首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
2.
Factor H (FH) is a potent suppressor of the alternative pathway of C in plasma and when bound to sialic acid- or glycosaminoglycan-rich surfaces. Of the three interaction sites on FH for C3b, one interacts with the C3d part of C3b. In this study, we generated recombinant constructs of FH and FH-related proteins (FHR) to define the sites required for binding to C3d. In FH, the C3d-binding site was localized by surface plasmon resonance analysis to the most C-terminal short consensus repeat domain (SCR) 20. To identify amino acids of FH involved in binding to C3d and heparin, we compared the sequences of FH and FHRs and constructed a homology-based molecular model of SCR19-20 of FH. Subsequently, we created an SCR15-20 mutant with substitutions in five amino acids that were predicted to be involved in the binding interactions. These mutations reduced binding of the SCR15-20 construct to both C3b/C3d and heparin. Binding of the wild-type SCR15-20, but not the residual binding of the mutated SCR15-20, to C3d was inhibited by heparin. This indicates that the heparin- and C3d-binding sites are overlapping. Our results suggest that a region in the most C-terminal domain of FH is involved in target recognition by binding to C3b and surface polyanions. Mutations in this region, as recently reported in patients with familial hemolytic uremic syndrome, may lead to indiscriminatory C attack against self cells.  相似文献   

3.
Factor H-related protein 5 (FHR-5) is a recently discovered member of the factor H (fH)-related protein family. FHR proteins are structurally similar to the complement regulator fH, but their biological functions remain poorly defined. FHR-5 is synthesized in the liver and consists of 9 short consensus repeats (SCRs), which display various degrees of homology to those of fH and the other FHR proteins. FHR-5 colocalizes with complement deposits in vivo and binds C3b in vitro, suggesting a role in complement regulation or localization. The current study examined whether rFHR-5 exhibits properties similar to those of fH, including heparin binding, CRP binding, cofactor activity for the factor I-mediated degradation of C3b and decay acceleration of the C3 convertase. rFHR-5 bound heparin-BSA and heparin-agarose and a defined series of truncations expressed in Pichia pastoris localized the heparin-binding region to within SCRs 5-7. rFHR-5 bound CRP, and this binding was also localized to SCRs 5-7. FHR-5 inhibited alternative pathway C3 convertase activity in a fluid phase assay; however, dissociation of the convertase was not observed in a solid phase assay. rFHR-5 displayed factor I-dependent cofactor activity for C3b cleavage, although it was apparently less effective than fH. In addition, we demonstrate association of FHR-5 with high density lipid lipoprotein complexes in human plasma. These results demonstrate that FHR-5 shares properties of heparin and CRP binding and lipoprotein association with one or more of the other FHRs but is unique among this family of proteins in possessing independent complement-regulatory activity.  相似文献   

4.
Vaccinia virus has two forms of infectious virions: the intracellular mature virus and the extracellular enveloped virus (EEV). EEV is critical for cell-to-cell and long-range spread of the virus. The B5R open reading frame (ORF) encodes a membrane protein that is essential for EEV formation. Deletion of the B5R ORF results in a dramatic reduction of EEV, and as a consequence, the virus produces small plaques in vitro and is highly attenuated in vivo. The extracellular portion of B5R is composed mainly of four domains that are similar to the short consensus repeats (SCRs) present in complement regulatory proteins. To determine the contribution of these putative SCR domains to EEV formation, we constructed recombinant vaccinia viruses that replaced the wild-type B5R gene with a mutated gene encoding a B5R protein lacking the SCRs. The resulting recombinant viruses produced large plaques, indicating efficient cell-to-cell spread in vitro, and gradient centrifugation of supernatants from infected cells confirmed that EEV was formed. In contrast, phalloidin staining of infected cells showed that the virus lacking the SCR domains was deficient in the induction of thick actin bundles. Thus, the highly conserved SCR domains present in the extracellular portion of the B5R protein are dispensable for EEV formation. This indicates that the B5R protein is a key viral protein with multiple functions in the process of virus envelopment and release. In addition, given the similarity of the extracellular domain to complement control proteins, the B5R protein may be involved in viral evasion from host immune responses.  相似文献   

5.
Adherence of group A streptococcus (GAS) to keratinocytes is mediated by an interaction between human CD46 (membrane cofactor protein) with streptococcal cell surface M protein. CD46 belongs to a family of proteins that contain structurally related short consensus repeat (SCR) domains and regulate the activation of the complement components C3b and/or C4b. CD46 possesses four SCR domains and the aim of this study was to characterize their interaction with M protein. Following confirmation of the M6 protein-dependent interaction between GAS and human keratinocytes, we demonstrated that M6 protein binds soluble recombinant CD46 protein and to a CD46 construct containing only SCRs 3 and 4. M6 protein did not bind to soluble recombinant CD46 chimeric proteins that had the third and/or fourth SCR domains replaced with the corresponding domains from another complement regulator, CD55 (decay-accelerating factor). Homology-based molecular modeling of CD46 SCRs 3 and 4 revealed a cluster of positively charged residues between the interface of these SCR domains similar to the verified M protein binding sites on the plasma complement regulators factor H and C4b-binding protein. The presence of excess M6 protein did not inhibit the cofactor activity of CD46 and the presence of excess C3b did not inhibit the ability of CD46 to bind M6 protein by ELISA. In conclusion, 1) adherence of M6 GAS to keratinocytes is M protein dependent and 2) a major M protein binding site is located within SCRs 3 and 4, probably at the interface of these two domains, at a site distinct from the C3b-binding and cofactor site of CD46.  相似文献   

6.
The major human complement regulator in blood, complement factor H (FH), has several closely related proteins, called FH-related (FHR) proteins. As all FHRs lack relevant complement regulatory activity, their physiological role is not well understood. FHR protein 3 (FHR-3) has been suggested to compete with FH for binding to Neisseria meningitidis, thereby affecting complement-mediated clearance. Clearly, the in vivo outcome of such competition greatly depends on the FH and FHR-3 concentrations. While FH levels have been established, accurate FHR-3 levels were never unequivocally reported to date. Moreover, CFHR3 gene copy numbers commonly vary, which may impact the FHR-3 concentration. Hence, we generated five anti-FHR-3 mAbs to specifically measure FHR-3 in human healthy donors of which we determined the gene copy number variation at the CFH/CFHR locus. Finally, we examined the acute-phase response characteristics of FHR-3 in a small sepsis cohort. We determined FHR-3 levels to have a mean of 19 nM and that under normal conditions the copy number of CFHR3 correlates to a very large extent with the FHR-3 serum levels. On average, FHR-3 was 132-fold lower compared to the FH concentration in the same serum samples and FHR-3 did not behave as a major acute phase response protein.  相似文献   

7.
The Fawn-Hooded rat (FHR) is a genetic strain that has been extensively studied as a model of primary pulmonary hypertension in adult rats. Based on our recent observations that alveolar number and pulmonary arterial density are reduced in FHRs raised at Denver's altitude, we hypothesized that early abnormalities in pulmonary vascular development contribute to the progression of pulmonary hypertension in the FHR. We found that endothelial nitric oxide synthase (eNOS) protein content was lower in the lungs of fetal, 1- and 7-day-old, 3-week-old, and adult FHRs compared with that in the normal Sprague-Dawley (SDR) and Fischer rat strains, all raised at Denver's altitude. In contrast, lung expression of the endothelial proteins kinase insert domain-containing receptor/fetal liver kinase-1 (KDR/Flk-1) and platelet endothelial cell adhesion molecule-1 (CD31) was not different between strains. Barium arteriograms showed that pulmonary arterial density was reduced in 3-week-old FHRs compared with SDRs. Perinatal treatment of FHRs with mild hyperbaria to simulate sea-level alveolar PO(2) improved lung eNOS content and pulmonary vascular growth and reduced right ventricular hypertrophy. We conclude that the development of pulmonary hypertension in Denver-raised FHRs is characterized by reductions in lung eNOS expression and abnormal pulmonary vascular growth during the fetal, neonatal, and postnatal periods.  相似文献   

8.
The predicted amino acid sequence of human complement receptor 2 (CR2, CD21, C3d,g/Epstein-Barr virus receptor) and its genetic murine homologue are approximately 70% identical. The sequence of each consists of a linear array of 60-70 amino acid repeats designated short consensus repeats (SCRs). Although they share significant sequence identity, a major difference in the activities of these two proteins has been believed to be the ability of human, but not mouse, CR2 to mediate Epstein-Barr virus (EBV) infection of B lymphocytes. In order to formally address this question and to directly compare the activities of the CR2 protein of each species, we have expressed recombinant mouse CR2 (rMCR2) in a human K562 erythroleukemia cell line background. We have found that rMCR2 reacts with two previously described rat anti-MCR2 monoclonal antibodies (mAbs), 7G6 and 7E9, but not mAb 8C12, which recognizes only mouse complement receptor 1. rMCR2 rosettes with erythrocytes bearing mouse and human C3d,g and binds glutaraldehyde cross-linked human C3d,g with a similar Kd as human CR2 (HCR2). rMCR2 does not bind EBV. By using this observation and constructing chimeras bearing portions of MCR2 on a HCR2 background, we have been able to define unique sequences in HCR2 SCRs 1 and 2 important in the interaction with both mAb OKB7, which blocks EBV binding and infection, and with EBV. In addition, by using blocking peptides derived from HCR2 sequence, we have identified a second distinct region in SCR2 important in EBV binding. Therefore, within the first two SCRs of HCR2 are multiple distinct sites of interaction with EBV and with mAb OKB7.  相似文献   

9.
Murine C4b-binding protein (C4BP) is a regulatory molecule in the classical pathway of complement. C4BP is composed predominantly of short consensus repeats (SCRs) approximately 60 amino acids in length, which contain a framework of conserved residues. The SCRs are found in many complement molecules and a growing number of noncomplement molecules as well and are a major structural feature of some of these molecules. To characterize the structure of the murine C4BP gene, a cosmid library constructed from Balb/c liver DNA was screened. Several nearly identical, overlapping clones were identified; however, none of the clones, alone or in combination, covered the entire C4BP gene. One clone (D26) was chosen for detailed analysis and found to contain all but the leader region, the first SCR, and the first half of the second SCR. The SCRs three through six were each encoded by single exons. Only the latter half of the second SCR was present on the clone, and it was encoded by a single exon, demonstrating that murine C4BP has a split SCR at the genomic level. Structural mapping of this portion of the gene demonstrates that the region extending from the second half of the second SCR through the nonrepeat and untranslated region spans approximately 12 kb; however, genomic Southern blot analysis suggests that the gene is between 20 and 30 kb in length. Analysis of the 3' genomic sequence demonstrates that this region of the gene has homology with SV-40 late (class II) RNA sequences. These sequences may play a role in 3' cleavage of the precursor RNA prior to polyadenylation.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
Factor H (FH) is a regulatory cofactor for the protease factor I in the breakdown of C3b in the complement system of immune defence, and binds to heparin and other polyanionic substrates. FH is composed of 20 short consensus/complement repeat (SCR) domains, for which the overall arrangement in solution is unknown. As previous studies had shown that FH can form monomeric or dimeric structures, X-ray and neutron scattering was accordingly performed with FH in the concentration range between 0.7 and 14 mg ml(-1). The radius of gyration of FH was determined to be 11.1-11.3 nm by both methods, and the radii of gyration of the cross-section were 4.4 nm and 1.7 nm. The distance distribution function P(r) showed that the overall length of FH was 38 nm. The neutron data showed that FH was monomeric with a molecular mass of 165,000(+/-17,000) Da. Analytical ultracentrifugation data confirmed this, where sedimentation equilibrium curve fits gave a mean molecular mass of 155,000(+/-3,000) Da. Sedimentation velocity experiments using the g*(s) derivative method showed that FH was monodisperse and had a sedimentation coefficient of 5.3(+/-0.1) S. In order to construct a full model of FH for scattering curve and sedimentation coefficient fits, homology models were constructed for 17 of the 20 SCR domains using knowledge of the NMR structures for FH SCR-5, SCR-15 and SCR-16, and vaccinia coat protein SCR-3 and SCR-4. Molecular dynamics simulations were used to generate a large conformational library for each of the 19 SCR-SCR linker peptides. Peptides from these libraries were combined with the 20 SCR structures in order to generate stereochemically complete models for the FH structure. Using an automated constrained fit procedure, the analysis of 16,752 possible FH models showed that only those models in which the 20 SCR domains were bent back upon themselves were able to account for the scattering and sedimentation data. The best-fit models showed that FH had an overall length of 38 nm and is flexible. This length is significantly less than a predicted length of 73 nm if the 20 SCR structures had been arranged in an extended arrangement. This outcome is attributed to several long linker sequences. These bent-back domain structures may correspond to conformational flexibility in FH and enable the multiple FH binding sites for C3 and heparin to come into close proximity.  相似文献   

11.
Factor H (FH) is the predominant soluble inhibitor of the complement system. With a concentration of 200-800 microg/ml in human and rat plasma it acts as a cofactor for the soluble factor I (FI)-mediated cleavage of the component C3b to iC3b. Furthermore it competes with factor B for binding to C3b and C3(H2O) and promotes the dissociation of the C3bBb complex. FH is a monomer of about 155 kDa which comprises 20 short consensus repeats (SCR), each of which is composed of approximately 60 amino acid (aa) residues. Two functional fragments of FH comprising the SCR1-4 or SCR1-7 were generated using either the Baculovirus system or stably transfected human embryonal kidney cells, respectively. These fragments, as well as FH purified from rat serum, were first analyzed for their relative molecular weights (Mr) using non-reducing or reducing SDS-PAGE. The Mr of the FH variants differed by about 20% depending on the experimental conditions employed. Only the Mr of proteins separated under reducing conditions were in accordance with the MW calculated from the aa sequence. Analyses of the glycosylation patterns using PAS-staining showed a lack of staining of the recombinant variants (SCR1-4 and SCR1-7) in contrast to FH(SCR1-20) from serum. Using a complement hemolysis assay (CH50-assay) all three variants exhibited a molar complement inhibitory activity of FH(1-20)/FH(1-7)/FH(1-4) of about 3/1/1. These data support the postulated model of FH bearing three binding sites for its ligand C3b, from which one is located in the SCR1-4, whereas the other two are located in the SCR8-20.  相似文献   

12.
Two cDNA clones termed H36-1 and H36-2 were isolated from a human liver cDNA library. Clone H36-1 appears to represent the recently isolated human serum proteins h37 and h42, which are two differently glycosylated forms of a protein antigenically related to human complement factor H. The H36-1 deduced protein sequence is 327 amino acid long and possesses a leader sequence. The secreted part of the protein is comprised of five tandem repeating units, termed short consensus repeats (SCRs). SCR 1 and 2 display high homology to the corresponding region of the recently isolated murine factor H-related cDNA clone 13G1. In contrast, the 3'-end of the H36-1 clone shows sequence homology to the 3'-end of human complement factor H. The second clone, H36-2, is nearly identical to H36-1. Within 1148 base pairs, where the two clones overlap, their nucleotide sequences differed at nine positions. One nucleotide exchange in the sequence of H36-2 which was located within SCR 1 creats a stop codon (TAA). Consequently, the corresponding mRNA cannot code for a functional protein, suggesting that this clone is a transcribed pseudogene. These two clones represent new human members of the family of proteins structurally related to complement factor H.  相似文献   

13.
This study presents the binding of ovine factor H (fH) by various serotypes of Borrelia and simultaneously correlates their complement resistance to sheep serum. Affinity ligand binding assay was employed to study the binding of borrelial proteins to ovine recombinant fH and its truncated forms (short consensus repeat, SCR 7 and SCRs 19–20). From a repertoire of 17 borrelial strains, only two strains showed affinity to sheep fH. A ~28-kDa protein of Borrelia burgdorferi sensu stricto (B. burgdorferi s.s., strain SKT-2) bound full-length fH as well as SCRs 19–20. This fH-binding protein was further identified as complement regulator-acquiring surface protein of B. burgdorferi (BbCRASP-1) by MALDI-TOF analysis. Surprisingly, a ~26-kDa protein of Borrelia bissettii (DN127) showed affinity to full-length fH but not to SCR 7 and SCRs19–20. In complement sensitivity assay, both strains—SKT-2 and DN127—were resistant to normal sheep serum. Significant complement resistance of two Borrelia garinii strains (G117 and T25) was also observed; however, none of those strains was able to bind sheep fH. Our study underscores the need of further exploration of fH-mediated evasion of complement system by Borrelia in domestic animals.  相似文献   

14.
The vaccinia virus complement control protein (VCP) is secreted by infected cells and has been shown to inhibit complement activation through interactions with C3b/C4b. It contains four short consensus repeat (SCR) domains. It has been suggested that all four SCRs are required for VCP's activity. To elucidate which SCR domains are involved in abolishing complement-enhanced neutralization of vaccinia virus virions, we generated and characterized a panel of mouse monoclonal antibodies (MAbs) raised against VCP. Ten MAbs were isolated and all recognized VCP on Western blots under reducing conditions as well as native-bound VCP in a sandwich enzyme-linked immunosorbent assay. Three of the 10 MAbs (2E5, 3D1, and 3F11) inhibited VCP's abolition of complement-enhanced neutralization of vaccinia virus virions. These MAbs blocked the interaction of VCP with C3b/C4b. The seven remaining MAbs did not alter VCP function in the complement neutralization assay and recognized VCP bound to C3b/C4b. To understand MAb specificity and mode of interaction with VCP, we mapped the MAb binding regions on VCP. The seven nonblocking MAbs all bound to the first SCR of VCP. One of the blocking MAbs recognized SCR 2 while the other two recognized either SCR 4 or the junction between SCRs 3 and 4, indicating that structural elements involved in the interaction of VCP with C3b/C4b are located within SCR domains 2 and 3 and 4. These anti-VCP MAbs may have clinical significance as therapeutic inhibitors of VCP's complement control activity and may also offer a novel approach to managing vaccinia virus vaccine complications that occur from smallpox vaccination.  相似文献   

15.
The human complement Factor H–related 5 protein (FHR5) antagonizes the main circulating complement regulator Factor H, resulting in the deregulation of complement activation. FHR5 normally contains nine short complement regulator (SCR) domains, but a FHR5 mutant has been identified with a duplicated N-terminal SCR-1/2 domain pair that causes CFHR5 nephropathy. To understand how this duplication causes disease, we characterized the solution structure of native FHR5 by analytical ultracentrifugation and small-angle X-ray scattering. Sedimentation velocity and X-ray scattering indicated that FHR5 was dimeric, with a radius of gyration (Rg) of 5.5 ± 0.2 nm and a maximum protein length of 20 nm for its 18 domains. This result indicated that FHR5 was even more compact than the main regulator Factor H, which showed an overall length of 26–29 nm for its 20 SCR domains. Atomistic modeling for FHR5 generated a library of 250,000 physically realistic trial arrangements of SCR domains for scattering curve fits. Only compact domain structures in this library fit well to the scattering data, and these structures readily accommodated the extra SCR-1/2 domain pair present in CFHR5 nephropathy. This model indicated that mutant FHR5 can form oligomers that possess additional binding sites for C3b in FHR5. We conclude that the deregulation of complement regulation by the FHR5 mutant can be rationalized by the enhanced binding of FHR5 oligomers to C3b deposited on host cell surfaces. Our FHR5 structures thus explained key features of the mechanism and pathology of CFHR5 nephropathy.  相似文献   

16.
The extracellular domain of CR2, the Epstein-Barr virus (EBV)/C3d receptor of B lymphocytes, contains 15 or 16 tandemly arranged short consensus repeat elements (SCR). Recombinant CR2 proteins containing SCR 1 and 2 fused to Staphylococcus aureus protein A (PA-CR2) and to murine complement factor H SCR 20 (CR2FH) were expressed in Escherichia coli and in insect cells, respectively. These recombinant CR2 molecules retained functional activity as indicated by their ability to bind to C3dg in an enzyme-linked immunosorbent assay and to inhibit EBV gp350/220 binding to B cells. PA-CR2 and CR2FH were as efficient in blocking EBV gp350/220 binding as the full-length CR2 extracellular domain, indicating that the first two SCR of CR2 contain the majority of the ligand binding activity of the receptor. PA-CR2 and CR2FH inhibited EBV-induced B-cell proliferation in vitro and blocked the development of EBV-induced lymphoproliferative disease in severe combined immunodeficient mice reconstituted with human lymphocytes. These studies indicate that soluble forms of truncated CR2 proteins may have potential therapeutic value in the treatment of EBV-induced lymphoproliferative disorders in humans that involve viral replication.  相似文献   

17.
Human C4b-binding protein (C4bp) facilitates the factor I-mediated proteolytic cleavage of the active forms of complement effectors C3b and C4b into their inactive forms. C4bp comprises a disulfide-linked heptamer of alpha-chains with complement (C) regulatory activity and a beta-chain. Each alpha-chain contains 8 short consensus repeat (SCR) domains. Using SCR-deletion mutants of recombinant multimeric C4bp, we identified the domains responsible for the C3b/C4b-binding and C3b/C4b-inactivating cofactor activity. The C4bp mutant with deletion of SCR2 lost the C4b-binding ability, as judged on C3b/C4b-Sepharose binding assaying and ELISA. In contrast, the essential domains for C3b-binding extended more to the C-terminus, exceeding SCR4. Using fluid phase cofactor assaying and deletion mutants of C4bp, SCR2 and 3 were found to be indispensable for C4b cleavage by factor I, and SCR1 contributed to full expression of the factor I-mediated C4b cleaving activity. On the other hand, SCR1, 2, 3, 4, and 5 participated in the factor I-cofactor activity for C3b cleavage, and SCR2, 3, and 4 were absolutely required for C3b inactivation. Thus, different sets of SCRs participate in C3b and C4b inactivation, and the domain repertoire supporting C3b cofactor activity is broader than that supporting C4b inactivation by C4bp and factor I. Furthermore, the domains participating in C3b/C4b binding are not always identical to those responsible for cofactor activity. The necessity of the wide range of SCRs in C3b inactivation compared to C4b inactivation by C4bp and factor I may reflect the physiological properties of C4bp, which is mainly directed to C4b rather than C3b.  相似文献   

18.
Factor H (fH) restricts activation of the alternative pathway of complement at the level of C3, both in the fluid phase and on self-structures, but allows the activation to proceed on foreign structures. To study the interactions between fH and C3b we used surface plasmon resonance analysis (Biacore(R)) and eight recombinantly expressed fH constructs containing fragments of the 20 short consensus repeat domains (SCRs) of fH. We analyzed the binding of these constructs to C3b and its cleavage products C3c and C3d. Three binding sites for C3b were found on fH. Site 1 was localized to the five amino-terminal SCRs (SCR1-5), and its reciprocal binding site on C3b was found to be lost upon the cleavage of C3b to C3c and C3d. Site 2 on fH was localized by exclusion probably within or near SCRs 12-14 (fragment SCR8-20 bound to C3b, C3c, and C3d; SCR8-11 did not bind to C3b at all; and SCR15-20 bound only to the C3d part of C3b). Site 3 on fH for C3b was localized to the carboxyl-terminal SCRs 19-20, and its reciprocal binding site was mapped to the C3d part of C3b. In conclusion, we confirmed and mapped three binding sites on fH for C3b and demonstrated that the three binding sites on fH interact with distinct sites on C3b. Multiple reciprocal interactions between C3b and fH can provide a basis for the different reactivity of the alternative pathway with different target structures.  相似文献   

19.
Characterization of segmental flexibility is needed to understand the biological mechanisms of the very large category of functionally diverse proteins, exemplified by the regulators of complement activation, that consist of numerous compact modules or domains linked by short, potentially flexible, sequences of amino acid residues. The use of NMR-derived residual dipolar couplings (RDCs), in magnetically aligned media, to evaluate interdomain motion is established but only for two-domain proteins. We focused on the three N-terminal domains (called CCPs or SCRs) of the important complement regulator, human factor H (i.e., FH1-3). These domains cooperate to facilitate cleavage of the key complement activation-specific protein fragment, C3b, forming iC3b that no longer participates in the complement cascade. We refined a three-dimensional solution structure of recombinant FH1-3 based on nuclear Overhauser effects and RDCs. We then employed a rudimentary series of RDC data sets, collected in media containing magnetically aligned bicelles (disklike particles formed from phospholipids) under three different conditions, to estimate interdomain motions. This circumvents a requirement of previous approaches for technically difficult collection of five independent RDC data sets. More than 80% of conformers of this predominantly extended three-domain molecule exhibit flexions of <40°. Such segmental flexibility (together with the local dynamics of the hypervariable loop within domain 3) could facilitate recognition of C3b via initial anchoring and eventual reorganization of modules to the conformation captured in the previously solved crystal structure of a C3b:FH1-4 complex.  相似文献   

20.
The pH-independent fusion of membranes induced by measles virus (MV) requires, in addition to the fusion-competent protein F, hemagglutinin (H), and on the target membrane, the virus receptor CD46. We constructed hybrid receptors composed of different numbers and combinations of the four CD46 short consensus repeat (SCR) domains, followed by immunoglobulin-like domains of another cell surface protein, CD4. Hybrid proteins containing SCRs I and II bound MV particles and conferred fusion competence to rodent cells. SCRs III and/or IV strengthened MV binding. Increasing the distance between the MV binding site and the transmembrane domain enhanced virus binding but reduced fusion efficiency. A hybrid protein predicted to be about 120 Angstroms (12 nm) longer than the standard receptor lost fusion support function and was dominant negative over a functional receptor. These data indicate that receptor protein length influences virus binding and determines fusion efficiency.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号