首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The entomopathogenic bacteria Xenorhabdus nematophila and Photorhabdus temperata subsp. temperata suppress insect immune responses by inhibiting the catalytic activity of phospholipase A(2) (PLA(2)), which results in preventing biosynthesis of immune-mediating eicosanoids. This study identified PLA(2) inhibitors derived from culture broths of these two bacteria. Both X. nematophila and P. temperata subsp. temperata culture broths possessed significant PLA(2)-inhibitory activities. Fractionation of these bacterial metabolites in the culture broths using organic solvent and subsequent chromatography purified seven potent PLA(2) inhibitors, three of which (benzylideneacetone [BZA], proline-tyrosine [PY], and acetylated phenylalanine-glycine-valine [FGV]) were reported in a previous study. Four other compounds (indole, oxindole, cis-cyclo-PY, and p-hydroxyphenyl propionic acid) were identified and shown to significantly inhibit PLA(2). X. nematophila culture broth contained these seven compounds, while P. temperata subsp. temperata culture broth contained three compounds (BZA, acetylated FGV, and cis-cyclo-PY). BZA was detected in the largest amount among these PLA(2) compounds in both bacterial culture broths. All seven bacterial metabolites also showed significant inhibitory activities against immune responses, such as phenoloxidase activity and hemocytic nodulation; BZA was the most potent. Finally, this study characterized these seven compounds for their insecticidal activities against the diamondback moth, Plutella xylostella. Even though these compounds showed relatively low toxicities to larvae, they significantly enhanced the pathogenicity of Bacillus thuringiensis. This study reports bacterial-origin PLA(2) inhibitors, which would be applicable for developing novel insecticides.  相似文献   

2.
Benzylideneacetone (BZA) is a metabolite of gram-negative entomopathogenic bacterium Xenorhabdus nematophila, and it acts as an enzyme inhibitor against phospholipase A2 (PLA2). PLA2 catalyzes a committed biosynthetic step of eicosanoids, which mediate insect immune reactions to infection by microbial pathogens. This study tested a hypothesis that a putative immunosuppressive activity of BZA may enhance virulence of Bacillus thuringiensis against the fifth instars of Spodoptera exigua (Hübner) (Lepidoptera: Noctuidae). In in vitro conditions, BZA significantly inhibited hemocyte microaggregation induced by B. thuringiensis and impaired hemocyte-spreading behavior of S. exigua in a dose-dependent manner. Oral administration of BZA gave similar immunosuppressive effect on the hemocytes of the fifth instars. Although BZA itself did not possess any insecticidal activity on oral administration, when BZA was treated in a mixture with a low dose of B. thuringiensis spp. aizawai to fifth instars, the bacterial virulence was significantly enhanced. BZA also enhanced virulence of B. thuringiensis spp. kurstaki, which alone was of limited effectiveness against S. exigua. This study suggests that an immunosuppression by BZA is positively linked to potentiation of B. thuringiensis.  相似文献   

3.
4.
Eicosanoids mediate insect immune responses, especially against bacterial infection. Phospholipase A2 (PLA2) catalyzes the committed step of the eicosanoid biosynthesis pathway. Three PLA2 inhibitors have been identified from metabolites of an entomopathogenic bacterium, Xenorhabdus nematophila: benzylideneacetone (BZA), Pro-Tyr (PY), and acetylated Phe-Gly-Val (Ac-FGV). Interestingly, they share benzenepropane as a core chemical structure. We analyzed the functional significance of the core structure using structural derivatives. Removing a phenyl ring from PY resulted in significant loss of the PLA2 inhibitory activity, as seen in a Pro-Ala derivative. Though the p-hydroxyl group was not critical in PY as seen in Pro-Phe derivative, its addition to BZA resulted in significant loss of inhibitory activity. Some alterations of structures other than the core structure increased PLA2-inhibitory activity in some derivatives, including Ala-Tyr (AY) and Phe-Gly-Val (FGV) derivatives. Using these selected derivatives, we further analyzed synergistic effects on pathogenicity of Bacillus thuringiensis (Bt) against the second instar larvae of Plutella xylostella. These two derivatives significantly enhanced the Bt pathogenicity. This study introduces two novel compounds that inhibit PLA2 and suggests their application in combination with Bt to control P. xylostella.  相似文献   

5.
6.
Phagocytosis is a hemocytic behavior against bacterial infection. An entomopathogenic bacterium, Xenorhabdus nematophila, inhibits immune responses of target insects and causes hemolymph septicemia. This study analyzed how X. nematophila could inhibit phagocytosis to increase its pathogenicity. Granular cells and plasmatocytes were the main phagocytic hemocytes of Spodoptera exigua determined by observing fluorescence-labeled bacteria in the cytosol. X. nematophila significantly inhibited phagocytosis of both hemocytes, while heat-killed X. nematophila lost its inhibitory potency. However, co-injection of X. nematophila with arachidonic acid did not show any significant inhibition of hemocyte phagocytosis. In fact, hemocytes of S. exigua infected with X. nematophila showed significant reduction in phospholipase A(2) (PLA(2)) activity. Dexamethasone, a specific PLA(2) inhibitor, significantly inhibited phagocytosis of both cell types. However, the inhibitory effect of dexamethasone was recovered by addition of arachidonic acid. Incubation of hemocytes with benzylideneacetone, a metabolite of X. nematophila, inhibited phagocytosis in a dose-dependent manner. These results suggest that X. nematophila produces and secretes PLA(2) inhibitor(s), which in turn inhibit the phagocytic response of hemocytes.  相似文献   

7.
《Journal of Asia》2020,23(2):449-457
Xenorhabdus and Photorhabdus are entomopathogenic bacteria that can induce immunosuppression against target insects by suppressing eicosanoid biosynthesis, leading to fatal septicemia. These bacteria can synthesize and release secondary metabolites such as benzylideneacetone (BZA) and other phenylethylamide compounds that can inhibit phospholipase A2 (PLA2) and shut down eicosanoid biosynthesis. However, insecticidal activities of these bacterial metabolites remain unclear. Thus, the objective of this study was to assess cytotoxicities of BZA and seven other bacterial metabolites to insect cells. These eight bacterial metabolites exhibited significant cytotoxicities against an insect cell line Sf9 at micromolar range. Especially, BZA and cPY were highly potent at low micromolar range. When these eight bacterial metabolites were injected to hemocoels of Spodoptera exigua larvae, they significantly decreased total count of hemocytes. In Sf9 cell line and hemocytes, these bacterial metabolites induced cell membrane blebbings, apoptotic vesicles, and genomic DNA fragmentation. Terminal deoxyribonucleotidyl transferase nick end translation assay showed that these bacterial metabolites caused significant DNA breakages in cells in a dose-dependent manner. However, a pan caspase inhibitor treatment significantly rescued the cell death induced by these bacterial metabolites. Cytotoxicities of these bacterial metabolites were highly correlated with their insecticidal activities. These results indicate that the insecticidal activities of the bacterial metabolites may be induced by their apoptotic activities against hemocytes and other insect cells. Taken together, these results suggest that phenylethylamide compounds might have potential as novel insecticides.  相似文献   

8.
9.
在对小菜蛾Plutella xylostella幼虫血淋巴酚氧化酶原的存在部位及免疫激活作用特点研究的基础上,比较了根虫瘟霉Zoophthora radicans不同菌株对酚氧化酶原激活系统的免疫激化及防御作用的差异。研究发现, 酚氧化酶原主要位于小菜蛾幼虫血细胞膜及血细胞裂解液中,极少存在于血浆中。在免疫激活剂昆布多糖存在下,分别测得小菜蛾幼虫血细胞碎片、血细胞裂解液和血浆的酚氧化酶活性为26.80 U,16.68 U和2.53 U。酚氧化酶原显著地受血浆和昆布多糖同时存在的激活,但两者单独存在时对酚氧化酶原的激活作用较弱。根虫瘟霉菌丝裂解液对酚氧化酶原有不同程度的激活作用,其激活作用在有血浆存在时显著增强,其酚氧化酶活性可提高2.9~3.4倍。各菌株间对酚氧化酶原的激活作用则以ARSEF1342菌株最强,ARSEF2699和F99101菌株次之,ARSEF1100菌株最弱。被激活的酚氧化酶可粘附于根虫瘟霉菌丝上并能产生黑化反应,各菌株间酚氧化酶粘附于ARSEF1342菌株的能力最强,粘附于ARSEF2699和F99101菌株的次之,粘附于ARSEF1100菌株的最弱。但酚氧化酶粘附于昆布多糖的能力显著强于各虫霉菌株,表明各菌株在一定程度上能逃避寄主的免疫识别;各菌株激活酚氧化酶原及酚氧化酶粘附于菌株强弱,与对小菜蛾毒力呈负相关性,表明高毒力菌株具有易逃避寄主免疫识别的趋向。  相似文献   

10.
Xenorhabdus nematophila is the symbiotic bacterium of an entomopathogenic nematode, Steinernema carpocapsae. When the nematode enters a target insect, the symbiotic bacteria are released into the hemocoel. After inducing host immunosuppression, the bacteria multiply in the hemocoel and cause fatal septicemia. For optimal field application to control insect pests, culturing mass numbers of the nematodes would be costly. In this study, Bacillus thuringiensis (Bt) was chosen as an alternative natural vector, which would be relatively economical for field application. Bt infection of gut epithelium would form a bacterial passage between the gut lumen and hemocoel, which facilitates the orally fed X. nematophila to infect the hemocoel. Diamondback moth, Plutella xylostella (L.) (Lepidoptera: Plutellidae), used in this study was tolerant to Bt because only 10% mortality was noted in response to 2 times higher concentration than recommended for commercial B. t. kurstaki, although this species was susceptible only during early instars. The orally fed X. nematophila caused significant mortality to early instars of P. xylostella, but not late instars. When both X. nematophila and Bt were fed to late instars of P. xylostella, they showed significantly enhanced mortality, in which X. nematophila cells were recovered from the hemocoel of the treated P. xylostella. However, when only X. nematophila was fed, no cells were recovered from the hemolymph. This study suggests that X. nematophila can be applied to control P. xylostella in a mixture with Bt in the field without its nematode host.  相似文献   

11.
An entomopathogenic fungus, Beauveria bassiana, had significant insecticidal activity against the beet armyworm, Spodoptera exigua. However, it took almost one week to cause significant mortality. This study used a mixture treatment with an immunosuppressant to enhance the fungal pathogenicity. A bacterial metabolite, benzylideneacetone (BZA), had a significant synergistic effect on the fungal pathogenicity against S. exigua, although it had little insecticidal activity by itself. The mixture treatment shortened median lethal time of B. bassiana by approximately 2 days. The synergistic activity of BZA on the pathogenicity of B. bassiana was induced by its immunosuppressive effects on both cellular and humoral antifungal responses of S. exigua. In response to B. bassiana, S. exigua larvae can form hemocytic nodules. Nodules were significantly suppressed by BZA treatment. Moreover, BZA inhibited expression of some antimicrobial peptide genes of S. exigua in response to fungal challenge. The immunosuppressive condition induced by BZA allowed B. bassiana to easily colonize and multiply in the hemocoel of treated larvae, which resulted in significant enhancement of the pathogenicity of B. bassiana.  相似文献   

12.
The entomopathogenic bacterium, Xenorhabdus nematophila, induces immunodepression in target insects and finally leads to lethal septicemia of the infected hosts. A hypothesis has been raised that the bacteria inhibit eicosanoid-biosynthesis pathway to interrupt immune signaling of the infected hosts. Here, we show direct evidence that X. nematophila inhibits the activity of phospholipase A2 (PLA2), the initial step in the eicosanoid-biosynthesis pathway. Inhibition of PLA2 was dependent on both incubation time with X. nematophila and the bacterial concentration in in vitro PLA2 preparations of Manduca sexta hemocytes. While living bacteria inhibited PLA2 activity, heat-killed X. nematophila rather increased PLA2 activity. X. nematophila secreted PLA2 inhibitor(s) which were detected in the organic, but not aqueous, extract of the bacterial culture medium. The PLA2 inhibitory activity of the organic extract was lost after heat treatment. These results clearly indicate that X. nematophila inhibits PLA2 activity, and thereby inhibits eicosanoid biosynthesis which leads to immunodepression of the infected hosts.  相似文献   

13.
Photorhabdus and Xenorhabdus are two genera of entomopathogenic bacteria having a mutualistic relationship with their respective nematode hosts, Heterorhabditis and Steinernema. One of the pathogenic mechanisms of these bacteria includes host immunodepression, which leads to lethal septicemia. It has been known that X. nematophila inhibits phospholipase A2 (PLA2) to induce host immunodepression. Here, we tested the hypothesis of PLA2 inhibition using another bacterial species involved in other genera. P. temperata subsp. temperata is the intestinal symbiont of an entomopathogenic nematode, H. megidis. The bacteria caused potent pathogenicity in a dose-dependent manner against the fifth instar larvae of a test target insect, Spodoptera exigua, as early as 24 h after the intra-hemocoelic injection. In response to the live bacterial injection, hemocyte nodulation (a cellular immune response) and prophenoloxidase (pPO) activation were inhibited, while the injection of heat-killed bacteria significantly induced both immune reactions. The immunodepression induced by the live bacteria was reversed by the addition of arachidonic acid, the catalytic product of phospholipase A2. In contrast, the addition of dexamethasone, a specific PLA2 inhibitor to the heat-killed bacterial treatment, inhibited both immune capacities. In addition to a previously known PLA2 inhibitory action of X. nematophila, the inhibition of P. temperata temperata on PLA2 suggests that bacteria symbiotic to entomopathogenic nematodes share a common pathogenic target to result in an immunodepressive state of the infected insects. To prove this generalized hypothesis, we used other bacterial species (X. bovienni, X. poinarii, and P. luminescens) involved in these two genera. All our experiments clearly showed that these other bacteria also share their inhibitory action against PLA2 to induce host immunodepression.  相似文献   

14.
The non-self cellular (hemocytic) responses of Galleria mellonella larvae, including the attachment to slides and the removal of the bacteria Xenorhabdus nematophila and Bacillus subtilis from the hemolymph, were affected by N-formyl peptides. Both N-formyl methionyl-leucyl-phenylalanine (fMLF) and the ester derivative decreased hemocyte adhesion in vitro, and both elevated hemocyte counts and suppressed the removal of both X. nematophila and B. subtilis from the hemolymph in vivo. The amide derivative and the antagonist tertiary-butoxy-carbonyl-methionyl-leucyl-phenylalanine (tBOC) increased hemocyte attachment to glass. The fMLF suppressed protein discharge from monolayers of granular cells with and without bacterial stimulation, while tBOC stimulated protein discharge. The peptide tBOC offset the effects of fMLF in vitro and in vivo. This is the first report implying the existence of formyl peptide receptors on insect hemocytes in which the compounds fMLF and tBOC inhibited and activated hemocyte activity, respectively.  相似文献   

15.
鬼臼毒素对小菜蛾的生物活性及对其几种代谢酶系的影响   总被引:1,自引:1,他引:0  
侯军  马志卿  冯俊涛  张兴 《昆虫学报》2007,50(9):895-899
为进一步揭示鬼臼毒素的杀虫活性及作用机理,本实验采用小叶碟添加法测定了鬼臼毒素对小菜蛾Plutella xylostella的生物活性及对其幼虫体内羧酸酯酶(CarE)、酸性磷酸酯酶(ACP)、碱性磷酸酯酶(AKP)、谷胱甘肽S-转移酶(GSTs)和细胞色素P450酶系活性的影响。结果表明:鬼臼毒素对小菜蛾具有较好的拒食、毒杀及生长发育抑制作用,其AFC50为0.4110 mg/mL(24 h)和0.2617 mg/mL(48 h),LC50为1.9061 mg/mL(72 h);0.125 mg/mL剂量下相对生长率比对照下降57.56%(24 h)和41.18%(48 h),化蛹率为43.33%,不能正常羽化。同时,鬼臼毒素对小菜蛾幼虫体内各代谢酶存在不同程度的影响:对羧酸酯酶表现为先激活后抑制的作用;对酸性磷酸酯酶表现先抑制后激活的作用; 对碱性磷酸酯酶活性具有明显的抑制作用,且随着处理时间的延长,抑制作用增强;对谷胱甘肽S-转移酶和细胞色素P450酶系表现出先激活后抑制的影响。  相似文献   

16.
The bacterium Xenorhabdus nematophila is an insect pathogen that produces several proteins that enable it to kill insects. Screening of a cosmid library constructed from X. nematophila strain A24 identified a gene that encoded a novel protein that was toxic to insects. The 42-kDa protein encoded by the toxin gene was expressed and purified from a recombinant system, and was shown to kill the larvae of insects such as Galleria mellonella and Helicoverpa armigera when injected at doses of around 30-40 ng/g larvae. Sequencing and bioinformatic analysis suggested that the toxin was a novel protein, and that it was likely to be part of a genomic island involved in pathogenicity. When the native bacteria were grown under laboratory conditions, a soluble form of the 42-kDa toxin was secreted only by bacteria in the phase II state. Preliminary histological analysis of larvae injected with recombinant protein suggested that the toxin primarily acted on the midgut of the insect. Finally, some of the common strategies used by the bacterial pathogens of insects, animals, and plants are discussed.  相似文献   

17.
18.
This study shows for the first time that efrapeptins secreted by Tolypocladium have antifeedant and growth inhibitory properties. In both choice and no-choice assays against Plutella xylostella and Phaedon cochleariae there were significant differences between consumption of treated and untreated leaf discs with DC 50 values (concentration resulting in a deterrency index 50%) of 25 and 69 ppm for P. xylostella and P. cochleariae, respectively. Reduced feeding resulted in significant weight loss of larvae of both species exposed for 24 h to efrapeptin-treated leaves. The effect of the toxin persisted even after the larvae were transferred to fresh, untreated leaves, reduced larval and pupal weights, retarded larval and pupal development and delayed adult emergence. The effects were more pronounced in Phaedon than Plutella. This study shows that efrapeptins have direct contact toxicity but appear to be more efficacious against insects contacting treated leaves. Toxicity in both topical and leaf dip assays was dose-related with larvae of P. xylostella being more susceptible to the insecticidal activity of efrapeptins than P. cochleariae.  相似文献   

19.
An entomopathogenic bacterium, Xenorhabdus nematophila, is known to have potent antibiotic activities to maintain monoxenic condition in its insect host for effective pathogenesis and ultimately for optimal development of its nematode symbiont, Steinernema carpocapsae. In this study we assess its antibacterial activity against plant-pathogenic bacteria and identify its unknown antibiotics. The bacterial culture broth had significant antibacterial activity that increased with development of the bacteria and reached its maximum at the stationary growth phase. The antibiotic activities were significant against five plant-pathogenic bacterial strains: Agrobacterium vitis, Pectobacterium carotovorum subsp. atrosepticum, P. carotovorum subsp. carotovorum, Pseudomonas syringae pv. tabaci, and Ralstonia solanacearum. The antibacterial factors were extracted with butanol and fractionated using column chromatography with the eluents of different hydrophobic intensities. Two active antibacterial subfractions were purified, and the higher active fraction was further fractionated and identified as a single compound of benzylideneacetone (trans-4-phenyl-3-buten-2-one). With heat stability, the synthetic compound showed equivalent antibiotic activity and spectrum to the purified compound. This study reports a new antibiotic compound synthesized by X. nematophila, which is a monoterpenoid compound and active against some Gram-negative bacteria.  相似文献   

20.
Xenorhabdus nematophila, the mutualistic bacterium of the nematode Steinernema carpocapsae, produces the R-type bacteriocin called xenorhabdicin, which is thought to confer a competitive advantage for growth in the insect host. We have identified a P2-like tail synthesis gene cluster (xnp1) that is required for xenorhabdicin production. The xnp1 genes were expressed constitutively during growth and were induced by mitomycin C. Deletion of either the sheath (xnpS1) or fiber (xnpH1) genes eliminated xenorhabdicin production. Production of R-type bacteriocins in a host organism had not been shown previously. We show that xenorhabdicin is produced in the hemocoel of insects infected with the wild type but not with the ΔxnpS1 deletion strain. Xenorhabdicin prepared from the wild-type strain killed the potential competitor Photorhabdus luminescens TT01. P. luminescens was eliminated during coculture with wild-type X. nematophila but not with the ΔxnpS1 strain. Furthermore, P. luminescens inhibited reproduction of S. carpocapsae in insect larvae, while coinjection with wild-type X. nematophila, but not the ΔxnpS1, strain restored normal reproduction, demonstrating that xenorhabdicin was required for killing P. luminescens and protecting the nematode partner. Xenorhabdicin killed X. nematophila from Steinernema anatoliense, demonstrating for the first time that it possesses intraspecies activity. In addition, activity was variable against diverse strains of Xenorhabdus and Photorhabdus and was not correlated with phylogenetic distance. These findings are discussed in the context of the role of xenorhabdicin in the life cycle of the mutualistic bacterium X. nematophila.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号