首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Non-structural protein 1 from influenza A virus, NS1A, is a key multifunctional virulence factor composed of two domains: an N-terminal double-stranded RNA (dsRNA)-binding domain and a C-terminal effector domain (ED). Isolated RNA-binding and effector domains of NS1A both exist as homodimers in solution. Despite recent crystal structures of isolated ED and full-length NS1A proteins from different influenza virus strains, controversy remains over the actual biologically relevant ED dimer interface. Here, we report the biophysical properties of the NS1A ED from H3N2 influenza A/Udorn/307/1972 (Ud) virus in solution. Several lines of evidence, including (15)N NMR relaxation, NMR chemical shift perturbations, static light scattering, and analytical sedimentation equilibrium, demonstrate that Ud NS1A ED forms a relatively weak dimer in solution (K(d) = 90 ± 2 μm), featuring a symmetric helix-helix dimer interface. Mutations within and near this interface completely abolish dimerization, whereas mutations consistent with other proposed ED dimer interfaces have no effect on dimer formation. In addition, the critical Trp-187 residue in this interface serves as a sensitive NMR spectroscopic marker for the concentration-dependent dimerization of NS1A ED in solution. Finally, dynamic light scattering and gel shift binding experiments demonstrate that the ED interface plays a role in both the oligomerization and the dsRNA binding properties of the full-length NS1A protein. In particular, mutation of the critical tryptophan in the ED interface substantially reduces the propensity of full-length NS1A from different strains to oligomerize and results in a reduction in dsRNA binding affinity for full-length NS1A.  相似文献   

2.
Cheng A  Wong SM  Yuan YA 《Cell research》2009,19(2):187-195
Influenza A viruses are important human pathogens causing periodic pandemic threats. Nonstructural protein 1 (NS1) protein of influenza A virus (NS1A) shields the virus against host defense. Here, we report the crystal structure of NS1A RNA-binding domain (RBD) bound to a double-stranded RNA (dsRNA) at 1.7A. NS1A RBD forms a homodimer to recognize the major groove of A-form dsRNA in a length-independent mode by its conserved concave surface formed by dimeric anti-parallel alpha-helices. dsRNA is anchored by a pair of invariable arginines (Arg38) from both monomers by extensive hydrogen bonds. In accordance with the structural observation, isothermal titration calorimetry assay shows that the unique Arg38-Arg38 pair and two Arg35-Arg46 pairs are crucial for dsRNA binding, and that Ser42 and Thr49 are also important for dsRNA binding. Agrobacterium co-infiltration assay further supports that the unique Arg38 pair plays important roles in dsRNA binding in vivo.Cell Research (2009) 19:187-195. doi: 10.1038/cr.2008.288; published online 23 September 2008.  相似文献   

3.
We have computed the average structures for the ras-p21 protein and its strongly homologous inhibitor protein, rap-1A, bound to the ras-binding domain (RBD) of the raf protein, using molecular dynamics. Our purpose is to determine the differences in structure between these complexes that would result in no mitogenic activity of rap-1A-RBD but full activity of p21-RBD. We find that despite the similarities of the starting structures for both complexes, the average structures differ considerably, indicating that these two proteins do not interact in the same way with this vital target protein. p21 does not undergo major changes in conformation when bound to the RBD, while rap-1 A undergoes significant changes in structure on binding to the RBD, especially in the critical region around residue 61. The p21 and rap-1A make substantially different contacts with the RBD. For example, the loop region from residues 55–71 of rap-la makes extensive hydrogen-bond contacts with the RBD, while the same residues of p21 do not. Comparison of the structures of the RBD in both complexes reveals that it undergoes considerable changes in structure when its structure bound to p21 is compared with that bound to rap-1A. These changes in structure are due to displacements of regular structure (e.g., α-helices and β-sheets) rather than to changes in the specific conformations of the segments themselves. Three regions of the RBD have been found to differ significantly from one another in the two complexes: the binding interface between the two proteins at residues 60 and 70, the region around residues 105–106, and 118–120. These regions may constitute effector domains of the RBD whose conformations determine whether or not mitogenic signal transduction will occur.  相似文献   

4.
5.
We have computed the average structures for the ras-p21 protein and its strongly homologous inhibitor protein, rap-1A, bound to the ras-binding domain (RBD) of the raf protein, using molecular dynamics. Our purpose is to determine the differences in structure between these complexes that would result in no mitogenic activity of rap-1A-RBD but full activity of p21-RBD. We find that despite the similarities of the starting structures for both complexes, the average structures differ considerably, indicating that these two proteins do not interact in the same way with this vital target protein. p21 does not undergo major changes in conformation when bound to the RBD, while rap-1 A undergoes significant changes in structure on binding to the RBD, especially in the critical region around residue 61. The p21 and rap-1A make substantially different contacts with the RBD. For example, the loop region from residues 55–71 of rap-la makes extensive hydrogen-bond contacts with the RBD, while the same residues of p21 do not. Comparison of the structures of the RBD in both complexes reveals that it undergoes considerable changes in structure when its structure bound to p21 is compared with that bound to rap-1A. These changes in structure are due to displacements of regular structure (e.g., -helices and -sheets) rather than to changes in the specific conformations of the segments themselves. Three regions of the RBD have been found to differ significantly from one another in the two complexes: the binding interface between the two proteins at residues 60 and 70, the region around residues 105–106, and 118–120. These regions may constitute effector domains of the RBD whose conformations determine whether or not mitogenic signal transduction will occur.  相似文献   

6.
Influenza A viruses cause a highly contagious respiratory disease in humans and are responsible for periodic widespread epidemics with high mortality rates. The influenza A virus NS1 protein (NS1A) plays a key role in countering host antiviral defense and in virulence. The 73-residue N-terminal domain of NS1A (NS1A-(1-73)) forms a symmetric homodimer with a unique six-helical chain fold. It binds canonical A-form double-stranded RNA (dsRNA). Mutational inactivation of this dsRNA binding activity of NS1A highly attenuates virus replication. Here, we have characterized the unique structural features of the dsRNA binding surface of NS1A-(1-73) using NMR methods and describe the 2.1-A x-ray crystal structure of the corresponding dsRNA binding domain from human influenza B virus NS1B-(15-93). These results identify conserved dsRNA binding surfaces on both NS1A-(1-73) and NS1B-(15-93) that are very different from those indicated in earlier "working models" of the complex between dsRNA and NS1A-(1-73). The combined NMR and crystallographic data reveal highly conserved surface tracks of basic and hydrophilic residues that interact with dsRNA. These tracks are structurally complementary to the polyphosphate backbone conformation of A-form dsRNA and run at an approximately 45 degrees angle relative to the axes of helices alpha2/alpha2'. At the center of this dsRNA binding epitope, and common to NS1 proteins from influenza A and B viruses, is a deep pocket that includes both hydrophilic and hydrophobic amino acids. This pocket provides a target on the surface of the NS1 protein that is potentially suitable for the development of antiviral drugs targeting both influenza A and B viruses.  相似文献   

7.
近年来A型流感严重威胁着人类和畜禽的健康,随着研究的深入,人们已经发现A型流感病毒的NS1蛋白对病毒毒力有重要影响,是一个多功能毒力因子、宿主细胞抗病毒免疫抑制子。根据其功能的不同分为效应区和RNA结合域。目前NS1蛋白结构已经解析,使人们可以直观的认识其各个功能位点的作用机制。该文综述了NS1蛋白的结构特征、已知的功能位点及其功能,为在结构水平上研究NS1蛋白的功能提供参考。  相似文献   

8.
Heparin, a naturally occurring glycosaminoglycan, has been found to have antiviral activity against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative virus of COVID-19. To elucidate the mechanistic basis for the antiviral activity of heparin, we investigated the binding of heparin to the SARS-CoV-2 spike glycoprotein by means of sliding window docking, molecular dynamics simulations, and biochemical assays. Our simulations show that heparin binds at long, positively charged patches on the spike glycoprotein, thereby masking basic residues of both the receptor-binding domain (RBD) and the multifunctional S1/S2 site. Biochemical experiments corroborated the simulation results, showing that heparin inhibits the furin-mediated cleavage of spike by binding to the S1/S2 site. Our simulations showed that heparin can act on the hinge region responsible for motion of the RBD between the inactive closed and active open conformations of the spike glycoprotein. In simulations of the closed spike homotrimer, heparin binds the RBD and the N-terminal domain of two adjacent spike subunits and hinders opening. In simulations of open spike conformations, heparin induces stabilization of the hinge region and a change in RBD motion. Our results indicate that heparin can inhibit SARS-CoV-2 infection by three mechanisms: by allosterically hindering binding to the host cell receptor, by directly competing with binding to host heparan sulfate proteoglycan coreceptors, and by preventing spike cleavage by furin. Furthermore, these simulations provide insights into how host heparan sulfate proteoglycans can facilitate viral infection. Our results will aid the rational optimization of heparin derivatives for SARS-CoV-2 antiviral therapy.  相似文献   

9.
Filoviruses, including Marburg virus (MARV) and Ebola virus (EBOV), cause fatal hemorrhagic fever in humans and non-human primates. All filoviruses encode a unique multi-functional protein termed VP35. The C-terminal double-stranded (ds)RNA-binding domain (RBD) of VP35 has been implicated in interferon antagonism and immune evasion. Crystal structures of the VP35 RBD from two ebolaviruses have previously demonstrated that the viral protein caps the ends of dsRNA. However, it is not yet understood how the expanses of dsRNA backbone, between the ends, are masked from immune surveillance during filovirus infection. Here, we report the crystal structure of MARV VP35 RBD bound to dsRNA. In the crystal structure, molecules of dsRNA stack end-to-end to form a pseudo-continuous oligonucleotide. This oligonucleotide is continuously and completely coated along its sugar-phosphate backbone by the MARV VP35 RBD. Analysis of dsRNA binding by dot-blot and isothermal titration calorimetry reveals that multiple copies of MARV VP35 RBD can indeed bind the dsRNA sugar-phosphate backbone in a cooperative manner in solution. Further, MARV VP35 RBD can also cap the ends of the dsRNA in solution, although this arrangement was not captured in crystals. Together, these studies suggest that MARV VP35 can both coat the backbone and cap the ends, and that for MARV, coating of the dsRNA backbone may be an essential mechanism by which dsRNA is masked from backbone-sensing immune surveillance molecules.  相似文献   

10.
DEAD box proteins consist of a common helicase core formed by two globular RecA domains that are separated by a cleft. The helicase core acts as a nucleotide-dependent switch that alternates between open and closed conformations during the catalytic cycle of duplex separation, thereby providing basic helicase activity. Flanking domains can direct the helicase core to a specific RNA substrate by mediating high-affinity or high-specificity RNA binding. In addition, they may position RNA for the helicase core or may directly contribute to unwinding. While structures of different helicase cores have been determined previously, little is known about the orientation of flanking domains relative to the helicase core.YxiN is a DEAD box protein that consists of a helicase core and a C-terminal RNA binding domain (RBD) that mediates specific binding to hairpin 92 in 23S rRNA. To provide a framework for understanding the functional cooperation of the YxiN helicase core and the RBD, we mapped the orientation of the RBD in single-molecule fluorescence resonance energy transfer experiments. We present a model for the global conformation of YxiN in which the RBD lies above a slightly concave patch that is formed by flexible loops on the surface of the C-terminal RecA domain. The orientation of the RBD is different from the orientations of flanking domains in the Thermus thermophilus DEAD box protein Hera and in Saccharomyces cerevisiae Mss116p, in line with the different functions of these DEAD box proteins and of their RBDs. Interestingly, the corresponding patch on the C-terminal RecA domain that is covered by the YxiN RBD is also part of the interface between the translation factors eIF4A and eIF4G. Possibly, this region constitutes an adaptable interface that generally allows for the interaction of the helicase core with additional domains or interacting factors.  相似文献   

11.
Recognition of Ras by its downstream target Raf is mediated by a Ras-recognition region in the Ras-binding domain (RBD) of Raf. Residues 78–89 in this region occupy two different conformations in the ensemble of NMR solution structures of the RBD: a fully α-helical one, and one where 87–90 form a type IV β-turn. Molecular dynamics simulations of the RBD in solution were performed to explore the stability of these and other possible conformations of both the wild-type RBD and the R89K mutant, which does not bind Ras. The simulations sample a fully helical conformation for residues 78–89 similar to the NMR helical structures, a conformation where 85–89 form a 310-helical turn, and a conformation where 87–90 form a type I |iB-turn, whose free energies are all within 0.3 kcal/mol of each other. NOE patterns and Hα chemical shifts from the simulations are in reasonable agreement with experiment. The NMR turn structure is calculated to be 3 kcal/mol higher than the three above conformations. In a simulation with the same implicit solvent model used in the NMR structure generation, the turn conformation relaxes into the fully helical conformation, illustrating possible structural artifacts introduced by the implicit solvent model. With the Raf R89K mutant, simulations sample a fully helical and a turn conformation, the turn being 0.9 kcal/mol more stable. Thus, the mutation affects the population of RBD conformations, and this is expected to affect Ras binding. For example, if the fully helical conformation of residues 78–89 is required for binding, its free energy increase in R89K will increase the binding free energy by about 0.6 kcal/mol. Proteins 31:186–200, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

12.
Epitopes that are conserved among SARS-like coronaviruses are attractive targets for design of cross-reactive vaccines and therapeutics. CR3022 is a SARS-CoV neutralizing antibody to a highly conserved epitope on the receptor binding domain (RBD) on the spike protein that is able to cross-react with SARS-CoV-2, but with lower affinity. Using x-ray crystallography, mutagenesis, and binding experiments, we illustrate that of four amino acid differences in the CR3022 epitope between SARS-CoV-2 and SARS-CoV, a single mutation P384A fully determines the affinity difference. CR3022 does not neutralize SARS-CoV-2, but the increased affinity to SARS-CoV-2 P384A mutant now enables neutralization with a similar potency to SARS-CoV. We further investigated CR3022 interaction with the SARS-CoV spike protein by negative-stain EM and cryo-EM. Three CR3022 Fabs bind per trimer with the RBD observed in different up-conformations due to considerable flexibility of the RBD. In one of these conformations, quaternary interactions are made by CR3022 to the N-terminal domain (NTD) of an adjacent subunit. Overall, this study provides insights into antigenic variation and potential cross-neutralizing epitopes on SARS-like viruses.  相似文献   

13.
Jaeger S  Eriani G  Martin F 《FEBS letters》2004,556(1-3):265-270
The histone hairpin binding protein (HBP, also called SLBP, which stands for stem-loop binding protein) binds specifically to a highly conserved hairpin structure located in the 3' UTR of the cell-cycle-dependent histone mRNAs. HBP consists of a minimal central RNA binding domain (RBD) flanked by an N- and C-terminal domain. The yeast three-hybrid system has been used to investigate the critical residues of the human HBP involved in the binding of its target hairpin structure. By means of negative selections followed by positive selections, we isolated mutant HBP species. Our results indicate tight relationships between the RBD and the N- and C-terminal domains.  相似文献   

14.
The yeast U1A protein is a U1 snRNP-specific protein. Like its human counterpart (hU1A), it has two conserved RNA binding domains (RBDs). The N-terminal RBD is quite different from the human protein, and a binding site on yeast U1 snRNA is not readily apparent. The C-terminal RBD is of unknown function. Using in vivo dimethyl sulfate (DMS) protection of mutant strains, we defined a region in yeast U1 snRNA as the likely U1A N-terminal RBD binding site. This was confirmed by direct in vitro binding assays. The site is very different from its vertebrate counterpart, but its location within yeast U1 snRNA suggests a conserved structural relationship to other U1 snRNP components. Genetic studies and sensitive in vivo splicing measurements indicate that the yeast U1A C-terminal RBD also functions in pre-mRNA splicing. We propose that the N-terminal RBD serves to tether the splicing-relevant C-terminal RBD to the snRNP.  相似文献   

15.
Hepatitis C virus (HCV) NS5B protein is the viral RNA-dependent RNA polymerase capable of directing RNA synthesis. In this study, an electrophoretic mobility shift assay demonstrated the interaction between a partially purified recombinant NS5B protein and a 3' viral genomic RNA with or without the conserved 98-nucleotide tail. The NS5B-RNA complexes were specifically competed away by the unlabeled homologous RNA but not by the viral 5' noncoding region and very poorly by the 3' conserved 98-nucleotide tail. A 3' coding region with conserved stem-loop structures rather than the 3' noncoding region of the HCV genome is critical for the specific binding of NS5B. Nevertheless, no direct interaction between the 3' coding region and the HCV NS5A protein was detected. Furthermore, two independent RNA-binding domains (RBDs) of NS5B were identified, RBD1, from amino acid residues 83 to 194, and RBD2, from residues 196 to 298. Interestingly, the conserved motifs of RNA-dependent RNA polymerase for putative RNA binding (220-DxxxxD-225) and template/primer position (282-S/TGxxxTxxxNS/T-292) are present in the RBD2. Nevertheless, the RNA-binding activity of RBD2 was abolished when it was linked to the carboxy-terminal half of the NS5B. These results provide some clues to understanding the initiation of HCV replication.  相似文献   

16.
Previously we found that the amino-terminal region of the NS1 protein of influenza A virus plays a key role in preventing the induction of beta interferon (IFN-beta) in virus-infected cells. This region is characterized by its ability to bind to different RNA species, including double-stranded RNA (dsRNA), a known potent inducer of IFNs. In order to investigate whether the NS1 RNA-binding activity is required for its IFN antagonist properties, we have generated a recombinant influenza A virus which expresses a mutant NS1 protein defective in dsRNA binding. For this purpose, we substituted alanines for two basic amino acids within NS1 (R38 and K41) that were previously found to be required for RNA binding. Cells infected with the resulting recombinant virus showed increased IFN-beta production, demonstrating that these two amino acids play a critical role in the inhibition of IFN production by the NS1 protein during viral infection. In addition, this virus grew to lower titers than wild-type virus in MDCK cells, and it was attenuated in mice. Interestingly, passaging in MDCK cells resulted in the selection of a mutant virus containing a third mutation at amino acid residue 42 of the NS1 protein (S42G). This mutation did not result in a gain in dsRNA-binding activity by the NS1 protein, as measured by an in vitro assay. Nevertheless, the NS1 R38AK41AS42G mutant virus was able to replicate in MDCK cells to titers close to those of wild-type virus. This mutant virus had intermediate virulence in mice, between those of the wild-type and parental NS1 R38AK41A viruses. These results suggest not only that the IFN antagonist properties of the NS1 protein depend on its ability to bind dsRNA but also that they can be modulated by amino acid residues not involved in RNA binding.  相似文献   

17.
Allosteric HIV-1 integrase (IN) inhibitors (ALLINIs) are a promising class of antiretroviral agents for clinical development. Although ALLINIs promote aberrant IN multimerization and inhibit IN interaction with its cellular cofactor LEDGF/p75 with comparable potencies in vitro, their primary mechanism of action in infected cells is through inducing aberrant multimerization of IN. Crystal structures have shown that ALLINIs bind at the IN catalytic core domain dimer interface and bridge two interacting subunits. However, how these interactions promote higher-order protein multimerization is not clear. Here, we used mass spectrometry-based protein footprinting to monitor surface topology changes in full-length WT and the drug-resistant A128T mutant INs in the presence of ALLINI-2. These experiments have identified protein-protein interactions that extend beyond the direct inhibitor binding site and which lead to aberrant multimerization of WT but not A128T IN. Specifically, we demonstrate that C-terminal residues Lys-264 and Lys-266 play an important role in the inhibitor induced aberrant multimerization of the WT protein. Our findings provide structural clues for exploiting IN multimerization as a new, attractive therapeutic target and are expected to facilitate development of improved inhibitors.  相似文献   

18.
Influenzavirus non-structural protein NS1 is involved in several steps of the virus replication cycle. It counteracts the interferon response, and also exhibits other activities towards viral and cellular RNAs. NS1 is known to bind non-specifically to double-stranded RNA (dsRNA) as well as to viral and cellular RNAs. We set out to search whether NS1 could preferentially bind sequence-specific RNA patterns, and performed an in vitro selection (SELEX) to isolate NS1-specific aptamers from a pool of 80-nucleotide(nt)-long RNAs. Among the 63 aptamers characterized, two families were found to harbour a sequence that is strictly conserved at the 5′ terminus of all positive-strand RNAs of influenzaviruses A. We found a second virus-specific motif, a 9 nucleotide sequence located 15 nucleotides downstream from NS1’s stop codon. In addition, a majority of aptamers had one or two symmetrically positioned copies of the 5′-GUAAC / 3′-CUUAG double-stranded motif, which closely resembles the canonical 5′-splice site. Through an in-depth analysis of the interaction combining fluorimetry and gel-shift assays, we showed that NS1’s RNA-binding domain (RBD) specifically recognizes sequence patterns in a structure-dependent manner, resulting in an intimate interaction with high affinity (low nanomolar to subnanomolar KD values) that leads to oligomerization of the RBD on its RNA ligands.  相似文献   

19.
Rice Hoja Blanca Tenuivirus (RHBV), a negative strand RNA virus, has been identified to infect rice and is widely transmitted by the insect vector. NS3 protein encoded by RHBV RNA3 was reported to be a potent RNAi suppressor to counterdefense RNA silencing in plants, insect cells, and mammalian cells. Here, we report the crystal structure of the N-terminal domain of RHBV NS3 (residues 21–114) at 2.0 Å. RHBV NS3 N-terminal domain forms a dimer by two pairs of α-helices in an anti-parallel mode, with one surface harboring a shallow groove at the dimension of 20 Å × 30 Å for putative dsRNA binding. In vitro RNA binding assay and RNA silencing suppression assay have demonstrated that the structural conserved residues located along this shallow groove, such as Arg50, His51, Lys77, and His85, participate in dsRNA binding and RNA silencing suppression. Our results provide the initial structural implications in understanding the RNAi suppression mechanism by RHBV NS3.  相似文献   

20.
The influenza A virus nonstructural protein NS1 is a multifunctional dimeric protein that acts as a potent inhibitor of the host cellular antiviral state. The C-terminal effector domain of NS1 binds host proteins, including CPSF30, and is a target for the development of new antiviral drugs. Here we present crystallographic structures of two mutant effector domains, W187Y and W187A, of influenza A/Udorn/72 virus. Unlike wild-type, the mutants behave exclusively as monomers in solution based on gel filtration data and light scattering. The W187Y mutant is able to bind CPSF30 with a binding affinity close to the wild-type protein; that is, it retains a receptor site for aromatic ligands nearly identical to the wild-type. Therefore, this monomeric mutant protein could serve as a drug target for a high throughput inhibitor screening assays, since its binding pocket is unoccupied in solution and potentially more accessible to small molecule ligands.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号