首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 27 毫秒
1.
BACKGROUND: Single nucleotide polymorphisms (SNPs) represent the most frequent form of genetic variations. Some of the most sensitive methods for SNP genotyping employ synthetic oligonucleotides, such as the peptide nucleic acid (PNA). We introduce a new method combining allele-specific hybridization, PNA technology, and flow cytometric detection. We tested the design by genotyping a Danish basal cell carcinoma cohort of 80 individuals for an A/C SNP in exon 6 of the XPD gene. METHODS: Genomic DNA was amplified by a two-step polymerase chain reaction (PCR) in the presence of fluorescein-dyed primers and fluorescein-12-dUTP. The allele-specific PNA molecules were covalently coupled to carboxylated microspheres with and without rhodamine. Allele-specific hybridization between PCR products and immobilized PNA was carried out at 60 degrees C followed by flow cytometric detection. RESULTS: We present a fully functional two-bead genotyping system based on PNA capture and flow cytometric detection used for the correct and fast regenotyping of a Danish basal cell carcinoma cohort. CONCLUSIONS: This new assay presents a simple, rapid, and robust method for SNP genotyping for laboratories equipped with a standard flow cytometer. Moreover, this system offers potential for multiplexing and will be operational for middle-scale genotyping.  相似文献   

2.
Microarrays to characterize single nucleotide polymorphisms (SNPs) provide a cost-effective and rapid method (under 24 h) to genotype microbes as an alternative to sequencing. We developed a pipeline for SNP discovery and microarray design that scales to 100's of microbial genomes. Here we tested various SNP probe design strategies against 8 sequenced isolates of Bacillus anthracis to compare sequence and microarray data. The best strategy allowed probe length to vary within 32–40 bp to equalize hybridization free energy. This strategy resulted in a call rate of 99.52% and concordance rate of 99.86% for finished genomes. Other probe design strategies averaged substantially lower call rates (94.65–96.41%) and slightly lower concordance rates (99.64–99.80%). These rates were lower for draft than finished genomes, consistent with higher incidence of sequencing errors and gaps. Highly accurate SNP calls were possible in complex soil and blood backgrounds down to 1000 copies, and moderately accurate SNP calls down to 100 spiked copies. The closest genome to the spiked strain was correctly identified at only 10 spiked copies. Discrepancies between sequence and array data did not alter the SNP-based phylogeny, regardless of the probe design strategy, indicating that SNP arrays can accurately place unsequenced isolates on a phylogeny.  相似文献   

3.
In this report, a reliable peptide nucleic acid (PNA) microarray-based method for accurately detecting single nucleotide polymorphism (SNP) in human genes is described. The technique relies on the mismatched cleavage activity of a single-strand specific (SSS) nuclease. PCR amplification was performed to prepare gene fragments containing the mutation sites. The amplified fragments were then employed as templates for the SSS nuclease reaction using chimeric probes, modified with biotin at the 5' end and extended with a unique anchoring zip-code complement sequence at the 3' end. The SSS nuclease promotes cleavage of heteroduplex DNAs at base mismatched positions to produce crumbled chimeric probes in the presence of imperfectly matching template strands. In contrast, the probes remain intact when they interact with perfectly matched template strands. Only the non-fragmented probes generate fluorescence signals after treatment with streptavidin-Cy3 on the PNA zip-code array. This methodology was used to successfully genotype selected Korean-specific BRCA mutation sites with wild type and mutant samples. The investigation has led to the development of a reliable SSS nuclease-based system for the diagnosis of human genetic mutations or SNPs.  相似文献   

4.
We established a genotyping system for a panel of 150 SNPs in the coding regions of mitochondrial DNA based on multiplex tag-array minisequencing. We show the feasibility of this system for simultaneous identification of individuals and prediction of the geographical origin of the mitochondrial DNA population lineage of the sample donors by genotyping the panel of SNPs in 265 samples representing nine different populations from Africa, Europe, and Asia. Nearly 40,000 genotypes were produced in the study, with an overall genotyping success rate of 95% and accuracy close to 100%. The gene diversity value of the panel of 150 SNPs was 0.991, compared to 0.995 for sequencing 500 nucleotides of the hypervariable regions I and II of mtDNA. For 17 individuals with identical sequences in the hypervariable regions of mtDNA, our panel of SNPs increased the power of discrimination. We observed 144 haplotypes that correspond to previously determined mitochondrial "haplogroups," and they allowed prediction of the origin of the maternal population lineage of 97% of the analyzed samples.  相似文献   

5.
Until recently, the identification of plants relied on conventional techniques, such as morphological, anatomical and chemical profiling, that are often inefficient or unfeasible in certain situations. Extensive literature exists describing the use of polymerase chain reaction (PCR) DNA-based identification techniques, which offer a reliable platform, but their broad application is often limited by a low throughput. However, hybridization-based microarray technology represents a rapid and high-throughput tool for genotype identification at a molecular level. Using an innovative technique, a 'Subtracted Diversity Array' (SDA) of 376 features was constructed from a pooled genomic DNA library of 49 angiosperm species, from which pooled non-angiosperm genomic DNA was subtracted. Although not the first use of a subtraction technique for genotyping, the SDA method was superior in accuracy, sensitivity and efficiency, and showed high-throughput capacity and broad application. The SDA technique was validated for potential genotyping use, and the results indicated a successful subtraction of non-angiosperm DNA. Statistical analysis of the polymorphic features from the pilot study enabled the establishment of accurate phylogenetic relationships, confirming the potential use of the SDA technique for genotyping. Further, the technique substantially enriched the presence of polymorphic sequences; 68% were polymorphic when using the array to differentiate six angiosperm clades (Asterids, Rosids, Caryophyllids, Ranunculids, Monocots and Eumagnoliids). The 'proof of concept' experiments demonstrate the potential of establishing a highly informative, reliable and high-throughput microarray-based technique for novel application to sequence independent genotyping of major angiosperm clades.  相似文献   

6.
SNP Chart is a Java application for the visualization and interpretation of microarray genotyping data primarily derived from arrayed primer extension-based chemistries. Spot intensity output files from microarray analysis tools are imported into SNP Chart, together with a multi-channel TIFF image of the original array experiment and a list of the actual single nucleotide polymorphisms (SNPs) being tested. Data from different and/or replicate probes that interrogate the same SNP, but that are scattered across the array grid, can be reassembled into a single chart format, specific for the SNP. This allows a quick and very effective 'visualization'/'quality control' of the data from multiple probes for the same SNP that can be easily interpreted and manually scored as a genotype. AVAILABILITY: http://www.snpchart.ca.  相似文献   

7.
We present an oligonucleotide microarray ("MetaboChip") based on the arrayed primer extension (APEX) technique, allowing genotyping of single nucleotide polymorphisms (SNPs) in genes of interest for cancer susceptibility and pharmacogenetics. APEX consists of a sequencing reaction primed by an oligonucleotide anchored with its 5' end to a glass slide and terminating one nucleotide before the polymorphic site. The extension with one fluorescently labeled dideoxynucleotide complementary to the template reveals the polymorphism. Ninety-three SNPs in 42 genes were selected among those resequenced in the context of the SNP500 project, using a set of 102 reference DNA samples from the Coriell Biorepository. Selected SNPs belong to the following genes: ADH1B, ALDH2, APEX, CDKN2A, COMT, CYP1A1, CYP1A2, CYP1B1, CYP2A6, CYP2C19, CYP2C9, CYP2E1, CYP3A4, DRD2, DRD4, EPHX1, ERCC1, ERCC2, ERCC4, ERCC5, GRPR, GSTA4, GSTM3, GSTP1, GSTT2, LIG3, MDM2, MGMT, MPO, NAT1, NAT2, NQO1, OGG1, PCNA, POLB, SLC6A3, SOD2, TP53, XRCC1, XRCC2, XRCC3, and XRCC9. We assessed the performance of APEX by comparing the results obtained with MetaboChip against those reported by the SNP500. Among 88 SNPs that yielded signals, 6 showed less than 99% of concordance, whereas 82 performed accurately, showing that APEX is a reliable and sensitive genotyping method.  相似文献   

8.
In the present study, we exploited the superior features of peptide nucleic acids (PNAs) to develop an efficient PNA zip-code microarray for the detection of hepatocyte nuclear factor-1alpha (HNF-1alpha) mutations that cause type 3 maturity onset diabetes of the young (MODY). A multi-epoxy linker compound was synthesized and used to achieve an efficient covalent linking of amine-modified PNA to an aminated glass surface. PCR was performed to amplify the genomic regions containing the mutation sites. The PCR products were then employed as templates in a subsequent multiplex single base extension reaction using chimeric primers with 3' complementarity to the specific mutation site and 5' complementarity to the respective PNA zip-code sequence on the microarray. The primers were extended by a single base at each corresponding mutation site in the presence of biotin-labeled ddNTPs, and the products were hybridized to the PNA microarray. Compared to the corresponding DNA, the PNA zip-code sequence showed a much higher duplex specificity for the complementary DNA sequence. The PNA zip-code microarray was finally stained with streptavidin-R-phycoerythrin to generate a fluorescent signal. Using this strategy, we were able to correctly diagnose several mutation sites in exon 2 of HNF-1alpha with a wild-type and mutant samples including a MODY3 patient. This work represents one of the few successful applications of PNA in DNA chip technology.  相似文献   

9.
We selected 125 candidate single nucleotide polymorphisms (SNPs) in genes belonging to the human type 1 interferon (IFN) gene family and the genes coding for proteins in the main type 1 IFN signalling pathway by screening databases and by in silico comparison of DNA sequences. Using quantitative analysis of pooled DNA samples by solid-phase mini-sequencing, we found that only 20% of the candidate SNPs were polymorphic in the Finnish and Swedish populations. To allow more effective validation of candidate SNPs, we developed a four-colour microarray-based mini-sequencing assay for multiplex, quantitative allele frequency determination in pooled DNA samples. We used cyclic mini-sequencing reactions with primers carrying 5′-tag sequences, followed by capture of the products on microarrays by hybridisation to complementary tag oligonucleotides. Standard curves prepared from mixtures of known amounts of SNP alleles demonstrate the applicability of the system to quantitative analysis, and showed that for about half of the tested SNPs the limit of detection for the minority allele was below 5%. The microarray-based genotyping system established here is universally applicable for genotyping and quantification of any SNP, and the validated system for SNPs in type 1 IFN-related genes should find many applications in genetic studies of this important immunoregulatory pathway.  相似文献   

10.
A microarray-based method has been developed for scoring thousands of DNAs for a co-dominant molecular marker on a glass slide. The approach was developed to detect insertional polymorphism of transposons and works well with single nucleotide polymorphism (SNP) markers. Biotin- terminated allele-specific PCR products are spotted unpurified onto streptavidin-coated glass slides and visualised by hybridisation of fluorescent detector oligonucleotides to tags attached to the allele- specific PCR primers. Two tagged primer oligonucleotides are used per locus and each tag is detected by hybridisation to a concatameric DNA probe labelled with multiple fluorochromes.  相似文献   

11.
The acceptance of rRNA sequence diversity as a criterion for phylogenetic discrimination heralds the transition from microbiological identification methods based on phenotypic markers to assays employing molecular techniques. Robust amplification assays and sensitive direct detection methods are rapidly becoming the standard protocols of microbiology laboratories. The emergence of peptide nucleic acid (PNA) from its status as an academic curiosity to that of a promising and powerful molecular tool, coincides with, and complements, the transition to rapid molecular tests. The unique properties of PNA enable the development of assay formats, which go above and beyond the possibilities of DNA probes. PNA probes targeting specific rRNA sequences of yeast and bacteria with clinical, environmental, and industrial value have recently been developed and applied to a variety of rapid assay formats. Some simply incorporate the sensitivity and specificity of PNA probes into traditional methods, such as membrane filtration and microscopic analysis; others involve recent techniques such as real-time and end-point analysis of amplification reactions.  相似文献   

12.
PNA beacons for duplex DNA   总被引:12,自引:0,他引:12  
We report here on the hybridization of peptide nucleic acid (PNA)-based molecular beacons (MB) directly to duplex DNA sites locally exposed by PNA openers. Two stemless PNA beacons were tested, both featuring the same recognition sequence and fluorophore-quencher pair (Fluorescein and DABCYL, respectively) but differing in arrangement of these groups and net electrostatic charge. It was found that one PNA beacon rapidly hybridized, with the aid of openers, to its complementary target within duplex DNA at ambient conditions via formation of a PD-like loop. In contrast, the other PNA beacon bound more slowly to preopened duplex DNA target and only at elevated temperatures, although it readily hybridized to single-stranded (ss) DNA target. Besides a higher selectivity of hybridization provided by site-specific PNA openers, we expect this approach to be very useful in those MB applications when denaturation of the duplex DNA analytes is unfavorable or undesirable. Furthermore, we show that PNA beacons are advantageous over DNA beacons for analyzing unpurified/nondeproteinized DNA samples. This feature of PNA beacons and our innovative hybridization strategy may find applications in emerging fluorescent DNA diagnostics.  相似文献   

13.
This study was conducted to identify genomic regions (quantitative trait loci, QTLs) affecting salt tolerance during germination in tomato. Germination response of an F2 population of a cross between UCT5 (Lycopersicon esculentum, salt-sensitive) and LA716 (L. pennellii, salt-tolerant) was evaluated at a salt-stress level of 175 mM NaCl + 17.5 mM CaCl2 (water potential ca. –950 kPa). Germination was scored visually as radicle protrusion at 6 h intervals for 30 consecutive days. Individuals at both extremes of the response distribution (i.e., salt-tolerant and salt-sensitive individuals) were selected. The selected individuals were genotyped at 84 genetic markers including 16 isozymes and 68 restriction fragment length polymorphisms (RFLPs). Trait-based marker analysis (TBA) which measures changes (differences) in marker allele frequencies in selected lines was used to identify marker-linked QTLs. Eight genomic regions were identified on seven tomato chromosomes bearing genes (QTLs) with significant effects on this trait. The results confirmed our previous suggestion that salt tolerance during germination in tomato is polygenically controlled. The salt-tolerant parent contributed favorable QTL alleles on chromosomes 1, 3, 9 and 12 whereas the salt sensitive parent contributed favorable QTL alleles on chromosomes 2, 7 and 8. The identification of favorable alleles in both parents suggests the likelihood of recovering transgressive segregants in progeny derived from these parental genotypes. The results can be used for marker-assisted selection and breeding of salt-tolerant tomatoes.  相似文献   

14.
PNA technology     
Peptide nucleic acids (PNA) are deoxyribonucleic acid (DNA) mimics with a pseudopeptide backbone. PNA is an extremely good structural mimic of DNA (or of ribonucleic acid [RNA]), and PNA oligomers are able to form very stable duplex structures with Watson-Crick complementary DNA and RNA (or PNA) oligomers, and they can also bind to targets in duplex DNA by helix invasion. Therefore, these molecules are of interest in many areas of chemistry, biology, and medicine, including drug discovery, genetic diagnostics, molecular recognition, and the origin of life. Recent progress in studies of PNA properties and applications is reviewed.  相似文献   

15.
16.
A method for kappa-casein genotyping of bulls   总被引:1,自引:0,他引:1  
A method for kappa-casein genotyping in bulls has been developed. By analysis of DNA polymorphisms we are able to discriminate between the kappa-casein variant A and B in the bulls. This method will be an efficient tool in selection for the most desirable kappa-casein variant.  相似文献   

17.
Summary. A method for K-casein genotyping in bulls has been developed. By analysis of DNA polymorphisms we are able to discriminate between the K-casein variant A and B in the bulls. This method will be an efficient tool in selection for the most desirable K-casein variant.  相似文献   

18.
Genotypic characterization of Symbiodinium symbionts in hard corals has routinely involved coring, or the removal of branches or a piece of the coral colony. These methods can potentially underestimate the complexity of the Symbiodinium community structure and may produce lesions. This study demonstrates that microscale sampling of individual coral polyps provided sufficient DNA for identifying zooxanthellae clades by RFLP analyses, and subclades through the use of PCR amplification of the ITS-2 region of rDNA and denaturing-gradient gel electrophoresis. Using this technique it was possible to detect distinct ITS-2 types of Symbiodinium from two or three adjacent coral polyps. These methods can be used to intensely sample coral-symbiont population/communities while causing minimal damage. The effectiveness and fine scale capabilities of these methods were demonstrated by sampling and identifying phylotypes of Symbiodinium clades A, B, and C that co-reside within a single Montastraea faveolata colony.  相似文献   

19.

Background

The tomato (Solanum lycopersium L.) is the most widely grown vegetable in the world. It was domesticated in Latin America and Italy and Spain are considered secondary centers of diversification. This food crop has experienced severe genetic bottlenecks and modern breeding activities have been characterized by trait introgression from wild species and divergence in different market classes.

Results

With the aim to examine patterns of polymorphism, characterize population structure and identify putative loci under positive selection, we genotyped 214 tomato accessions (which include cultivated landraces, commercial varieties and wild relatives) using a custom-made Illumina SNP-panel. Most of the 175 successfully scored SNP loci were found to be polymorphic. Population structure analysis and estimates of genetic differentiation indicated that landraces constitute distinct sub-populations. Furthermore, contemporary varieties could be separated in groups (processing, fresh and cherry) that are consistent with the recent breeding aimed at market-class specialization. In addition, at the 95% confidence level, we identified 30, 34 and 37 loci under positive selection between landraces and each of the groups of commercial variety (cherry, processing and fresh market, respectively). Their number and genomic locations imply the presence of some extended regions with high genetic variation between landraces and contemporary varieties.

Conclusions

Our work provides knowledge concerning the level and distribution of genetic variation within cultivated tomato landraces and increases our understanding of the genetic subdivision of contemporary varieties. The data indicate that adaptation and selection have led to a genomic signature in cultivated landraces and that the subpopulation structure of contemporary varieties is shaped by directed breeding and largely of recent origin. The genomic characterization presented here is an essential step towards a future exploitation of the available tomato genetic resources in research and breeding programs.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-14-835) contains supplementary material, which is available to authorized users.  相似文献   

20.
The 2‐(o‐nitrophenyl)‐propyl (NPP) group is used as caging group to mask the nucleobases adenine and cytosine in N‐(2‐aminoethyl)glycine peptide nucleic acids (aeg‐PNA). The adeninyl and cytosinyl nucleo amino acid building blocks Fmoc‐aNPP‐aeg‐OH and Fmoc‐cNPP‐aeg‐OH were synthesized and incorporated into PNA sequences by Fmoc solid phase synthesis relying on high stability of the NPP nucleobase protecting group toward Fmoc‐cleavage, coupling, capping, and resin cleavage conditions. Removal of the nucleobase caging group was achieved by UV‐LED irradiation at 365 nm. The nucleobase caging groups provided sterical crowding effecting the Watson–Crick base pairing, and thereby, the PNA double strand stabilities. Duplex formation can completely be suppressed for complementary PNA containing caging groups in both strands. PNA/PNA recognition can be completely restored by UV light‐triggered release of the photolabile protecting group. Copyright © 2013 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号