首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The hypothalamus is a vital part of the central nervous system: it harbors control systems implicated in regulation of a wide range of homeostatic processes, including energy balance and reproduction. Structurally, the hypothalamus is a complex neuroendocrine tissue composed of a multitude of unique neuronal cell types that express a number of neuromodulators, including hormones, classical neurotransmitters, and specific neuropeptides that play a critical role in mediating hypothalamic function. However, neuropeptide and receptor gene expression, second messenger activation, and electrophysiological and secretory properties of these hypothalamic neurons are not yet fully defined, primarily because the heterogeneity and complex neuronal architecture of the neuroendocrine hypothalamus make such studies challenging to perform in vivo. To circumvent this problem, our research group recently generated embryonic- and adult-derived hypothalamic neuronal cell models by utilizing the novel molecular techniques of ciliary neurotrophic factor-induced neurogenesis and SV40 T antigen transfer to primary hypothalamic neuronal cell cultures. Significant research with these cell lines has demonstrated their value as a potential tool for use in molecular genetic analysis of hypothalamic neuronal function. Insights gained from hypothalamic immortalized cells used in conjunction with in vivo models will enhance our understanding of hypothalamic functions such as neurogenesis, neuronal plasticity, glucose sensing, energy homeostasis, circadian rhythms, and reproduction. This review discusses the generation and use of hypothalamic cell models to study mechanisms underlying the function of individual hypothalamic neurons and to gain a more complete understanding of the overall physiology of the hypothalamus.  相似文献   

2.
The concept of the hypothalamus as a brain structure responsible for metabolic and thermal homeostasis of an organism emerged in the 60s and 70s of the XX century (hypothalamus as a homeostatic or thermal homeostat). In the following decades, studies of molecular mechanisms behind the genesis of circadian and circannual rhythms sinificantly expanded our knowledge of hypothalamic functions. According to current ideas, hypothalamic nuclei function as pacemakers for other structures and trigger various processes that have different temporal parameters (latency, velocity, duration, periodicity, sequentiality, density) and form together the organism’s endogenous time. In this review, the authors analyze some features of local networks in the hypothalamic nuclei and formulate the principles of neuropeptide action underlying the homeostatic regulation of the endogenous time by the hypothalamus.  相似文献   

3.
Behavior and physiological changes are under the influence of circadian and homeostatic variations. Temporal alignment regulates timing of neurobiological phenomena, such as protein phosphorylation. In the current report, we describe the circadian and sleep homeostatic phosphorylated mitogen-activated protein kinase (MAP-K) variations in hypothalamus and pons of rats across 24 h as well as after sleep deprivation. In the circadian study, MAP-K expression showed a building-up profile during the dark phase in hypothalamus, whereas an increase across the lights-on period was found in pons. On the other hand, that phosphorylation of MAP-K in hypothalamus and pons displayed a significant reduction after sleep rebound period. Data demonstrate that MAP-K phosphorylation undergoes circadian and sleep homeostatic variations in brain areas linked to sleep modulation.  相似文献   

4.
Accumulating evidence suggests that the adult murine hypothalamus, a control site of several fundamental homeostatic processes, has neurogenic capacity. Correspondingly, the adult hypothalamus exhibits considerable cell proliferation that is ongoing even in the absence of external stimuli, and some of the newborn cells have been shown to mature into cells that express neuronal fate markers. However, the identity and characteristics of proliferating cells within the hypothalamic parenchyma have yet to be thoroughly investigated. Here we show that a subset of NG2-glia distributed throughout the mediobasal hypothalamus are proliferative and express the stem cell marker Sox2. We tracked the constitutive differentiation of hypothalamic NG2-glia by employing genetic fate mapping based on inducible Cre recombinase expression under the control of the NG2 promoter, demonstrating that adult hypothalamic NG2-glia give rise to substantial numbers of APC+ oligodendrocytes and a smaller population of HuC/D+ or NeuN+ neurons. Labelling with the cell proliferation marker BrdU confirmed that some NG2-derived neurons have proliferated shortly before differentiation. Furthermore, patch-clamp electrophysiology revealed that some NG2-derived cells display an immature neuronal phenotype and appear to receive synaptic input indicative of their electrical integration in local hypothalamic circuits. Together, our studies show that hypothalamic NG2-glia are able to take on neuronal fates and mature into functional neurons, indicating that NG2-glia contribute to the neurogenic capacity of the adult hypothalamus.  相似文献   

5.
Chronic degenerative lung diseases are essentially untreatable pathological conditions. By contrast, the healthy lung has numerous mechanisms that allow for rapid repair and restoration of function following minor acute injuries. We discuss the normal endogenous processes of lung development, homeostatic maintenance and repair and consider the research strategies required for the development of methods for human therapeutic lung regeneration.  相似文献   

6.
We devise a novel, systems-biology approach for identifying genetic participants in homeostatic biological processes. The central idea is that genes which are inversely regulated in alignment with positive and negative system perturbation are strong candidates for significant regulatory involvement in a given homeostatic process. This allows us to integrate known genetic participants together with hitherto unknown ones into a signaling network. We illustrate this concept and justify the underlying rationale in the exemplary case of the formation of blood vessels (angiogenesis) in the progression of pancreatic cancer where we have introduced a gene regulatory network governing the shift from a non angiogenic phenotype to an angiogenic phenotype in pancreatic tissue (‘angiogenic switch’). The envisaged pay-off of our approach is an improved understanding of signaling networks as well as the discovery of yet unknown genetic agents for diagnostic and therapeutic purposes. Subject to mild constraints, the same algorithm for the identification of signalling components can in principle be implemented across a wide spectrum of homeostatic processes including, e.g., apoptosis and fibrogenesis.  相似文献   

7.
A high-fat diet is the main environmental cue that has been studied in the hypothalamus since the discovery of its connection with hypothalamic inflammation. Current evidence shows hypothalamic inflammation as a likely mechanism for the dysregulation on the homeostatic control of energy balance, which leads to metabolic alterations and obesity. Although this mechanism seems to be reversible when set during adulthood, we argue whether dietary fatty acids, during critical periods of development, could affect hypothalamic function permanently and set an increased susceptibility to obesity. We found few experimental studies that looked at programming induced by different fatty acids on the hypothalamus. They clearly showed a connection between maternal fat diet, hypothalamic inflammation and metabolic alterations in the offspring. We found that not only a high-fat diet but also a normolipidic diet with unbalanced quantities of different fatty acids produced diverse inflammatory responses on the hypothalamus. Therefore, strategies of manipulating dietary fatty acids in pregnant and lactating women may have great impact on the population's future health. However, more research is still needed on the effects of fatty acids and the hypothalamic inflammation on programming.  相似文献   

8.
Since REM sleep is characterized by a suspension of the hypothalamic integration of homeostatic regulations, it has been assumed that the duration of both REM sleep episodes and of the time interval between the end of one episode and the beginning of the following episode may be regulated according to sleep related processes and the homeostatic needs of the organism. A series of studies performed on the rat has shown that REM sleep episodes occur as two basic types: single REM sleep episodes, that are separated by intervals > 3 min and sequential episodes, that are separated by intervals < or = 3 min and appear in a cluster. Moreover, it has been observed that, in this species, a change in REM sleep occurrence is caused by a modification in the number of episodes and not in their duration. With respect to this, sleep deprivation and recovery are characterized by a decrease and an increase, respectively, in the number of sequential REM sleep episodes, but the number of single episodes tends to be kept constant. The central aspects of this kind of regulation have been examined biochemically in the preoptic-anterior hypothalamus, an area involved in the control of autonomic and sleep related processes. The results show that the accumulation of adenosine 3':5'-cyclic monophosphate (cAMP) is impaired, in this region, during sleep deprivation and appears to return to the control levels, during the recovery, with a rate inversely related to the degree of the previous deprivation. Moreover, it has been observed that the systemic administration of DL-propranolol and LiCl reduces cAMP accumulation mainly in the preoptic-anterior hypothalamus; this condition is concomitant with a reduction in REM sleep occurrence.  相似文献   

9.
The hypothalamus plays a crucial role in the control of the energy balance and also retains neurogenic potential into adulthood. Recent studies have reported the severe alteration of the cell turn-over in the hypothalamus of obese animals and it has been proposed that a neurogenic deficiency in the hypothalamus could be involved in the development of obesity. To explore this possibility, we examined hypothalamic cell renewal during the homeostatic response to dietary fat in mice, i.e., at the onset of diet-induced obesity. We found that switching to high-fat diet (HFD) accelerated cell renewal in the hypothalamus through a local, rapid and transient increase in cell proliferation, peaking three days after introducing the HFD. Blocking HFD-induced cell proliferation by central delivery of an antimitotic drug prevented the food intake normalization observed after HFD introduction and accelerated the onset of obesity. This result showed that HFD-induced dividing brain cells supported an adaptive anorectic function. In addition, we found that the percentage of newly generated neurons adopting a POMC-phenotype in the arcuate nucleus was increased by HFD. This observation suggested that the maturation of neurons in feeding circuits was nutritionally regulated to adjust future energy intake. Taken together, these results showed that adult cerebral cell renewal was remarkably responsive to nutritional conditions. This constituted a physiological trait required to prevent severe weight gain under HFD. Hence this report highlighted the amazing plasticity of feeding circuits and brought new insights into our understanding of the nutritional regulation of the energy balance.  相似文献   

10.
11.
Fibrosis underlies the pathogenesis of numerous diseases and leads to severe damage of vital body organs and, frequently, to death. Better understanding of the mechanisms resulting in fibrosis is essential for developing appropriate treatment solutions and is therefore of upmost importance. Recent evidence suggests a significant antifibrotic potential of an integral membrane protein, caveolin-1. While caveolin-1 has been widely studied for its role in the regulation of cell signaling and endocytosis, its possible implication in fibrosis remains largely unclear. In this review we survey involvement of caveolin-1 in various cellular processes and highlight different aspects of its antifibrotic activity. We hypothesize that caveolin-1 conveys a homeostatic function in the process of fibrosis by (a) regulating TGF-β1 and its downstream signaling; (b) regulating critical cellular processes involved in tissue repair, such as migration, adhesion and cellular response to mechanical stress; and (c) antagonizing profibrotic processes, such as proliferation. Finally, we consider this homeostatic function of caveolin-1 as a possible novel approach in treatment of fibroproliferative diseases.  相似文献   

12.
In this review, we discuss the significance of the synaptic excitation/inhibition (E/I) balance in the context of homeostatic plasticity, whose primary goal is thought to maintain neuronal firing rates at a set point. We first provide an overview of the processes through which patterned input activity drives synaptic E/I tuning and maturation of circuits during development. Next, we emphasize the importance of the E/I balance at the synaptic level (homeostatic control of message reception) as a means to achieve the goal (homeostatic control of information transmission) at the network level and consider how compromised homeostatic plasticity associated with neurological diseases leads to hyperactivity, network instability, and ultimately improper information processing. Lastly, we highlight several pathological conditions related to sensory deafferentation and describe how, in some cases, homeostatic compensation without appropriate sensory inputs can result in phantom perceptions.  相似文献   

13.
Sleep-wake disturbances are common in epilepsy, yet the potential adverse effect of seizures on sleep is not well characterized. Genetically epilepsy-prone rats (GEPRs) are a well-studied model of genetic susceptibility to audiogenic seizures. To assess their suitability for investigating relationships between seizures and disordered sleep, we characterized the sleep, activity, and tempera ture patterns of 2 GEPR strains (designated 3 and 9) and Sprague-Dawley (SD) rats in the basal state, after forced wakefulness, and after exposure to sound-induced seizures at light onset and dark onset. Because of observed differences in rapid-eye-movement sleep (REMS), we also assessed serum levels of prolactin, which is implicated in REMS regulation. The data reveal that under basal conditions, the GEPR3 strain shows less SWS and REMS, higher core temperatures, and higher serum prolactin concentrations than do GEPR9 and SD strains. All 3 strains respond similarly to enforced sleep loss. Seizures induced at light onset delay the onset of SWS in both GEPR strains. Seizures induced at dark onset do not significantly alter sleep. Genotype assessment indicates that although both GEPR strains are inbred (that is, homozygous at 107 genetic markers), they differ from each other at 74 of 107 loci. Differences in basal sleep, temperature, and prolactin between GEPR3 and GEPR9 strains suggest different homeostatic regulation of these functions. Our detection of concurrent alterations in sleep, temperature, and prolactin in these 2 GEPR strains implicates the hypothalamus as a likely site for anatomic or physiologic variation in the control of these homeostatic processes.  相似文献   

14.
The molecular processes involved in establishing long-term potentiation (LTP) have been characterized well, but the decay of early and late LTP (E-LTP and L-LTP) is poorly understood. We review recent advances in describing the mechanisms involved in maintaining LTP and homeostatic plasticity. We discuss how these phenomena could relate to processes that might underpin the loss of synaptic potentiation over time, and how they might contribute to the forgetting of short-term and long-term memories. We propose that homeostatic downscaling mediates the loss of E-LTP, and that metaplastic parameters determine the decay rate of L-LTP, while both processes require the activity-dependent removal of postsynaptic GluA2-containing AMPA receptors.  相似文献   

15.
16.
Dehydration-induced drinking (DID) has been defined as a type of homeostatic behaviour controlled by factors related to water balance, whereas schedule-induced polydipsia (SIP) is considered to be a type of nonhomeostatic drinking subsequent to a general increase in motor excitability. In this study, we have attempted to assess the role of atrial natriuretic factor (ANF) in both models to elucidate the mechanisms controlling water intake. Intracerebroventricular injection of ANF (2-8 nmol) caused a dose related suppression of water intake in both DID and SIP, but intravenous injection with a higher dose of ANF (8 nmol) produced a significant suppression of water intake only in DID. Before drinking started, tissue ANF levels increased in atria in both models and decreased in hypothalamus in DID but not in SIP. After 1 hour of drinking, ANF levels decreased in atria in both models and increased in hypothalamus in SIP but not in DID. These results suggest that DID and SIP are different in their thirst regulation, and that the notion that peripheral ANF serves as a humoral factor sending signals to central in the fluid homeostatic control mechanism is questionable.  相似文献   

17.
Inhaled pollutants produce effects in virtually all organ systems in our body and have been linked to chronic diseases including hypertension, atherosclerosis, Alzheimer's and diabetes. A neurohormonal stress response (referred to here as a systemic response produced by activation of the sympathetic nervous system and hypothalamus–pituitary–adrenal (HPA)-axis) has been implicated in a variety of psychological and physical stresses, which involves immune and metabolic homeostatic mechanisms affecting all organs in the body. In this review, we provide new evidence for the involvement of this well-characterized neurohormonal stress response in mediating systemic and pulmonary effects of a prototypic air pollutant — ozone. A plethora of systemic metabolic and immune effects are induced in animals exposed to inhaled pollutants, which could result from increased circulating stress hormones. The release of adrenal-derived stress hormones in response to ozone exposure not only mediates systemic immune and metabolic responses, but by doing so, also modulates pulmonary injury and inflammation. With recurring pollutant exposures, these effects can contribute to multi-organ chronic conditions associated with air pollution. This review will cover, 1) the potential mechanisms by which air pollutants can initiate the relay of signals from respiratory tract to brain through trigeminal and vagus nerves, and activate stress responsive regions including hypothalamus; and 2) the contribution of sympathetic and HPA-axis activation in mediating systemic homeostatic metabolic and immune effects of ozone in various organs. The potential contribution of chronic environmental stress in cardiovascular, neurological, reproductive and metabolic diseases, and the knowledge gaps are also discussed. This article is part of a Special Issue entitled Air Pollution, edited by Wenjun Ding, Andrew J. Ghio and Weidong Wu.  相似文献   

18.
Several theories propose that the cortex implements an internal model to explain, predict, and learn about sensory data, but the nature of this model is unclear. One condition that could be highly informative here is Charles Bonnet syndrome (CBS), where loss of vision leads to complex, vivid visual hallucinations of objects, people, and whole scenes. CBS could be taken as indication that there is a generative model in the brain, specifically one that can synthesise rich, consistent visual representations even in the absence of actual visual input. The processes that lead to CBS are poorly understood. Here, we argue that a model recently introduced in machine learning, the deep Boltzmann machine (DBM), could capture the relevant aspects of (hypothetical) generative processing in the cortex. The DBM carries both the semantics of a probabilistic generative model and of a neural network. The latter allows us to model a concrete neural mechanism that could underlie CBS, namely, homeostatic regulation of neuronal activity. We show that homeostatic plasticity could serve to make the learnt internal model robust against e.g. degradation of sensory input, but overcompensate in the case of CBS, leading to hallucinations. We demonstrate how a wide range of features of CBS can be explained in the model and suggest a potential role for the neuromodulator acetylcholine. This work constitutes the first concrete computational model of CBS and the first application of the DBM as a model in computational neuroscience. Our results lend further credence to the hypothesis of a generative model in the brain.  相似文献   

19.
Using a number of different homeostatic control mechanisms in the brain and peripheral physiological systems, metabolic activity is continuously regulated at rest and during exercise to prevent catastrophic system failure. Essential for the function of these regulatory processes are baseline “setpoint” levels of metabolic function, which can be used to calculate the level of response required for the maintenance of system homeostasis after system perturbation, and to which the perturbed metabolic activity levels are returned to at the end of the regulatory process. How these setpoint levels of all the different metabolic variables in the different peripheral physiological systems are created and maintained, and why they are similar in different individuals, has not been well explained. In this article, putative system regulators of metabolic setpoint levels are described. These include that: (i) innate setpoint values are stored in a certain region of the central nervous system, such as the hypothalamus; (ii) setpoint values are created and maintained as a response to continuous external perturbations, such as gravity or “zeitgebers”, (iii) setpoint values are created and maintained by complex system dynamical activity in the different peripheral systems, where setpoint levels are regulated by the ongoing feedback control activity between different peripheral variables; (iv) human anatomical and biomechanical constraints contribute to the creation and maintenance of metabolic setpoints values; or (v) a combination of all these four different mechanisms occurs. Exercise training and disease processes can affect these metabolic setpoint values, but the setpoint values are returned to pre-training or pre-disease levels if the training stimulus is removed or if the disease process is cured. Further work is required to determine what the ultimate system regulator of metabolic setpoint values is, why some setpoint values are more stringently protected by homeostatic regulatory mechanisms than others, and the role of conscious decision making processes in determining the regulation of metabolic setpoint values.  相似文献   

20.
《Autophagy》2013,9(8):1269-1270
Autophagy is a cellular homeostatic response that involves degradation of self-components by the double-membraned autophagosome. The biogenesis of autophagosomes has been well described, but the ensuing processes after autophagosome formation are not clear. In our recent study, we proposed a model in which the Golgi complex contributes to the growth of autophagic structures, and that the Drosophila melanogaster membrane protein Ema promotes this process. In fat body cells of the D. melanogaster ema mutant, the recruitment of the Golgi complex protein Lava lamp (Lva) to autophagic structures is impaired and autophagic structures are very small. In addition, in the ema mutant autophagic turnover of SQSTM1/p62 and mitophagy are impaired. Our study not only identifies a role for Ema in autophagy, but also supports the hypothesis that the Golgi complex may be a potential membrane source for the biogenesis and development of autophagic structures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号