首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Metallothionein-2 (mt2) and similar to metallothionein-B (smt-B) are included in the MT gene family. The objective of this study was to compare mt2 and smt-B messenger (m)RNA expressions after cadmium exposure and cold shock with whole-mount in situ hybridization in immature zebrafish (Danio rerio) and with a semi-quantitative RT-PCR in mature zebrafish. Three-day post-fertilization (dpf) larvae were treated with 0, 0.08, 0.26, and 0.89 microM cadmium for 24 and 48 h, and some larvae were challenged with a normal (28.5 degrees C) or low temperature (12 degrees C) for 12, 24, and 48 h. Results were obtained. (1) During embryonic and larval development, mt2 mRNA existed at 6 h post-fertilization (hpf), and the level rapidly increased to 24 hpf, then it gradually increased with further larval growth. smt-B was found at 12 hpf, and it also rapidly increased to 24 hpf, but remained constant during further larval development. (2) The mt2 mRNA signals and whole-body Cd contents displayed dose- and time-dependent responses after Cd exposure. After cold shock, mt2 mRNA signals also showed time-dependent expression. But smt-B mRNA signals were not appeared by either challenge. Besides, mature zebrafish were treated with 1.78 microM Cd and found that the highest levels of smt-B mRNA (smt-B/beta-actin) appeared in brain, and seems a reverse expression between smt-B mRNA and mt2 in brain after Cd exposure. Apparently, mt2 is possibly more relevant to Cd detoxification and cold shock adaptation in zebrafish larvae compared to smt-B, but smt-B might be related to certain physiological functions in neural (or brain) of mature zebrafish.  相似文献   

2.
Uncoupling protein 2 from carp and zebrafish, ectothermic vertebrates.   总被引:6,自引:0,他引:6  
Uncoupling protein 1 (UCP1) is of demonstrated importance in mammalian thermogenesis, and early hypotheses regarding the functions of the newly discovered UCP homologues, UCP2, UCP3 and others, have focused largely on their potential roles in thermogenesis. Here we report the amino acid sequences of two new UCPs from ectothermic vertebrates. UCPs from two fish species, the zebrafish (Danio rerio) and carp (Cyprinus carpio), were identified in expressed sequence tag databases at the European Molecular Biology Laboratory. cDNAs from a C. carpio 'peritoneal exudate cell' cDNA library and from a D. rerio 'day 0 fin regeneration' cDNA library were obtained and fully sequenced. Each cDNA encodes a 310 amino acid protein with an average 82% sequence identity to mammalian UCP2s. The fish UCP2s are about 70% identical to mammalian UCP3s, and 60% identical to mammalian UCP1s. Carp and zebrafish are ectotherms--they do not raise their body temperatures above ambient by producing excess heat. The presence of UCP2 in these fish thus suggests the protein may have function(s) not related to thermogenesis.  相似文献   

3.
&#  &#  &#  &#  &#  &#  &#  &#  &#  &#  &#  &#  &# 《水生生物学报》2014,38(1):100-107
研究获得了斑马鱼nr1d4a和nr1d4b基因的cDNA,进行了序列比对和系统进化分析,并采用实时定量RT-PCR(qPCR)方法研究了其表达模式及对不同环境刺激的转录反应。研究发现,斑马鱼nr1d4a和nr1d4b是由基因复制产生的旁系同源基因,具有高度保守的DNA结合结构域和配体结合结构域。斑马鱼nr1d4a和nr1d4b的表达模式具有明显的差别。nr1d4a在胚胎发育早期的表达量很低,72 hpf时开始显著升高;而nr1d4b具有较高水平的母源性表达,6 hpf时的表达量明显降低,但也在72 hpf显著回升。nr1d4a在脑和肾脏中表达量最高,其次是鳃、卵巢、精巢和眼,在肝脏中的表达量最低;nr1d4b在卵巢中表达量最高,其次是精巢和脑,在肠道和心脏中表达量最低。斑马鱼nr1d4a和nr1d4b都能被多种环境刺激瞬时诱导表达。16℃低温处理0.5h就能显著诱导斑马鱼nr1d4a和nr1d4b基因的表达,但处理6h后其诱导效应开始下降并逐渐消失。除低温外,重金属(2 mol/L镉)、缺氧(5%氧气)和盐度(5)处理均能瞬时诱导nr1d4a和nr1d4b的表达,说明nr1d4a和nr1d4b基因可能参与斑马鱼对多种环境刺激的适应性反应。研究为深入揭示鱼类nr1d4a和nr1d4b基因的生物学功能及其表达调控机制奠定了基础。    相似文献   

4.
谢琳  房萍  林金飞  潘洪超  张帆  申延琴 《遗传》2013,35(4):495-501
成年斑马鱼(Danio rerio)具有很强的脊髓损伤后自主修复的能力, 但目前其机制不明。为了研究斑马鱼中脑组织对脊髓再生的影响, 文章应用成年斑马鱼脊髓损伤模型, 采用实时定量PCR方法和原位杂交技术, 检测了斑马鱼脑中胶质细胞源性神经营养因子(gdnf)和一氧化氮合酶(nos)基因在脊髓损伤后4 h、12 h、6 d、11 d的表达情况, 展示了这两种基因在斑马鱼脑内不同核团的动态表达变化。结果显示, 成年斑马鱼脊髓损伤后, 神经营养因子gdnf基因在损伤急性期(4 h、12 h)和神经修复期(6 d、11 d)于斑马鱼脑内呈现显著性升高(P<0.05),而一氧化氮合酶基因nos的表达于损伤急性期显著性升高 (P<0.05), 随后下降, 并在修复期 (11 d)显著降低(P<0.05)。这表明, 脊髓损伤后, 高表达gdnf基因同时低表达nos基因的脑环境给脊髓损伤提供了良好的神经再生微环境, 从而可能促进轴突的再生长及运动能力的恢复。  相似文献   

5.
萝卜硫素(sulforaphane,SFN)是一种在十字花科植物中含量丰富,且具有抗氧化效应的天然物质。本文基于核因子E2相关因子2(nuclear factor E2-related factor 2,Nrf2)介导的抗氧化系统,探究不同时长低温暴露对骨骼肌抗氧化酶的影响及SFN对低温暴露骨骼肌抗氧化能力的作用。首先,30只雄性C57BL/6N小鼠随机分为常温对照组(0 h组)、低温暴露1 h组(1 h组)和低温暴露3 h组(3 h组)。其次,40只雄性C57BL/6N小鼠随机分为PBS常温对照组(PBS+Con),PBS低温暴露3 h组(PBS+Cold),SFN常温对照组(SFN+Con)和SFN低温暴露3 h组(SFN+Cold)。小鼠在急性温度干预前腹腔注射4次SFN或等体积PBS。急性低温暴露后,取小鼠骨骼肌,试剂盒检测活性氧(ROS)水平、总抗氧化能力(T-AOC)、还原型谷胱甘肽(GSH)和氧化型谷胱甘肽(GSSG)含量;荧光实时定量PCR检测Nrf2介导的抗氧化酶和参与生成谷胱甘肽相关酶的mRNA转录水平;Western blot检测Nrf2介导的抗氧化酶蛋白表达。结果显示,与0和1 h组相比,3 h组小鼠骨骼肌Nrf 2和抗氧化酶基因(Gpx 1、Hmox1、Cat、Sod 1和Nqo 1)的mRNA转录水平显著降低,ROS水平显著增加。与PBS+Con组相比,PBS+Cold组小鼠骨骼肌Nrf2和抗氧化酶(HMOX1和CAT)蛋白表达、GSH/GSSG比值及T-AOC水平显著降低,而GSSG含量和ROS水平增加。与PBS+Cold组相比,SFN+Cold组小鼠骨骼肌Nrf 2 mRNA及其蛋白表达、抗氧化酶(HMOX1和SOD1)蛋白表达、抗氧化酶基因(Gpx 1、Hmox 1、Cat、Sod 1和Nqo 1)mRNA转录水平、参与GSH生成的酶基因(Gclm和Gss)mRNA转录水平、GSH/GSSG比值以及T-AOC水平显著提高,而GSSG含量和ROS水平显著降低。综上,3 h急性低温暴露降低了Nrf2介导的抗氧化作用。而低温暴露前给予SFN补充,则激活了Nrf2介导的抗氧化酶和谷胱甘肽抗氧化系统,增强了骨骼肌抗氧化能力。  相似文献   

6.
Cold acclimation has been suggested to be mediated by alternations in the gene expression pattern in the cold-adapted fish. To investigate the mechanism of cold acclimation in fish brain at the molecular level, relevant subsets of differentially expressed genes of interest were identified and cloned by the PCR-based subtraction suppression hybridization. Characterization of the selected cold-induced cDNA clones revealed one encoding ependymin. This gene was shown to be brain-specific. The expression of ependymin was induced by a temperature shift from 25 degrees C to 6 degrees C in Cyprinus carpio or 12 degrees C in Danio rerio. Activation of ependymin was detected 2 h after cold exposure and peaked at more than 10-fold at 12 h. This peak level remains unchanged until the temperature returns to 25 degrees C. Although the amount of soluble ependymin protein in brain was not changed by cold treatment, its level in the fibrous insoluble polymers increased 2-fold after exposure to low temperature. These findings indicate that the increase in ependymin expression is an early event that may play an important role in the cold acclimation of fish.  相似文献   

7.
8.
9.
Temperature and trace metals are common environmental stressors, and their importance is increasing due to global climate change and anthropogenic pollution. Oxidative damage and antioxidant properties have been studied in liver and gills of the European bullhead (Cottus gobio) subjected to cadmium (CdCl(2) at nominal concentrations of 0.01 and 1mg/L) for 4 days at either 15°C or 21°C. First, exposure to 1mg Cd/L induced a high mortality rate (67%) in fish held at 21°C. Regarding the antioxidant enzymes, exposure to 0.01 mg Cd/L significantly increased the activity of superoxide dismutase (SOD) and decreased the activity of glutathione reductase (GR) in liver, independently of heat stress. In gills, exposure to 21°C resulted in a significantly increased activity of glutathione peroxidase (GPx), whereas the activity of glutathione S-transferase (GST) was significantly reduced as compared to fish exposed to 15°C. Furthermore, regardless of Cd stress, exposure to elevated temperature resulted in a significant decrease of lipid peroxidation (LPO) level in liver and in a significant increase in the activity of chymotrypsin-like 20S proteasome in both studied tissues of C. gobio. Overall, the present results indicated that elevated temperature and cadmium exposure independently influenced the antioxidant defense system in bullhead with clear tissue-specific and stress-specific antioxidant responses. Further, elevated temperature affected the hepatic lipid peroxidation and the activity of 20S proteasome in both tissues.  相似文献   

10.
Regulation of thermogenic activity and uncoupling protein1 (UCP1) expression in brown adipose tissue (BAT) were studied in euthermic Daurian ground squirrel after acute and chronic cold exposure at 4 degrees C. The UCP1 concentration was indirectly determined by titration with its specific ligand [3H]-labeled GTP, and Ucp1 mRNA was detected by using a [32P]-labeled antisense oligonucleotide probe. Both acute and chronic cold exposure stimulated up-regulation of Ucp1 mRNA. Although UCP1 concentration is not significantly increased after 24 h of cold exposure, it is markedly elevated by 75% in squirrels after 4-week cold adaptation compared with controls raised at 22 degrees C. Changes in T4 5'-deiodinase activity were closely associated with variations of Ucp1 mRNA level. Ucp1 gene expression is significantly affected by cold exposure in BAT from euthermic Daurian ground squirrels. In addition, the activation of T4 5'-deiodinase may be an important regulatory factor in cold-induced Ucp1 expression.  相似文献   

11.
Aluminum is a metal that is known to impact fish species. The zebrafish has been used as an attractive model for toxicology and behavioral studies, being considered a model to study environmental exposures and human pathologies. In the present study, we have investigated the effect of aluminum exposure on brain acetylcholinesterase activity and behavioral parameters in zebrafish. In vivo exposure of zebrafish to 50 μg/L AlCl3 for 96 h at pH 5.8 significantly increased (36%) acetylthiocholine hydrolysis in zebrafish brain. There were no changes in acetylcholinesterase (AChE) activity when fish were exposed to the same concentration of AlCl3 at pH 6.8. In vitro concentrations of AlCl3 varying from 50 to 250 μM increased AChE activity (28% to 33%, respectively). Moreover, we observed that animals exposed to AlCl3 at pH 5.8 presented a significant decrease in locomotor activity, as evaluated by the number of line crossings (25%), distance traveled (14.1%), and maximum speed (24%) besides an increase in the absolute turn angle (12.7%). These results indicate that sublethal levels of aluminum might modify behavioral parameters and acetylcholinesterase activity in zebrafish brain.  相似文献   

12.
Long Y  Li L  Li Q  He X  Cui Z 《PloS one》2012,7(5):e37209
  相似文献   

13.
14.
15.
Mitochondrial uncoupling proteins (UCPs) have been postulated to be regulators of thermogenesis, energy balance, and oxidative stress. Brain mitochondrial carrier protein-1 (BMCP1) is a new member of the UCP family, but little is known about the gene regulation and the role of BMCP1 in the central nervous system. In the present study, we first cloned BMCP1 cDNA encoding 325 amino acids from rat brain. The BMCP1 mRNA showed a distinct distribution pattern compared with that of UCP2 gene in human brain. Cold exposure did not affect the mRNA levels of BMCP1 and UCP2 in rat whole brain, but did increase the expression of UCP2 in the spinal cord. The mRNA level of BMCP1 in the brain of 26-month-old rats was decreased by 30% and that of UCP2 increased by 60% compared with the levels in 6-month-old rats. These results suggest differential roles of BMCP1 and UCP2 in thermoregulation and aging.  相似文献   

16.
To investigate the involvement of the cell adhesion molecules L1.1, L1.2, NCAM, and tenascin-C in memory formation, zebrafish (Brachydanio rerio) were trained in an active avoidance paradigm to cross a hurdle to avoid mild electric shocks after a light signal. Application of [(14)C]deoxyglucose prior to the training session revealed an increased energy demand in the optic tectum during acquisition of the active avoidance response compared with untrained fish and with fish not learning the task (nonlearners). In situ hybridization with digoxigenin-labeled cRNA probes directed against zebrafish L1.1, L1.2, NCAM, and tenascin-C revealed an enhanced expression of L1.1 and NCAM mRNA in the optic tectum of learners 3 h after acquisition of the task compared with untrained fish, nonlearners, overtrained fish, and learners decapitated 1 or 6 h after acquisition. Levels of L1.2 mRNA were not significantly increased in the tectum 3 h after learning. Tenascin-C was neither expressed in the optic tectum of untrained fish nor in the tectum of learners. To test for a possible involvement of L1.1 in memory consolidation, antibodies were injected intracerebroventricularly 1 h after the last training trial. Two days later, injected zebrafish were tested for recall and evaluated by a retention score (RS), ranging from 1.0 for immediate recall to 0.0 indicating no savings. The average retention score of L1.1 antibody-injected fish (RS = 0. 29) was different from that of tenascin-C antibody-injected (RS = 0. 71) or uninjected fish (RS = 0.78), indicating a pivotal function of L1.1 in long-term memory formation in zebrafish.  相似文献   

17.
18.
The effect of cold exposure (4 degrees C) or prolonged norepinephrine infusion on the activity and mRNA levels of glycerokinase (GyK) was investigated in rat interscapular brown adipose tissue (BAT). Cold exposure for 12 and 24 h induced increases of 30% and 100%, respectively, in the activity of BAT GyK, which was paralleled by twofold and fourfold increase in enzyme mRNA levels. BAT hemidenervation resulted in reductions of 50% and 30% in GyK activity and in mRNA levels, respectively, in denervated pads from rats kept at 25 degrees C, and suppressed in these pads the cold-induced increases in both GyK activity and mRNA levels. The increase in GyK activity induced by cold exposure was not affected by phenoxybenzamine, but was markedly inhibited by previous administration of propranolol or actinomycin D. BAT GyK activity did not change significantly after 6 h of continuous subcutaneous infusion of norepinephrine (20 microg/h), but increased twofold and fourfold after 12 and 24 h, with no further increase after 72 h of infusion. Norepinephrine infusion also activated mRNA production, but the effect was comparatively smaller than that on enzyme activity. beta-Adrenergic agonists also stimulated GyK activity with the following relative magnitude of response: CL316243 (beta(3)) > isoproterenol (non-selective) > dobutamine (beta(1)). In vitro rates of incorporation of glycerol into glyceride-glycerol were increased in BAT from rats exposed to cold. The data suggest that in conditions of a sustained increase in BAT sympathetic flow there is a stimulation of GyK gene expression at the pretranslational level, with increased enzyme activity, mediated by beta-adrenoreceptors, mainly beta(3).  相似文献   

19.
Neuroglobin (Ngb) is a recently discovered vertebrate heme protein that is expressed in the brain and can reversibly bind oxygen. Mammalian Ngb is involved in neuroprotection under conditions of oxidative stress, such as ischemia and reperfusion. We previously found that zebrafish Ngb can penetrate the mammalian cell membrane. In the present study, we investigated the functional characteristics of fish Ngb by using the zebrafish cell line ZF4 and zebrafish retina. We found that zebrafish Ngb translocates into ZF4 cells, but cannot protect ZF4 cells against cell death induced by hydrogen peroxide. Furthermore, we demonstrated that a chimeric ZHHH Ngb protein, in which module M1 of human Ngb is replaced by that of zebrafish, is a cell-membrane-penetrating protein that can protect ZF4 cells against hydrogen peroxide exposure. Moreover, we investigated the localization of Ngb mRNA and protein in zebrafish retina and found that Ngb mRNA is expressed in amacrine cells in the inner nuclear layer and is significantly increased in amacrine cells 3 days after optic nerve injury. Immunohistochemical studies clarified that Ngb protein levels were increased in both amacrine cells and presynaptic regions in the inner plexiform layer after nerve injury. Taken together, we hypothesize that fish Ngb, whose expression is upregulated in amacrine cells after optic nerve injury, might be released from amacrine cells, translocate into neighboring ganglion cells, and function in the early stage of optic nerve regeneration. This article is part of a Special Issue entitled: Oxygen Binding and Sensing Proteins.  相似文献   

20.
Long-term cold exposure (5-7 days) is known to induce concomitant increases in the levels of adrenomedullary tyrosine hydroxylase (TH) RNA, protein, and enzyme activity. In this report, we compare the time courses of these changes and investigate the effects of cold exposure on the levels of biopterin, the cofactor required for tyrosine hydroxylation. After only 1 h of cold exposure, TH mRNA abundance increased 71% compared with nonstressed controls. Increases in total cellular TH RNA levels were maximal (threefold over control values) within 3-6 h of cold exposure and remained elevated throughout the duration of the experiment (72 h). TH protein levels increased rapidly after 24 h of cold exposure and reached a maximal value threefold above that of controls at 48-72 h. Despite the relatively rapid and large elevations in TH RNA and protein content, only modest increases in TH activity were detected during the initial 48 h of cold exposure. Adrenomedullary biopterin increased rapidly after the onset of cold exposure, rising to a level approximately twofold that of the nonstressed controls at 24 h, and remained at this level throughout the duration of the stress period. Taken together, the results of this time course study indicate that cold-induced alterations in adrenal TH activity are mediated by multiple cellular control mechanisms, which may include pre- and posttranslational regulation. Our findings also suggest that cold stress-induced increases in the levels of the TH cofactor may represent another key event in the sympathoadrenal system's response to cold stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号