Triticeae.  相似文献   

16.
Genetic and physical characterization of chromosome 4DL in wheat.   总被引:8,自引:0,他引:8  
R Milla  J P Gustafson 《Génome》2001,44(5):883-892
The long arm of chromosome 4D in wheat (Triticum aestivum L.) has been shown in previous studies to harbor genes of agronomic importance. A major dominant gene conferring Aluminum (Al) tolerance (Alt2 in 'Chinese Spring' and AltBH in 'BH 1146'), and the Knal locus controlling the K+/Na+ discrimination in saline environments have been mapped to this chromosome arm. However, accurate information on the genetic and physical location of markers related to any of these genes is not available and would be useful for map-based cloning and marker-assisted plant breeding. In the present study, using a population of 91 recombinant inbred lines segregating for Al tolerance, we provide a more extensive genetic linkage map of the chromosome arm 4DL based on RFLP, SSR, and AFLP markers, delimiting the AltBH gene to a 5.9-cM interval between markers Xgdm125 and Xpsr914. In addition, utilizing a set of wheat deletion lines for chromosome arm 4DL, the AltBH gene was physically mapped to the distal region of the chromosome, between deletion breakpoints 0.70 and 0.86, where the kilobase/centimorgan ratio is assumed to be low, making the map-based cloning of the gene a more realistic goal. The polymorphism rates in chromosome arm 4DL for the different types of markers used were extremely low, as confirmed by the physical mapping of AFLPs. Finally, analysis of 1 Mb of contiguous sequence of Arabidopsis chromosome 5 flanking the gene homologous to the BCD1230 clone (a cosegregating marker in our population coding for a ribulose-5-phosphate-3-epimerase gene), revealed a previously identified region of stress-related and disease-resistance genes. This could explain the collinearity observed in comparative mapping studies among different species and the low level of polymorphism detected in the chromosome arm 4DL in hexaploid wheat.  相似文献   

17.
Loci affecting swine intramuscular fat content, backfat thickness, carcass weight, and daily weight gain were assigned to regions of swine chromosome (SSC) 4, which were shown to correspond to human chromosome (HSA) 1p22--> q25 by ZOO-FISH, bidirectional chromosome painting, as well as by the linkage map of genes. In order to select candidate genes responsible for the above traits from the human genome database, precise correspondence between SSC4 and HSA1 is a prerequisite. In the present study, 27 genes, PTGFR, GBP1, GBP2, GFI1, GCLM, ABCD3, EXTL2, KCNA3, ADORA3, KCND3, WNT2B, NRAS, SYCP1, PTGFRN, IGSF2, NOTCH2, S100A10, SHC1, SSR2, LMNA, CCT3, CD5L, PEA15, FCER1G, EAT2, DDR2, and LAMB3, located in the HSA1 region corresponding to SSC4 or possibly SSC4, were assigned to the IMpRH map. The alignment of genes from centromere to telomere in the SSC4 q arm is basically conserved in HSA1p22-->q25 with the direction from the q arm to the p arm, which is in good agreement with results from linkage mapping. In addition, the present study first demonstrated that WNT2B residing in the middle of the HSA1 region was assigned to SSC18 with a high lod score (> 5), and that at least three intrachromosomal rearrangements occurred in the region in the process of swine and human evolution. PTGFR, and LAMB3 localized at both ends of the HSA1 region were assigned to SSC6 and SSC9, respectively, which is consistent with regional correspondence reported earlier. In the course of the above analysis, microsatellite markers were developed in the proximity of eleven genes localized on SSC4, and three genes on other swine chromosomes.  相似文献   

18.
Closely linked restriction fragment length polymorphisms (RFLPs) are potentially useful as diagnostic markers of genetic defects, and, in principle, RFLPs can be employed to construct a complete linkage map of the human genome. On the X chromosome, linkage studies are particularly rewarding because in man more than 120 X-linked genes are known. Thus, it is probable that each X-specific RFLP will be of use as a genetic marker of one or several X-linked disorders. To facilitate the search for closely linked RFLPs, we have regionally assigned 16 cloned DNA sequences to various portions of the human X chromosome, employing a large panel of somatic cell hybrids. These probes have been used to correlate genetic and physical distances on Xp, and it can be extrapolated from these data that the number and distribution of available Xq sequences will also suffice to span the long arm of the X chromosome.  相似文献   

19.
E Schurr  E Skamene  K Morgan  M L Chu  P Gros 《Genomics》1990,8(3):477-486
We have investigated the degree of synteny between the long arm (q) of human chromosome 2 and the proximal portion of mouse chromosome 1. To define the limits of synteny, we have determined whether mouse homologs of seven human genes mapping to chromosome 2q cosegregated with anchor loci on mouse chromosome 1. The loci investigated were NEB/Neb, ELN/Eln, COL3A1/Col3a1, CRYG/Len-2, FN1/Fn-1, VIL/Vil, and COL6A3/Col6a3. Ren-1,2 and Acrg were included as two proximal mouse chromosome 1 anchor loci. The segregation of restriction fragment length polymorphisms at these loci was analyzed in the progeny of Mus spretus x C57BL/6J hybrids backcrossed to the C57BL/6J inbred strain. We found that five of the structural protein loci and the two anchor loci form a linkage group on proximal murine chromosome 1. The proposed gene order of this group of linked markers is centromere - Col3a1 - Len-2-Fn-1-Vil-Acrg-Col6a3-Ren1,2. Neb and Eln are linked neither to each other nor to any other marker on proximal mouse chromosome 1. Therefore, the mouse loci Col3a1 and Col6a3 are identified as flanking markers of the linkage group of structural protein loci. The estimated genetic map distances are Col3a1-13.3 cM-Len-2-3.4 cM-Fn-1-3.8 cM-Vil-9.6 cM-Acrg-2.1 cM-Col6a3-18.3 cM-Ren1,2. The available map information for human chromosome 2q markers and mouse chromosome 1 markers presented here tentatively identifies Col3a1 and Col6a3 as the border markers that define the limits of the syntenic chromosome segment. The order of mouse genes on chromosome 1 and their human homologs on chromosome 2q also appears to be conserved, suggesting that mapping of murine genes on the conserved segment may be useful to predict gene order in man.  相似文献   

20.
A total of 5700 human chromosome 3-specific cosmid clones was isolated from a series of cosmid libraries constructed from somatic cell hybrids whose only human component was an entire chromosome 3 or a chromosome 3 containing an interstitial deletion removing 50% of long arm sequences. Several unique sequence chromosome 3-specific hybridization probes were isolated from each of 616 of these cosmids. These probes were then used to localize the cosmids by hybridization to a somatic cell hybrid deletion mapping panel capable of resolving chromosome 3 into nine distinct subregions. All 616 of the cosmids were localized to either the long or short arm of chromosome 3 and 63% of the short arm cosmids were more precisely localized. We have identified a total of 87 cosmids that contain fragments that are evolutionarily conserved. Fragments from these cosmids should prove useful in the identification of new chromosome 3-specific genes as well as in comparative mapping studies. The localized cosmids should provide excellent saturation of human chromosome 3 and facilitate the construction of physical and genetic linkage maps to identify various disease loci including Von Hippel Lindau disease and renal and small cell lung carcinoma.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号