首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Gastrointestinal survival of the bacteriocin-producing strain, Lactococcus lactis DPC6520, was evaluated systematically in vitro and in vivo with a view to using this strain to deliver biologically active lacticin 3147, a broad-spectrum bacteriocin, to the gut. The activity of the lacticin 3147 producer was also evaluated against two clinically relevant pathogens: Clostridium difficile and Listeria monocytogenes. When suspended in an appropriate matrix, the lactococcal strain is capable of surviving simulated gastrointestinal juices similar to the porcine probiotic, Lactobacillus salivarius DPC6005. Upon administration of L. lactis DPC6520 to pigs (n=4), excretion rates of ~10(2) -10(5) CFU g(-1) faeces were observed by day 5. Although passage through the gastrointestinal tract (GIT) did not affect lacticin 3147 production by L. lactis DPC6520 isolates, activity was undetectable in faecal samples by an agar well diffusion assay. Furthermore, L. lactis DPC6520 had no inhibitory effect on C. difficile or other bacterial populations in a human distal colon model, while lactococcal counts declined 10,000-fold over 24 h. The lacticin 3147 producer failed to prevent L. monocytogenes infection in a mouse model, even though a mean L. lactis DPC6520 count of 4.7 × 10(4) CFU g(-1) faeces was obtained over the 5-day administration period. These data demonstrate that L. lactis DPC6520 is capable of surviving transit through the GIT, and yet lacks antimicrobial efficacy in the models of infection used.  相似文献   

2.
3.
Lacticin 3147 is a two-component bacteriocin produced by Lactococcus lactis subspecies lactis DPC3147. In order to further characterize the biochemical nature of the bacteriocin, both peptides were isolated which together are responsible for the antimicrobial activity. The first, LtnA1, is a 3,322 Da 30-amino acid peptide and the second component, LtnA2, is a 29-amino acid peptide with a mass of 2,847 Da. Conventional amino acid analysis revealed that both peptides contain the thioether amino acid, lanthionine, as well as an excess of alanine to that predicted from the genetic sequence of the peptides. Chiral phase gas chromatography coupled with mass spectrometry of amino acid composition indicated that both LtnA1 and LtnA2 contain D-alanine residues and amino acid sequence analysis of LtnA1 confirmed that the D-alanine results from post-translational modification of a serine residue in the primary translation product. Taken together, these results demonstrate that lacticin 3147 is a novel, two-component, D-alanine containing lantibiotic that undergoes extensive post-translational modification which may account for its potent antimicrobial activity against a wide range of Gram-positive bacteria.  相似文献   

4.
Lantibiotics are post-translationally modified antimicrobial peptides which are active at nanomolar concentrations. Some lantibiotics have been shown to function by targeting lipid II, the essential precursor of cell wall biosynthesis. Given that lantibiotics are ribosomally synthesized and amenable to site-directed mutagenesis, they have the potential to serve as biological templates for the production of novel peptides with improved functionalities. However, if a rational approach to novel lantibiotic design is to be adopted, an appreciation of the roles of each individual amino acid (and each domain) is required. To date no lantibiotic has been subjected to such rigorous analysis. To address this issue we have carried out complete scanning mutagenesis of each of the 59 amino acids in lacticin 3147, a two-component lantibiotic which acts through the synergistic activity of the peptides LtnA1 (30 amino acids) and LtnA2 (29 amino acids). All mutations were performed in situ in the native 60 kb plasmid, pMRC01. A number of mutations resulted in the elimination of detectable bioactivity and seem to represent an invariable core within these and related peptides. Significantly however, of the 59 amino acids, at least 36 can be changed without resulting in a complete loss of activity. Many of these are clustered to form variable domains within the peptides. The information generated in this study represents a blue-print that will be critical for the rational design of lantibiotic-based antimicrobial compounds.  相似文献   

5.
Lacticin 3147 is a broad-spectrum two-peptide lantibiotic whose genetic determinants are located on two divergent operons on the lactococcal plasmid pMRC01. Here we introduce each of 14 subclones, containing different combinations of lacticin 3147 genes, into MG1363 (pMRC01) and determine that a number of them can facilitate overproduction of the lantibiotic. Based on these studies it is apparent that while the provision of additional copies of genes encoding the biosynthetic/production machinery and the regulator LtnR is a requirement for high-level overproduction, the presence of additional copies of the structural genes (i.e., ltnA1A2) is not.  相似文献   

6.
The ability and frequency at which target organisms can develop resistance to bacteriocins is a crucial consideration in designing and implementing bacteriocin-based biocontrol strategies. Lactococcus lactis ssp. lactis IL1403 was used as a target strain in an attempt to determine the frequency at which spontaneously resistant mutants are likely to emerge to the lantibiotic lacticin 3147. Following a single exposure to lacticin 3147, resistant mutants only emerged at a low frequency (10(-8)-10(-9)) and were only able to withstand low levels of the bacteriocin (100 AU mL(-1)). However, exposure to increasing concentrations, in a stepwise manner, resulted in the isolation of eight mutants that were resistant to moderately higher levels of lacticin 3147 (up to 600 AU mL(-1)). Interestingly, in a number of cases cross-resistance to other lantibiotics such as nisin and lacticin 481 was observed, as was cross-resistance to environmental stresses such as salt. Finally, reduced adsorption of the bacteriocin in to the cell was documented for all resistant mutants.  相似文献   

7.
Lantibiotics are antibacterial peptides isolated from bacterial sources that exhibit activity toward Gram-positive organisms and are usually several orders of magnitude more potent than traditional antibiotics such as penicillin. They contain a number of unique structural features including dehydro amino acid and lanthionine (thioether) residues. Introduced following ribosomal translation of the parent peptide, these moieties render conventional methods of peptide analysis ineffective. We report herein a new method using nickel boride (Ni(2)B), in the presence of deuterium gas, to reduce dehydro side chains and reductively desulfurize lanthionine bridges found in lantibiotics. Using this approach, it is possible to identify and distinguish the original locations of dehydro side chains and lanthionine bridges by traditional peptide sequencing (Edman degradation) followed by mass spectrometry. The strategy was initially verified using nisin A, a structurally well characterized lantibiotic, and subsequently extended to the novel two-component lantibiotic, lacticin 3147, produced by Lactococcus lactis subspecies lactis DPC3147. The primary structures of both lacticin 3147 peptides were then fully assigned by use of multidimensional NMR spectroscopy, showing that lacticin 3147 A1 has a specific lanthionine bridging pattern which resembles the globular type-B lantibiotic mersacidin, whereas the A2 peptide is a member of the elongated type-A lantibiotic class. Also obtained by NMR were solution conformations of both lacticin 3147 peptides, indicating that A1 may adopt a conformation similar to that of mersacidin and that the A2 peptide adopts alpha-helical structure. These results are the first of their kind for a synergistic lantibiotic pair (only four such pairs have been reported to date).  相似文献   

8.
Lantibiotics are antimicrobial peptides that possess great potential as clinical therapeutic agents. These peptides exhibit many beneficial traits and in many cases the emergence of resistance is extremely rare. In contrast, producers of lantibiotics synthesize dedicated immunity proteins to provide self-protection. These proteins have very specific activities and cross-immunity is rare. However, producers of two peptide lantibiotics, such as lacticin 3147, face the unusual challenge of exposure to two active peptides (α and β). Here, in addition to establishing the contribution of LtnI and LtnFE to lacticin 3147 immunity, investigations were carried out to determine if production of a closely related lantibiotic (i.e. staphylococcin C55) or possession of LtnI/LtnFE homologues could provide protection. Here we establish that not only are staphylococcin C55 producers cross-immune to lacticin 3147, and therefore represent a natural repository of Staphylococcus aureus strains that are protected against lacticin 3147, but that functional immunity homologues are also produced by strains of Bacillus licheniformis and Enterococcus faecium . This result raises the spectre of resistance through immune mimicry, i.e. the emergence of lantibiotic-resistant strains from the environment resulting from the possession/acquisition of immunity gene homologues. These phenomena will have to be considered carefully when developing lantibiotics for clinical application.  相似文献   

9.
Ltnα and Ltnβ are individual components of the two-peptide lantibiotic lacticin 3147 and are unusual in that, although ribosomally synthesized, they contain d-amino acids. These result from the dehydration of l-serine to dehydroalanine by LtnM and subsequent stereospecific hydrogenation to d-alanine by LtnJ. Homologues of LtnJ are rare but have been identified in silico in Staphylococcus aureus C55 (SacJ), Pediococcus pentosaceus FBB61 (PenN), and Nostoc punctiforme PCC73102 (NpnJ, previously called NpunJ [P. D. Cotter et al., Proc. Natl. Acad. Sci. U. S. A. 102:18584-18589, 2005]). Here, the ability of these enzymes to catalyze d-alanine formation in the lacticin 3147 system was assessed through heterologous enzyme production in a ΔltnJ mutant. PenN successfully incorporated d-alanines in both peptides, and SacJ modified Ltnα only, while NpnJ was unable to modify either peptide. Site-directed mutagenesis was also employed to identify residues of key importance in LtnJ. The most surprising outcome from these investigations was the generation of peptides by specific LtnJ mutants which exhibited less bioactivity than those generated by the ΔltnJ strain. We have established that the reduced activity of these peptides is due to the inability of the associated LtnJ enzymes to generate d-alanine residues in a stereospecific manner, resulting in the presence of both d- and l-alanines at the relevant locations in the lacticin 3147 peptides.  相似文献   

10.
Lantibiotics are antimicrobial peptides that contain several unusual amino acids resulting from a series of enzyme-mediated posttranslational modifications. As a consequence of being gene-encoded, the implementation of peptide bioengineering systems has the potential to yield lantibiotic variants with enhanced chemical and physical properties. Here we describe a functional two-plasmid expression system which has been developed to allow random mutagenesis of the two-component lantibiotic, lacticin 3147. One of these plasmids contains a randomly mutated version of the two structural genes, ltnA1 and ltnA2, and the associated promoter, Pbac, while the other encodes the remainder of the proteins required for the biosynthesis of, and immunity to, lacticin 3147. To test this system, a bank of approximately 1,500 mutant strains was generated and screened to identify mutations that have a detrimental impact on the bioactivity of lacticin 3147. This strategy established/confirmed the importance of specific residues in the structural peptides and their associated leaders and revealed that a number of alterations which mapped to the -10 or -35 regions of Pbac abolished promoter activity.  相似文献   

11.
Transconjugant lactococcal starters which produce both lantibiotics lacticin 3147 and lacticin 481 were generated via conjugation of large bacteriocin-encoding plasmids. A representative of one of the resultant strains proved more effective at killing Lactobacillus fermentum and inhibiting the growth of Listeria monocytogenes LO28H than either of the single bacteriocin-producing parental strains, demonstrating the potential of these transconjugants as protection cultures for food safety applications.  相似文献   

12.
Lacticin 3147 is a two-peptide lantibiotic produced by Lactococcus lactis in which both peptides, LtnA1 and LtnA2, interact synergistically to produce antibiotic activities in the nanomolar concentration range; the individual peptides possess marginal (LtnA1) or no activity (LtnA2). We analysed the molecular basis for the synergism and found the cell wall precursor lipid II to play a crucial role as a target molecule. Tryptophan fluorescence measurements identified LtnA1, which is structurally similar to the lantibiotic mersacidin, as the lipid II binding component. However, LtnA1 on its own was not able to substantially inhibit cell wall biosynthesis in vitro; for full inhibition, LtnA2 was necessary. Both peptides together caused rapid K(+) leakage from intact cells; in model membranes supplemented with lipid II, the formation of defined pores with a diameter of 0.6 nm was observed. We propose a mode of action model in which LtnA1 first interacts specifically with lipid II in the outer leaflet of the bacterial cytoplasmic membrane. The resulting lipid II:LtnA1 complex is then able to recruit LtnA2 which leads to a high-affinity, three-component complex and subsequently inhibition of cell wall biosynthesis combined with pore formation.  相似文献   

13.
Bacteriocinogenic strains, Lactococcus lactis subsp. lactis DPC 3147 and L. lactis DPC 496, producing lacticin 3147 and nisin, respectively, were immobilized in double-layered calcium alginate beads. These beads were inoculated into MRS broth at a ratio of 1:4 and continuously fermented for 180 h. Free cells were used to compare the effect of immobilization on bacteriocin production. After equilibrium was reached, a flow rate of 580 ml h(-1) was used in the immobilized cell (IC), and 240 ml h(-1) in free-cell (FC) bioreactors. Outgrowth from beads was observed after 18 h. Bacteriocin production peaked at 5120 AU ml(-1) in both IC and FC bioreactors. However, FC production declined after 80 h to 160 AU ml(-1) at the end of the fermentation. Results of this study indicate that immobilization offers the possibility of a more stable and long-term means of producing lacticin 3147 in laboratory media than with free cells.  相似文献   

14.
The lantibiotic lacticin 3147 consists of two ribosomally synthesized and post‐translationally modified antimicrobial peptides, Ltnα and Ltnβ, which act synergistically against a wide range of Gram‐positive microorganisms. We performed saturation mutagenesis of specific residues of Ltnα to determine their functional importance. The results establish that Ltnα is more tolerant to change than previously suggested by alanine scanning mutagenesis. One substitution, LtnαH23S, was identified which improved the specific activity of lacticin 3147 against one pathogenic strain, Staphylococcus aureus NCDO1499. This represents the first occasion upon which the activity of a two peptide lantibiotic has been enhanced through bioengineering.  相似文献   

15.
16.
The component peptides of lacticin 3147 were degraded by α-chymotrypsin in vitro with a resultant loss of antimicrobial activity. Activity was also lost in ileum digesta. Following oral ingestion, neither of the lacticin 3147 peptides was detected in the gastric, jejunum, or ileum digesta of pigs, and no lacticin 3147 activity was found in the feces. These observations suggest that lacticin 3147 ingestion is unlikely to have adverse effects, since it is probably inactivated during intestinal transit.  相似文献   

17.
In lantibiotic lacticin 481 biosynthesis, LctT cleaves the precursor peptide and exports mature lantibiotic. Matrix-assisted laser desorption ionization-time of flight mass spectrometry revealed that a truncated form of lacticin 481 is produced in the absence of LctT or after cleavage site inactivation. Production of truncated lacticin 481 is 4-fold less efficient, and its specific activity is about 10-fold lower.  相似文献   

18.
The use of hydrostatic pressure and lacticin 3147 treatments were evaluated in milk and whey with a view to combining both treatments for improving the quality of minimally processed dairy foods. The system was evaluated using two foodborne pathogens: Staphylococcus aureus ATCC6538 and Listeria innocua DPC1770. Trials against Staph. aureus ATCC6538 were performed using concentrated lacticin 3147 prepared from culture supernatant. The results demonstrated a more than additive effect when both treatments were used in combination. For example, the combination of 250 MPa (2.2 log reduction) and lacticin 3147 (1 log reduction) resulted in more than 6 logs of kill. Similar results were obtained when a foodgrade powdered form of lacticin 3147 (developed from a spray dried fermentatation of reconstituted demineralized whey powder) was evaluated for the inactivation of L. innocua DPC1770. Furthermore, it was observed that treatment of lacticin 3147 preparations with pressures greater than 400 MPa yielded an increase in bacteriocin activity (equivalent to a doubling of activity). These results indicate that a combination of high pressure and lacticin 3147 may be suitable for improving the quality of minimally processed foods at lower hydrostatic pressure levels.  相似文献   

19.
Lacticin 3147 is a broad-spectrum, two-component, lanthionine-containing bacteriocin produced by Lactococcus lactis DPC3147 which has widespread food and biomedical applications as a natural antimicrobial. Other two-component lantibiotics described to date include cytolysin and staphylococcin C55. Interestingly, cytolysin, produced by Enterococcus faecalis, has an associated haemolytic activity. The objective of this study was to compare the biological activity of lacticin 3147 with cytolysin. The lacticin 3147-encoding determinants were heterologously expressed in Ent. faecalis FA2-2, a plasmid-free strain, to generate Ent. faecalis pOM02, thereby facilitating a direct comparison with Ent. faecalis FA2-2.pAD1, a cytolysin producer. Both heterologously expressed lacticin 3147 and cytolysin exhibited a broad spectrum of activity against bacterial targets. Furthermore, enterococci expressing active lacticin 3147 did not exhibit a haemolytic activity against equine blood cells. The results thus indicate that the lacticin 3147 biosynthetic machinery can be heterologously expressed in an enterococcal background resulting in the production of the bacteriocin with no detectable haemolytic activity.  相似文献   

20.
The efficacy of using a lacticin 3147-producing starter as a protective culture to improve the safety of cottage cheese was investigated. This involved the manufacture of cottage cheese using Lactococcus lactis DPC4268 (control) and L. lactis DPC4275, a bacteriocin-producing transconjugant strain derived from DPC4268. A number of Listeria monocytogenes strains, including a number of industrial isolates, were assayed for their sensitivity to lacticin 3147. These strains varied considerably with respect to their sensitivity to the bacteriocin. One of the more tolerant strains, Scott A, was used in the cottage cheese study; the cheese was subsequently inoculated with approximately 10(4) L. monocytogenes Scott A g-1. The bacteriocin concentration in the curd was measured at 2560 AU ml-1, and bacteriocin activity could be detected throughout the 1 week storage period. In cottage cheese samples held at 4 degrees C, there was at least a 99.9% reduction in the numbers of L. monocytogenes Scott A in the bacteriocin-containing cheese within 5 d, whereas in the control cheeses, numbers remained essentially unchanged. At higher storage temperatures, the kill rate was more rapid. These results demonstrate the effectiveness of lacticin 3147 as an inhibitor of L. monocytogenes in a food system where post-manufacture contamination by this organism could be problematic.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号