首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
2.
Temperature‐dependent tulip petal opening and closing movement was previously suggested to be regulated by reversible phosphorylation of a plasma membrane aquaporin ( Azad et al., 2004a ). Stomatal apertures of petals were investigated during petal opening at 20°C and closing at 5°C. In completely open petals, the proportion of open stomata in outer and inner surfaces of the same petal was 27 ± 6% and 65 ± 3%, respectively. During the course of petal closing, stomatal apertures in both surfaces reversed, and in completely closed petals, the proportion of open stomata in outer and inner surfaces of the same petal was 74 ± 3% and 29 ± 6%, respectively, indicating an inverse relationship between stomatal aperture in outer and inner surfaces of the petal during petal opening and closing. Both petal opening and stomatal closure in the outer surface of the petal was inhibited by a Ca2+ channel blocker and a Ca2+ chelator, whereas the inner surface stomata remained unaffected. On the other hand, sodium nitroprusside, a nitric oxide donor, had no effect on stomatal aperture of the outer surface but influenced the inner surface stomatal aperture during petal opening and closing, suggesting different signalling pathways for regulation of temperature‐dependent stomatal changes in the two surfaces of tulip petals. Stomata were found to be differentially distributed in the bottom, middle and upper parts of tulip petals. During petal closing, water transpiration was observed by measuring the loss of 3H2O. Transpiration of 3H2O by petals was fivefold greater in the first 10 min than that found after 30 min, and the transpiration rate was shown to be associated with stomatal distribution and aperture. Thus, the stomata of outer and inner surfaces of the petal are involved in the accumulation and transpiration of water during petal opening.  相似文献   

3.
LolA plays a critical role in the outer membrane sorting of Escherichia coli lipoproteins because it carries a hydrophobic lipoprotein from the inner membrane through the hydrophilic periplasm to the outer membrane receptor LolB. LolA has an incomplete beta-barrel structure composed of 11 beta-strands with an alpha-helical lid forming a hydrophobic cavity inside. The accompanying study revealed that the hydrophobic cavity opens and closes upon the binding and release of lipoproteins, respectively. Ile(93) in the alpha-helix and Phe(140) in the beta-strand are located close to each other in the hydrophobic cavity. These two residues were replaced by Cys to construct the I93C/F140C derivative. Expression of I93C/F140C immediately arrested growth whether wild-type LolA was present or not. However, this dominant negative phenotype was abolished by reducing agents, indicating that the intramolecular disulfide bonding between the two Cys residues is lethal. I93C/F140C was unstable, and its periplasmic level was lower than that of wild-type LolA or its single Cys derivative. Reduction of I93C/F140C was essential for the release of lipoproteins from the inner membrane. Moreover, treatment of I93C/F140C with divalent cross-linkers having different side chain lengths revealed that opening of the lid for a sufficient distance is required for the release activity. The binding of a fluorescent probe to the hydrophobic cavity of I93C/F140C also depended on reducing agents. Taken together, these results indicate that the two Cys residues introduced into LolA function as a redox switch, which regulates the opening and closing of the hydrophobic cavity.  相似文献   

4.
One of the key problems of the Baikal project, intended to create a superpower pulsed generator for ICF experiments, is that of matching a multimodule plasma opening switch (POS) to a liner load. An intermediate inductance or a separating discharger is proposed to be used as a matching element between the POS and the load. An analysis is made of the effect of both versions of the matching system on the synchronization of the POS modules and the energy transfer from the inductive storage to the load. Methods for optimizing the matching element are examined. It is shown that the POS modules can be synchronized and the inductive storage energy can be efficiently transferred to a low-impedance load. A multigap vacuum discharger with a point anode and plane cathode is to be used as a separating discharger. Such an electrode system make it possible to concentrate the electric field at the point anode and to substantially enhance the electric strength of the inter-electrode gap. Results are presented from experimental studies of vacuum breakdown in such an electrode system with a gap length of about 1 mm.  相似文献   

5.
The influence of an external magnetic field on the performance of a high-impedance plasma opening switch is studied experimentally. A 1.5-fold increase in the output voltage of a plasma opening switch operating in the erosion mode is achieved by applying an external magnetic field. The magnetic field strength and the parameters of the plasma opening switch at which the maximum output voltage is attained are determined. It is shown experimentally that the predicted dependence of the maximum output voltage on the Marx generator voltage, U POS [MV]=3.6 (U MG [MV])4/7, is confirmed experimentally.  相似文献   

6.
Visual perception of the environment is mediated by specialized photoreceptor (PR) neurons of the eye. Each PR expresses photosensitive opsins, which are activated by a particular wavelength of light. In most insects, the visual system comprises a pair of compound eyes that are mainly associated with motion, color or polarized light detection, and a triplet of ocelli that are thought to be critical during flight to detect horizon and movements. It is widely believed that the evolutionary diversification of compound eye and ocelli in insects occurred from an ancestral visual organ around 500 million years ago. Concurrently, opsin genes were also duplicated to provide distinct spectral sensitivities to different PRs of compound eye and ocelli. In the fruit fly Drosophila melanogaster, Rhodopsin1 (Rh1) and Rh2 are closely related opsins that originated from the duplication of a single ancestral gene. However, in the visual organs, Rh2 is uniquely expressed in ocelli whereas Rh1 is uniquely expressed in outer PRs of the compound eye. It is currently unknown how this differential expression of Rh1 and Rh2 in the two visual organs is controlled to provide unique spectral sensitivities to ocelli and compound eyes. Here, we show that Homothorax (Hth) is expressed in ocelli and confers proper rhodopsin expression. We find that Hth controls a binary Rhodopsin switch in ocelli to promote Rh2 expression and repress Rh1 expression. Genetic and molecular analysis of rh1 and rh2 supports that Hth acts through their promoters to regulate Rhodopsin expression in the ocelli. Finally, we also show that when ectopically expressed in the retina, hth is sufficient to induce Rh2 expression only at the outer PRs in a cell autonomous manner. We therefore propose that the diversification of rhodpsins in the ocelli and retinal outer PRs occurred by duplication of an ancestral gene, which is under the control of Homothorax.  相似文献   

7.
Rhodopsin controls a conformational switch on the transducin gamma subunit   总被引:4,自引:0,他引:4  
Rhodopsin, a prototypical G protein-coupled receptor, catalyzes the activation of a heterotrimeric G protein, transducin, to initiate a visual signaling cascade in photoreceptor cells. The betagamma subunit complex, especially the C-terminal domain of the transducin gamma subunit, Gtgamma(60-71)farnesyl, plays a pivotal role in allosteric regulation of nucleotide exchange on the transducin alpha subunit by light-activated rhodopsin. We report that this domain is unstructured in the presence of an inactive receptor but forms an amphipathic helix upon rhodopsin activation. A K65E/E66K charge reversal mutant of the gamma subunit has diminished interactions with the receptor and fails to adopt the helical conformation. The identification of this conformational switch provides a mechanism for active GPCR utilization of the betagamma complex in signal transfer to G proteins.  相似文献   

8.
9.
10.
11.
12.
13.
  相似文献   

14.
The Arp2/3 complex can be independently activated to initiate actin polymerization by the VCA domain of WASP family members and by the acidic N-terminal and F-actin-binding repeat region of cortactin, which possesses a C-terminal SH3 domain. Cortactin is a target for phosphorylation by Src tyrosine kinases and by serine/threonine kinases that include Erk. Here we demonstrate that cortactin binds N-WASP and WASP via its SH3 domain, induces in vitro N-WASP-mediated actin polymerization, and colocalizes with N-WASP and WASP at sites of active actin polymerization. Erk phosphorylation and a mimicking S405,418D double mutation enhanced cortactin binding and activation of N-WASP. In contrast, Src phosphorylation inhibited the ability of cortactin previously phosphorylated by Erk, and that of S405,418D double mutant cortactin, to bind and activate N-WASP. Furthermore, Y-->D mutation of three tyrosine residues targeted by Src (Y421, Y466, and Y482) inhibited the ability of S405,418D cortactin to activate N-WASP. We propose that Erk phosphorylation liberates the SH3 domain of cortactin from intramolecular interactions with proline-rich regions, causing it to synergize with WASP and N-WASP in activating the Arp2/3 complex, and that Src phosphorylation terminates cortactin activation of N-WASP and WASP.  相似文献   

15.
Cytochrome-P450 phosphorylation as a functional switch   总被引:3,自引:0,他引:3  
Xenobiotic metabolizing cytochromes P450 (CYP) were shown to be phosphorylated in vitro (using purified protein kinases together with purified CYPs), in intact cells (in V79 cells after transfection of cDNAs coding for individual CYPs, in diagnostic mutants, in hepatocytes), and in whole organisms (rats). CYP phosphorylation is highly isoenzyme selective in that only some CYPs are phosphorylated. Protein kinase A (PKA) was identified as a major catalyst for the phosphorylation of CYPs. The PKA recognition motif Arg-Arg-X-Ser is present in several members of the CYP2 family, but is used by only some of them, most notably by CYP2B1/2B2 and CYP2E1. For CYP2B1 it was shown that a substantial portion but not the entire pool of CYP2B1 molecules is phosphorylated and that the phosphorylated portion is catalytically fully inactive. Phosphorylation of CYPs is a very fast process (visible at the earliest time point experimentally investigated after introduction of phosphorylation-supporting measures, which was 2.5min) and the phosphorylated protein is immediately inactive (i.e., the time curves of phosphorylation and inactivation are superimposable). Thus in contrast to the slower process controlling CYP activities by enzyme induction, CYP phosphorylation controls CYP function like a switch. The physical entity of the switch was identified by site-directed mutation as the phosphoryl acceptor Ser in the PKA recognition motif, which is Ser(138) in CYPs 2B (rat CYP2B1 and rabbit CYP2B4) and its homologous Ser(139) in CYP2E1. The function of this switch was demonstrated for the drastic changes in the control of the genotoxic metabolites of mutagenic carcinogens as well as for the control of effectiveness versus unwanted toxicity of cytostatic cancer drugs.  相似文献   

16.
Nerve growth factor (NGF) mediates the survival and differentiation of neurons by stimulating the tyrosine kinase activity of the TrkA/NGF receptor. Here, we identify SHP-1 as a phosphotyrosine phosphatase that negatively regulates TrkA. SHP-1 formed complexes with TrkA at Y490, and dephosphorylated it at Y674/675. Expression of SHP-1 in sympathetic neurons induced apoptosis and TrkA dephosphorylation. Conversely, inhibition of endogenous SHP-1 with a dominant-inhibitory mutant stimulated basal tyrosine phosphorylation of TrkA, thereby promoting NGF-independent survival and causing sustained and elevated TrkA activation in the presence of NGF. Mice lacking SHP-1 had increased numbers of sympathetic neurons during the period of naturally occurring neuronal cell death, and when cultured, these neurons survived better than wild-type neurons in the absence of NGF. These data indicate that SHP-1 can function as a TrkA phosphatase, controlling both the basal and NGF-regulated level of TrkA activity in neurons, and suggest that SHP-1 regulates neuron number during the developmental cell death period by directly regulating TrkA activity.  相似文献   

17.
In many ornithophilous Loranthaceae pollination is accompanied by an explosive opening of the flowers, and diverse mechanisms have evolved in different genera to bring this about. These are described for the African genera Erianthemum, Englerina, Tapinanthus, Globimetula, Vanwykia and Plicosepalus. In many genera tensions within the stamens cause the tubular corolla to split along the petal junctions to form window-like fenestrae. The flowers are pollinated mainly by sunbirds which insert their beaks through the fenestrae in search of the abundant nectar. This action causes the tube to split and the stamens to coil inwards explosively. In Globimetula and many species of Tapinanthus pigment is secreted along the edges of the specialized petal segments of the head, the spathulae. Probing along these secretory junctions causes the spathulae to reflex; further probing splits the corolla tube, and allows the stamens to coil inwards explosively. In Globimetula reflexure of the petals exposes the central column of stamens, between which secondary fenestrae are developed. In Plicosepalus curvature of the corolla tube is connected with a more specialized fenestral structure; flower opening is not explosive, and the open flowers continue to be visited regularly by sunbirds. In Vanwykia an early stage in the development of explosive flower-opening is found.  相似文献   

18.
The in vitro activity of many pore-forming toxins, in particular, the rate of increase in the membrane conductance induced by the channel-forming domain (P178) of colicin E1 is maximum at an acidic pH. However, after P178 binding at acidic conditions, a subsequent pH shift from 4 to 6 on both sides of the planar bilayer lipid membrane caused a large increase in the trans-membrane current which was solely due to an increase in the number of open channels. This effect required the presence of anionic lipid. Replacing the His440 residue of P178 by alanine eliminated the pH-shift effect thereby showing that it is associated with deprotonation of this histidine residue. It was concluded that alkalinization-induced weakening of the electrostatic interactions between colicin and the membrane surface facilitates conformational changes required for the transition of membrane-bound colicin molecules to an active channel state.  相似文献   

19.
20.
The time constant of the process producing the delay in Na inactivation development as determined by the two pulse method (delay) was extracted and compared to that of the slowest Na activation process 3 for the I Na during the conditioning pulse of that same determination. delay and two pulse inactivation c values were computer generated using a nonlinear least squares algorithm. h and single pulse inactivation h values were independently generated for each determination also with the aid of the computer using the same non-linear least squares algorithm. In one determination at 2 mV, c was 4.68 and delay 0.494 ms while h was 4.70 and 3 0.491 ms for a c/h of 0.996 and a delay/3 of 1.006. Mean delay/3 from five determinations in four axons, both Cs and K perfused, and spanning a potential range of-27 to 2mV was 1.068. The precursor process to inactivation is channel opening. Some fraction of channels presumably inactivate via another route where prior channel opening is not required.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号