首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background

Amyotrophic lateral sclerosis (ALS), the most frequent adult onset motor neuron disease, is associated with hypermetabolism linked to defects in muscle mitochondrial energy metabolism such as ATP depletion and increased oxygen consumption. It remains unknown whether muscle abnormalities in energy metabolism are causally involved in the destruction of neuromuscular junction (NMJ) and subsequent motor neuron degeneration during ALS.

Methodology/Principal Findings

We studied transgenic mice with muscular overexpression of uncoupling protein 1 (UCP1), a potent mitochondrial uncoupler, as a model of muscle restricted hypermetabolism. These animals displayed age-dependent deterioration of the NMJ that correlated with progressive signs of denervation and a mild late-onset motor neuron pathology. NMJ regeneration and functional recovery were profoundly delayed following injury of the sciatic nerve and muscle mitochondrial uncoupling exacerbated the pathology of an ALS animal model.

Conclusions/Significance

These findings provide the proof of principle that a muscle restricted mitochondrial defect is sufficient to generate motor neuron degeneration and suggest that therapeutic strategies targeted at muscle metabolism might prove useful for motor neuron diseases.  相似文献   

2.

Objective

To test a method for performing electrical impedance myography (EIM) in the mouse hind limb for the assessment of disease status in neuromuscular disease models.

Methods

An impedance measuring device consisting of a frame with electrodes embedded within an acrylic head was developed. The head was rotatable such that data longitudinal and transverse to the major muscle fiber direction could be obtained. EIM measurements were made with this device on 16 healthy mice and 14 amyotrophic lateral sclerosis (ALS) animals. Repeatability was assessed in both groups.

Results

The technique was easy to perform and provided good repeatability in both healthy and ALS animals, with intra-session repeatability (mean ± SEM) of 5% ±1% and 12% ±2%, respectively. Significant differences between healthy and ALS animals were also identified (e.g., longitudinal mean 50 kHz phase was 18±0.6° for the healthy animals and 14±1.0° for the ALS animals, p = 0.0025).

Conclusions

With this simple device, the EIM data obtained is highly repeatable and can differentiate healthy from ALS animals.

Significance

EIM can now be applied to mouse models of neuromuscular disease to assess disease status and the effects of therapy.  相似文献   

3.

Background

Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disorder characterized by selective motoneurons degeneration. There is today no clear-cut pathogenesis sequence nor any treatment. However growing evidences are in favor of the involvement, besides neurons, of several partners such as glia and muscles. To better characterize the time course of pathological events in an animal model that recapitulates human ALS symptoms, we investigated functional and cellular characteristics of hSOD1G93A mice.

Methods and Findings

We have evaluated locomotor function of hSOD1G93A mice through dynamic walking patterns and spontaneous motor activity analysis. We detected early functional deficits that redefine symptoms onset at 60 days of age, i.e. 20 days earlier than previously described. Moreover, sequential combination of these approaches allows monitoring of motor activity up to disease end stage. To tentatively correlate early functional deficit with cellular alterations we have used flow cytometry and immunohistochemistry approaches to characterize neuromuscular junctions, astrocytes and microglia. We show that (1) decrease in neuromuscular junction''s number correlates with motor impairment, (2) astrocytes number is not altered at pre- and early-symptomatic ages but intraspinal repartition is modified at symptoms onset, and (3) microglia modifications precede disease onset. At pre-symptomatic age, we show a decrease in microglia number whereas at onset of the disease two distinct microglia sub-populations emerge.

Conclusions

In conclusion, precise motor analysis updates the onset of the disease in hSOD1G93A mice and allows locomotor monitoring until the end stage of the disease. Early functional deficits coincide with alterations of neuromuscular junctions. Importantly, we identify different sets of changes in microglia before disease onset as well as at early-symptomatic stage. This finding not only brings a new sequence of cellular events in the natural history of the disease, but it may also provide clues in the search for biomarkers of the disease, and potential therapeutic targets.  相似文献   

4.
5.

Background

The blood-brain barrier (BBB), blood-spinal cord barrier (BSCB), and blood-cerebrospinal fluid barrier (BCSFB) control cerebral/spinal cord homeostasis by selective transport of molecules and cells from the systemic compartment. In the spinal cord and brain of both ALS patients and animal models, infiltration of T-cell lymphocytes, monocyte-derived macrophages and dendritic cells, and IgG deposits have been observed that may have a critical role in motor neuron damage. Additionally, increased levels of albumin and IgG have been found in the cerebrospinal fluid in ALS patients. These findings suggest altered barrier permeability in ALS. Recently, we showed disruption of the BBB and BSCB in areas of motor neuron degeneration in the brain and spinal cord in G93A SOD1 mice modeling ALS at both early and late stages of disease using electron microscopy. Examination of capillary ultrastructure revealed endothelial cell degeneration, which, along with astrocyte alteration, compromised the BBB and BSCB. However, the effect of these alterations upon barrier function in ALS is still unclear. The aim of this study was to determine the functional competence of the BSCB in G93A mice at different stages of disease.

Methodology/Principal Findings

Evans Blue (EB) dye was intravenously injected into ALS mice at early or late stage disease. Vascular leakage and the condition of basement membranes, endothelial cells, and astrocytes were investigated in cervical and lumbar spinal cords using immunohistochemistry. Results showed EB leakage in spinal cord microvessels from all G93A mice, indicating dysfunction in endothelia and basement membranes and confirming our previous ultrastructural findings on BSCB disruption. Additionally, downregulation of Glut-1 and CD146 expressions in the endothelial cells of the BSCB were found which may relate to vascular leakage.

Conclusions/Significance

Results suggest that the BSCB is compromised in areas of motor neuron degeneration in ALS mice at both early and late stages of the disease.  相似文献   

6.

Background

Amyotrophic lateral sclerosis (ALS) is an incurable neurodegenerative disorder characterised by progressive degeneration of motor neurons leading to death, typically within 3–5 years of symptom onset. The diagnosis of ALS is largely reliant on clinical assessment and electrophysiological findings. Neither specific investigative tools nor reliable biomarkers are currently available to enable an early diagnosis or monitoring of disease progression, hindering the design of treatment trials.

Methodology/Principal Findings

In this study, using the well-established SOD1G93A mouse model of ALS and a new in-house ELISA method, we have validated that plasma neurofilament heavy chain protein (NfH) levels correlate with both functional markers of late stage disease progression and treatment response. We detected a significant increase in plasma levels of phosphorylated NfH during disease progression in SOD1G93A mice from 105 days onwards. Moreover, increased plasma NfH levels correlated with the decline in muscle force, motor unit survival and, more significantly, with the loss of spinal motor neurons in SOD1 mice during this critical period of decline. Importantly, mice treated with the disease modifying compound arimoclomol had lower plasma NfH levels, suggesting plasma NfH levels could be validated as an outcome measure for treatment trials.

Conclusions/Significance

These results show that plasma NfH levels closely reflect later stages of disease progression and therapeutic response in the SOD1G93A mouse model of ALS and may potentially be a valuable biomarker of later disease progression in ALS.  相似文献   

7.

Background

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by progressive death of motor neurons. Although the pathogenesis of ALS remains unclear, several cellular processes are known to be involved, including apoptosis. A previous study revealed the apoptosis-related gene c-Abl to be upregulated in sporadic ALS motor neurons.

Methodology/Findings

We investigated the possibility that c-Abl activation is involved in the progression of ALS and that c-Abl inhibition is potentially a therapeutic strategy for ALS. Using a mouse motor neuron cell line, we found that mutation of Cu/Zn-superoxide dismutase-1 (SOD1), which is one of the causative genes of familial ALS, induced the upregulation of c-Abl and decreased cell viability, and that the c-Abl inhibitor dasatinib inhibited cytotoxicity. Activation of c-Abl with a concomitant increase in activated caspase-3 was observed in the lumbar spine of G93A-SOD1 transgenic mice (G93A mice), a widely used model of ALS. The survival of G93A mice was improved by oral administration of dasatinib, which also decreased c-Abl phosphorylation, inactivated caspase-3, and improved the innervation status of neuromuscular junctions. In addition, c-Abl expression in postmortem spinal cord tissues from sporadic ALS patients was increased by 3-fold compared with non-ALS patients.

Conclusions/Significance

The present results suggest that c-Abl is a potential therapeutic target for ALS and that the c-Abl inhibitor dasatinib has neuroprotective properties in vitro and in vivo.  相似文献   

8.

Background

Accumulating evidence indicates that RNA oxidation is involved in a wide variety of neurological diseases and may be associated with neuronal deterioration during the process of neurodegeneration. However, previous studies were done in postmortem tissues or cultured neurons. Here, we used transgenic mice to demonstrate the role of RNA oxidation in the process of neurodegeneration.

Methodology/Principal Findings

We demonstrated that messenger RNA (mRNA) oxidation is a common feature in amyotrophic lateral sclerosis (ALS) patients as well as in many different transgenic mice expressing familial ALS-linked mutant copper-zinc superoxide dismutase (SOD1). In mutant SOD1 mice, increased mRNA oxidation primarily occurs in the motor neurons and oligodendrocytes of the spinal cord at an early, pre-symptomatic stage. Identification of oxidized mRNA species revealed that some species are more vulnerable to oxidative damage, and importantly, many oxidized mRNA species have been implicated in the pathogenesis of ALS. Oxidative modification of mRNA causes reduced protein expression. Reduced mRNA oxidation by vitamin E restores protein expression and partially protects motor neurons.

Conclusion/Significance

These findings suggest that mRNA oxidation is an early event associated with motor neuron deterioration in ALS, and may be also a common early event preceding neuron degeneration in other neurological diseases.  相似文献   

9.

Background

Motor neuron degeneration in SOD1G93A transgenic mice begins at the nerve terminal. Here we examine whether this degeneration depends on expression of mutant SOD1 in muscle fibers.

Methodology/Principal Findings

Hindlimb muscles were transplanted between wild-type and SOD1G93A transgenic mice and the innervation status of neuromuscular junctions (NMJs) was examined after 2 months. The results showed that muscles from SOD1G93A mice did not induce motor terminal degeneration in wildtype mice and that muscles from wildtype mice did not prevent degeneration in SOD1G93A transgenic mice. Control studies demonstrated that muscles transplanted from SOD1G93A mice continued to express mutant SOD1 protein. Experiments on wildtype mice established that the host supplied terminal Schwann cells (TSCs) at the NMJs of transplanted muscles.

Conclusions/Significance

These results indicate that expression of the mutant protein in muscle is not needed to cause motor terminal degeneration in SOD1G93A transgenic mice and that a combination of motor terminals, motor axons and Schwann cells, all of which express mutant protein may be sufficient.  相似文献   

10.

Background

Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease characterised by motor neuron degeneration. How this disease affects the central motor network is largely unknown. Here, we combined for the first time structural and functional imaging measures on the motor network in patients with ALS and healthy controls.

Methodology/Principal Findings

Structural measures included whole brain cortical thickness and diffusion tensor imaging (DTI) of crucial motor tracts. These structural measures were combined with functional connectivity analysis of the motor network based on resting state fMRI. Focal cortical thinning was observed in the primary motor area in patients with ALS compared to controls and was found to correlate with disease progression. DTI revealed reduced FA values in the corpus callosum and in the rostral part of the corticospinal tract. Overall functional organisation of the motor network was unchanged in patients with ALS compared to healthy controls, however the level of functional connectedness was significantly correlated with disease progression rate. Patients with increased connectedness appear to have a more progressive disease course.

Conclusions/Significance

We demonstrate structural motor network deterioration in ALS with preserved functional connectivity measures. The positive correlation between functional connectedness of the motor network and disease progression rate could suggest spread of disease along functional connections of the motor network.  相似文献   

11.

Background

amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease that leads to death within a few years after diagnosis. Malnutrition and weight loss are frequent and are indexes of poor prognosis. Total body fat and fat distribution have not been studied in ALS patients.

Objectives

Our aim was to describe adipose tissue content and distribution in ALS patients.

Design

We performed a cross-sectional study in a group of ALS patients (n = 62, mean disease duration 22 months) along with age and gender matched healthy controls (n = 62) using a MRI-based method to study quantitatively the fat distribution.

Results

Total body fat of ALS patients was not changed as compared with controls. However, ALS patients displayed increased visceral fat and an increased ratio of visceral to subcutaneous fat. Visceral fat was not correlated with clinical severity as judged using the ALS functional rating scale (ALS-FRS-R), while subcutaneous fat in ALS patients correlated positively with ALS-FRS-R and disease progression. Multiple regression analysis showed that gender and ALS-FRS-R, but not site of onset, were significant predictors of total and subcutaneous fat. Increased subcutaneous fat predicted survival in male patients but not in female patients (p<0.05).

Conclusions

Fat distribution is altered in ALS patients, with increased visceral fat as compared with healthy controls. Subcutaneous fat content is a predictor of survival of ALS patients.  相似文献   

12.

Objective

Rodents are poor model for human hyperlipidemias because total cholesterol and low density lipoprotein levels are very low on a normal diet. Lipoprotein metabolism is primarily regulated by hepatocytes and we therefore assessed whether chimeric mice extensively repopulated with human cells can model human lipid and bile acid metabolism.

Design

FRG [ F ah(−/−) R ag2(−/−)Il2r g (−/−)]) mice were repopulated with primary human hepatocytes. Serum lipoprotein lipid composition and distribution (VLDL, LDL, and HDL) was analyzed by size exclusion chromatography. Bile was analyzed by LC-MS or by GC-MS. RNA expression levels were measured by quantitative RT-PCR.

Results

Chimeric mice displayed increased LDL and VLDL fractions and a lower HDL fraction compared to wild type, thus significantly shifting the ratio of LDL/HDL towards a human profile. Bile acid analysis revealed a human-like pattern with high amounts of cholic acid and deoxycholic acid (DCA). Control mice had only taurine-conjugated bile acids as expcted, but highly repopulated mice had glycine-conjugated cholic acid as found in human bile. RNA levels of human genes involved in bile acid synthesis including CYP7A1, and CYP27A1 were significantly upregulated as compared to human control liver. However, administration of recombinant hFGF19 restored human CYP7A1 levels to normal.

Conclusion

Humanized-liver mice showed a typical human lipoprotein profile with LDL as the predominant lipoprotein fraction even on a normal diet. The bile acid profile confirmed presence of an intact enterohepatic circulation. Although bile acid synthesis was deregulated in this model, this could be fully normalized by FGF19 administration. Taken together these data indicate that chimeric FRG-mice are a useful new model for human lipoprotein and bile-acid metabolism.  相似文献   

13.

Background

Amyotrophic lateral sclerosis (ALS) is a progressive and fatal motor neuron disease, and protein aggregation has been proposed as a possible pathogenetic mechanism. However, the aggregate protein constituents are poorly characterized so knowledge on the role of aggregation in pathogenesis is limited.

Methodology/Principal Findings

We carried out a proteomic analysis of the protein composition of the insoluble fraction, as a model of protein aggregates, from familial ALS (fALS) mouse model at different disease stages. We identified several proteins enriched in the detergent-insoluble fraction already at a preclinical stage, including intermediate filaments, chaperones and mitochondrial proteins. Aconitase, HSC70 and cyclophilin A were also significantly enriched in the insoluble fraction of spinal cords of ALS patients. Moreover, we found that the majority of proteins in mice and HSP90 in patients were tyrosine-nitrated. We therefore investigated the role of nitrative stress in aggregate formation in fALS-like murine motor neuron-neuroblastoma (NSC-34) cell lines. By inhibiting nitric oxide synthesis the amount of insoluble proteins, particularly aconitase, HSC70, cyclophilin A and SOD1 can be substantially reduced.

Conclusion/Significance

Analysis of the insoluble fractions from cellular/mouse models and human tissues revealed novel aggregation-prone proteins and suggests that nitrative stress contribute to protein aggregate formation in ALS.  相似文献   

14.

Background

Patients with ALS may be exposed to variable degrees of chronic intermittent hypoxia. However, all previous experimental studies on the effects of hypoxia in ALS have only used a sustained hypoxia model and it is possible that chronic intermittent hypoxia exerts effects via a different molecular mechanism from that of sustained hypoxia. No study has yet shown that hypoxia (either chronic intermittent or sustained) can affect the loss of motor neurons or cognitive function in an in vivo model of ALS.

Objective

To evaluate the effects of chronic intermittent hypoxia on motor and cognitive function in ALS mice.

Methods

Sixteen ALS mice and 16 wild-type mice were divided into 2 groups and subjected to either chronic intermittent hypoxia or normoxia for 2 weeks. The effects of chronic intermittent hypoxia on ALS mice were evaluated using the rotarod, Y-maze, and wire-hanging tests. In addition, numbers of motor neurons in the ventral horn of the spinal cord were counted and western blot analyses were performed for markers of oxidative stress and inflammatory pathway activation.

Results

Compared to ALS mice kept in normoxic conditions, ALS mice that experienced chronic intermittent hypoxia had poorer motor learning on the rotarod test, poorer spatial memory on the Y-maze test, shorter wire hanging time, and fewer motor neurons in the ventral spinal cord. Compared to ALS-normoxic and wild-type mice, ALS mice that experienced chronic intermittent hypoxia had higher levels of oxidative stress and inflammation.

Conclusions

Chronic intermittent hypoxia can aggravate motor neuronal death, neuromuscular weakness, and probably cognitive dysfunction in ALS mice. The generation of oxidative stress with activation of inflammatory pathways may be associated with this mechanism. Our study will provide insight into the association of hypoxia with disease progression, and in turn, the rationale for an early non-invasive ventilation treatment in patients with ALS.  相似文献   

15.

Introduction

Osteoarthritis (OA) is associated with the metabolic syndrome, however the underlying mechanisms remain unclear. We investigated whether low density lipoprotein (LDL) accumulation leads to increased LDL uptake by synovial macrophages and affects synovial activation, cartilage destruction and enthesophyte/osteophyte formation during experimental OA in mice.

Methods

LDL receptor deficient (LDLr−/−) mice and wild type (WT) controls received a cholesterol-rich or control diet for 120 days. Experimental OA was induced by intra-articular injection of collagenase twelve weeks after start of the diet. OA knee joints and synovial wash-outs were analyzed for OA-related changes. Murine bone marrow derived macrophages were stimulated with oxidized LDL (oxLDL), whereupon growth factor presence and gene expression were analyzed.

Results

A cholesterol-rich diet increased apolipoprotein B (ApoB) accumulation in synovial macrophages. Although increased LDL levels did not enhance thickening of the synovial lining, S100A8 expression within macrophages was increased in WT mice after receiving a cholesterol-rich diet, reflecting an elevated activation status. Both a cholesterol-rich diet and LDLr deficiency had no effect on cartilage damage; in contrast, ectopic bone formation was increased within joint ligaments (fold increase 6.7 and 6.1, respectively). Moreover, increased osteophyte size was found at the margins of the tibial plateau (4.4 fold increase after a cholesterol-rich diet and 5.3 fold increase in LDLr−/− mice). Synovial wash-outs of LDLr−/− mice and supernatants of macrophages stimulated with oxLDL led to increased transforming growth factor-beta (TGF-β) signaling compared to controls.

Conclusions

LDL accumulation within synovial lining cells leads to increased activation of synovium and osteophyte formation in experimental OA. OxLDL uptake by macrophages activates growth factors of the TGF-superfamily.  相似文献   

16.

Background

Amyotrophic lateral sclerosis (ALS) is a life-threatening neurodegenerative disease involving upper and lower motor neurons loss. Clinical features are highly variable among patients and there are currently few known disease-modifying factors underlying this heterogeneity. Serotonin is involved in a range of functions altered in ALS, including motor neuron excitability and energy metabolism. However, whether serotoninergic activity represents a disease modifier of ALS natural history remains unknown.

Methodology

Platelet and plasma unconjugated concentrations of serotonin and plasma 5-HIAA, the major serotonin metabolite, levels were measured using HPLC with coulometric detection in a cohort of 85 patients with ALS all followed-up until death and compared to a control group of 29 subjects.

Principal Findings

Platelet serotonin levels were significantly decreased in ALS patients. Platelet serotonin levels did not correlate with disease duration but were positively correlated with survival of the patients. Univariate Cox model analysis showed a 57% decreased risk of death for patients with platelet serotonin levels in the normal range relative to patients with abnormally low platelet serotonin (p = 0.0195). This protective effect remained significant after adjustment with age, gender or site of onset in multivariate analysis. Plasma unconjugated serotonin and 5-HIAA levels were unchanged in ALS patients compared to controls and did not correlate with clinical parameters.

Conclusions/Significance

The positive correlation between platelet serotonin levels and survival strongly suggests that serotonin influences the course of ALS disease.  相似文献   

17.

Background

Paraoxonase 1 (PON1) is a protein found associated with high density lipoprotein (HDL), thought to prevent oxidative modification of low-density lipoprotein (LDL). This enzyme has been implicated in lowering the risk of cardiovascular disease. Anoxia-reoxygenation and oxidative stress are important elements in cardiovascular and cerebrovascular disease. However, the role of PON1 in anoxia-reoxygenation or anoxic injury is unclear. We hypothesize that PON1 prevents anoxia-reoxygenation injury. We set out to determine whether PON1 expression in Drosophila melanogaster protects against anoxia-reoxygenation (A-R) induced injury.

Methods

Wild type (WT) and transgenic PON1 flies were exposed to anoxia (100% Nitrogen) for different time intervals (from 1 to 24 hours). After the anoxic period, flies were placed in room air for reoxygenation. Activity and survival of flies was then recorded.

Results

Within 5 minutes of anoxia, all flies fell into a stupor state. After reoxygenation, survivor flies resumed activity with some delay. Interestingly, transgenic flies recovered from stupor later than WT. PON1 transgenic flies had a significant survival advantage after A-R stress compared with WT. The protection conferred by PON1 expression was present regardless of the age or dietary restriction. Furthermore, PON1 expression exclusively in CNS conferred protection.

Conclusion

Our results support the hypothesis that PON1 has a protective role in anoxia-reoxygenation injury, and its expression in the CNS is sufficient and necessary to provide a 100% survival protection.  相似文献   

18.

Background

Dietary supplementation with methyl donors can influence the programming of epigenetic patterns resulting in persistent alterations in disease susceptibility and behavior. However, the dietary effects of methyl donors on pain have not been explored. In this study, we evaluated the effects of dietary methyl donor content on pain responses in mice.

Methods

Male and female C57BL/6J mice were treated with high or low methyl donor diets either in the perinatal period or after weaning. Mechanical and thermal nociceptive sensitivity were measured before and after incision.

Results

Mice fed high or low methyl donor diets displayed equal weight gain over the course of the experiments. When exposed to these dietary manipulations in the perinatal period, only male offspring of dams fed a high methyl donor diet displayed increased mechanical allodynia. Hindpaw incision in these animals caused enhanced nociceptive sensitization, but dietary history did not affect the duration of sensitization. For mice exposed to high or low methyl donor diets after weaning, no significant differences were observed in mechanical or thermal nociceptive sensitivity either at baseline or in response to hindpaw incision.

Conclusions

Perinatal dietary factors such as methyl donor content may impact pain experiences in later life. These effects, however, may be specific to sex and pain modality.  相似文献   

19.
Lougheed R  Turnbull J 《PloS one》2011,6(10):e23141

Background

Methylene blue (MB) is a drug with a long history and good safety profile, and with recently-described features desirable in a treatment for ALS.

Methodology/Principal Findings

We tested oral MB in inbred high-copy number SOD1 G93A mice, at 25 mg/kg/day beginning at 45 days of age. We measured disease onset, progression, and survival. There was no difference in disease onset between MB-treated mice and controls, although subgroup analysis showed a modest but statistically significant delay in disease onset in MB-treated female mice only (control 122±10.2 versus MB 129±10.0 days). MB-treated mice of both sexes spent more time in less severe stages of disease, and less time in later, more severe stages of disease. There was a non-significant trend to longer survival in MB-treated animals (control males reached endpoint at 161±14.1 days, versus 166±10.0 days for MB-treated animals, and control females reached endpoint at 171±6.2 days versus 173±13.4 days for MB-treated animals).

Conclusions/Significance

In spite of a strong theoretical rationale, MB had no significant effects on onset or survival in the inbred SOD1 G93A mouse model of ALS.  相似文献   

20.
DS Wald  JK Morris  NJ Wald 《PloS one》2012,7(7):e41297

Background

A Polypill is proposed for the primary prevention of cardiovascular disease in people judged to be at risk on account of their age alone. Its efficacy in reducing cholesterol and blood pressure is uncertain.

Methods

We conducted a randomized double-blind placebo-controlled crossover trial of a Polypill among individuals aged 50+ without a history of cardiovascular disease and compared the reductions with those predicted from published estimates of the effects of the individual drugs. Participants took the Polypill (amlodipine 2.5 mg, losartan 25 mg, hydrochlorothiazide 12.5 mg and simvastatin 40 mg) each evening for 12 weeks and a placebo each evening for 12 weeks in random sequence. The mean within-person differences in blood pressure and low density lipoprotein (LDL) cholesterol at the end of each 12 week period were determined.

Results

84 out of 86 participants completed both treatment periods. The mean systolic blood pressure was reduced by 17.9 mmHg (95% CI, 15.7–20.1) on the Polypill, diastolic blood pressure by 9.8 mmHg (8.1–11.5), and LDL cholesterol by 1.4 mmol/L (1.2–1.6), reductions of 12%, 11%, and 39% respectively. The results were almost identical to those predicted; 18.4 mmHg, 9.7 mmHg, and 1.4 mmol/L respectively.

Conclusion

The Polypill resulted in the predicted reductions in blood pressure and LDL cholesterol. Long term reductions of this magnitude would have a substantial effect in preventing heart attacks and strokes.

Trial Registration

Controlled-Trials.com ISRCTN36672232   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号