首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Abstract. During the annual life cycle of the bumble bee Bombus terrestris (L.) colony, there is a stage characterized by worker reproduction in the presence of the queen. It has been proposed that this is a result of a decrease in queen inhibition. This hypothesis was examined by studying the effects of queens taken from colonies at different stages of development on several aspects of worker physiology and behaviour: rates of Juvenile Hormone (JH) release in vitro , ovary development, and behaviour associated with reproduction. After optimizing and validating the radiochemical assay for JH release for bumble bee workers, we found that queenless workers had significantly more developed ovaries and higher rates of release of JH than did queenright workers, confirming and extending previous findings that suggest that bumblebee ovarian development is under JH control. Mated queens, separated from their colony and brood, can have the same inhibitory effect on the reproductive development of callow workers. In contrast, workers confined with virgin queens or in queenless groups demonstrated a significantly higher rate of release of JH, overt aggression and threatening behaviours. However, there were no differences in rates of release of JH between workers confined in groups in the laboratory with queens taken from colonies either before or after the onset of worker reproduction. Furthermore, overt aggression and threatening behaviours were similar and low in both types of groups. These results gave no support to the hypothesis that a decrease in queen inhibition is associated with the onset of worker reproduction. We also show that young workers reared in colonies either before or after worker reproduction occurs, or in queenless colonies, all demonstrated similar, low rates of release of JH. These results suggest that older workers may inhibit the corpora allata of younger workers in queenless colonies.  相似文献   

2.
Summary Social group viability results from a trade-off between cooperation and conflict, driven respectively by group and individual interests. Workers of the slave-making ants are known to have a high egg-laying potential, leading to a potential conflict over male production. Queenright and queenless nests of the slave-making ant Protomognathus americanus show a near-linear dominance hierarchy, and dominance rank is correlated with reproductive activity. Genetic and behavioural analysis revealed that the queen, when present in the nest, is behaviourally dominant and monopolises reproduction. In queenless nests, the haploid (male) brood is produced primarily by a single worker. We suggest the dominance hierarchy regulates male production, between the queen and her workers as well as among workers. Comparison of our results to another study allows us to place our data in an ecological context. This slave-making ant species appears to fit the concession model of reproductive skew: where resources (i.e. host nests) are poor, there is strong skew and where resources are richer reproduction is more egalitarian.Received 31 July 2003; revised 7 October 2003; accepted 9 October 2003.  相似文献   

3.
The role of ecdysteroids in the regulation of dominance and reproduction in social Hymenoptera is little explored. In the current study we compared ecdysteroid titers in hemolymph of individual queen and worker bumble bees (Bombus terrestris) that differ in their behavior, reproductive status and social environment. Egg-laying queens that head colonies and have ovaries exhibiting all stages of follicle development, had a higher ecdysteroid titer than virgin queens whose ovaries contained only follicles at initial stages. In workers, the relationship between ecdysteroid titers and follicle development appears to be more complex and to be influenced by the bee's social status and social environment. Shortly after emergence, young workers had only follicles at the initial stages of oogenesis and they exhibited a low ecdysteroid titer. No significant correlation was detected between ovary status and ecdysteroid titer in workers, with some workers showing activated ovaries but low ecdysteroid titers. However, at six days of age, a trend towards higher ecdysteroid titer was observed for workers in queenless groups, a condition characterized by rapid follicle development relative to queenright conditions. In these queenless groups, high social status was associated with high ecdysteroid titers. By contrast, in queenright workers ecdysteroid titers were low, even for bees with presumably high social status that had activated ovaries and were observed performing oviposition behavior. This study suggests that ecdysteroids are involved in regulation of reproduction in B. terrestris.  相似文献   

4.
In many species of social Hymenoptera, totipotency of workers induces potential conflicts over reproduction. However, actual conflicts remain rare despite the existence of a high reproductive skew. One of the current hypotheses assumes that conflicts are costly and thus selected against. We studied the costs of conflicts in 20 colonies of the queenless ant Diacamma sp. "nilgiri" by testing the effects of conflicts on labor and worker immunocompetence, two parameters closely linked to the indirect fitness of workers. In this species, the dominant female is the only mated worker (gamergate) and monopolizes reproduction. We experimentally induced conflicts by splitting each colony into two groups, a control group containing the gamergate and an orphaned group displaying aggressions until a new dominant worker arises. Immunocompetence was assessed by the clearance of Escherichia coli bacteria that we injected into the ants. Time budget analysis revealed a lower rate of labor and especially brood care in orphaned groups, supporting the existence of a cost of conflicts on labor. Fifteen days after splitting, a lower immunocompetence was also found in orphaned groups, which concerned workers involved and not involved in conflicts. We propose that this immunosuppression induced by conflicts could stem from stress and not directly from aggression.  相似文献   

5.
Abstract. Bumble bee workers (Bombus bifarius, Hymenoptera: Apidae) exhibit aggression toward one another after the colony begins producing female reproductive offspring (the competition phase). Workers in competition phase colonies must continue to perform in‐nest tasks, such as nest thermoregulation, and to forage for food, to rear the reproductives to maturity. Therefore, competition phase workers are faced with potentially conflicting pressures to work for their colonies, or to compete for direct reproduction. The effects of reproductive competition on worker task performance were quantified by measuring relationships of worker body size, reproductive physiology, and aggression with their rates of task performance. If worker division of labour was strongly affected by competition, it was predicted that fecund workers would avoid performing nest maintenance and foraging tasks, focusing instead on reproductive behaviour. Furthermore, it was predicted that fecund workers would dominate their nest mates, and that subordinate workers would perform nonreproductive tasks at higher rates. Worker aggression was associated closely with direct reproductive competition. Both aggression and brood interaction rates were related positively with ooctye development. Furthermore, foraging was associated negatively with ovarian development. However, in‐nest and foraging task performance rates were not associated with social aggression. The results support a partial role for reproductive competition in worker polyethism. Although worker aggression did not directly affect polyethism, reproductively competent workers avoided foraging tasks that would remove them from egg‐laying opportunities. Reproductively competent workers did perform in‐nest tasks, suggesting that these tasks entail little cost in terms of reproductive competition.  相似文献   

6.
The partitioning of reproduction among individuals in communally breeding animals varies greatly among species, from the monopolization of reproduction (high reproductive skew) to similar contribution to the offspring in others (low skew). Reproductive skew models explain how relatedness or ecological constraints affect the magnitude of reproductive skew. They typically assume that individuals are capable of flexibly reacting to social and environmental changes. Most models predict a decrease of skew when benefits of staying in the group are reduced. In the ant Leptothorax acervorum, queens in colonies from marginal habitats form dominance hierarchies and only the top‐ranking queen lays eggs (“functional monogyny”). In contrast, queens in colonies from extended coniferous forests throughout the Palaearctic rarely interact aggressively and all lay eggs (“polygyny”). An experimental increase of queen:worker ratios in colonies from low‐skew populations elicits queen–queen aggression similar to that in functionally monogynous populations. Here, we show that this manipulation also results in increased reproductive inequalities among queens. Queens from natural overwintering colonies differed in the number of developing oocytes in their ovaries. These differences were greatly augmented in queens from colonies with increased queen:worker ratios relative to colonies with a low queen:worker ratio. As assumed by models of reproductive skew, L. acervorum colonies thus appear to be capable of flexibly adjusting reproductive skew to social conditions, yet in the opposite way than predicted by most models.  相似文献   

7.
Understanding the determinants of reproductive skew (the partitioning of reproduction among co‐breeding individuals) is one of the major questions in social evolution. In ants, multiple‐queen nests are common and reproductive skew among queens has been shown to vary tremendously both within and between species. Proximate determinants of skew may be related to both queen and worker behaviour. Queens may attempt to change their reproductive share through dominance interactions, egg eating and by changing individual fecundity. Conversely, workers are in a position to regulate the reproductive output of queens when rearing the brood. This paper investigates queen behaviour at the onset of egg laying and the effect of queen fecundity and worker behaviour on brood development and reproductive shares of multiple queens in the ant Formica fusca. The study was conducted in two‐queen laboratory colonies where the queens produced only worker offspring. The results show that in this species reproductive apportionment among queens is not based on dominance behaviour and aggression, but rather on differences in queen fecundity. We also show that, although the queen fecundity at the onset of brood rearing is a good indicator of her final reproductive output, changes in brood composition occur during brood development. Our results highlight the importance of queen fecundity as a major determinant of her reproductive success. They furthermore suggest that in highly derived polygyne species, such as the Formica ants, direct interactions as a means for gaining reproductive dominance have lost their importance.  相似文献   

8.
Reproductive skew - the extent to which reproduction is unevenly shared between individuals in a social group - varies greatly between and within animal species. In this study, we investigated how queens share parentage in polygynous (multiple queen) colonies of the Mediterranean ant Pheidole pallidula. We used highly polymorphic microsatellites markers to determine parentage of gynes (new queens), males and workers in P. pallidula field colonies. The comparison of the genotypes of young and adult workers revealed a very low queen turnover (less than 2%). The first main finding of the study of reproductive skew in these colonies was that there was a significant departure from equal contribution of queens to gyne, male and worker production. Reproductive skew was greater for male production than for queen and worker production. There was no relationship between the magnitude of the reproductive skew and the number of reproductive queens per colony, their relatedness and the overall colony productivity, some of the factors predicted to influence the extent of reproductive skew. Finally, our study revealed for the first time a trade-off in the relative contribution of nestmate queens to gyne and worker production. The queens contributing more to gyne production contributed significantly less to worker production.  相似文献   

9.
The truce between honey bee (Apis spp.) workers over reproduction is broken in the absence of their queen. Queenright workers generally abstain from personal reproduction, raising only the queen’s offspring. Queenless workers activate their ovaries, produce eggs, and reduce the rate at which they destroy worker-laid eggs, so that some eggs are reared to maturity. Reduced policing of worker-laid eggs renders queenless nests vulnerable to worker reproductive parasitism (WRP), and may result in the colony raising eggs of unrelated (non-natal) workers that parasitize it. Queenless colonies of A. florea are heavily parasitized with the eggs of non-natal workers. However, queenless colonies often abscond upon disturbance and build a small comb in which to rear their own male offspring. We investigated three naturally occurring orphaned colonies to determine if they are also parasitized. We show that WRP is present in orphaned colonies, and non-natal workers have significantly higher rates of ovary activation than natal workers. In contrast to experimentally manipulated colonies, in our samples, natal and non-natal workers had statistically equal reproductive success, but this may have been due to the small number of non-natals present.  相似文献   

10.
We examined worker reproduction in queenless and queenright Apis cerana colonies to determine if they are parasitized by workers from other nests. The results demonstrate that 2-6% of workers in queenright colonies are from another nest (non-natal), but these workers are not statistically more likely to have activated ovaries than natal workers, and are therefore unlikely to be active parasites. However, in queenless colonies we found a significant difference between the proportion of non-natal (72.7%) and natal (36.3%) workers with activated ovaries. Non-natal workers also had significantly higher reproductive success than natal workers: 1.8% of workers were non-natal, but these laid 5.2% of the eggs and produced 5.5% of the pupae. Unlike A. florea, the proportion of non-natal workers does not increase in queenless nests.  相似文献   

11.
Honeybee workers, Apis mellifera, can reproduce in queenless colonies. The production of queen-like pheromones may be associated with their reproductive activity and induce nestmates to respond by feeding them. Such frequent trophallaxis could supply their protein needs for oogenesis, constituting a social pathway to worker reproduction. However, some individuals can develop ovaries without producing queen pheromones. The consumption of protein-rich pollen could be an alternative solitary pathway for them to satisfy this dietary requirement. In order to investigate the way in which workers obtain proteins for oogenesis, we created orphaned worker groups and determined ovarian and pheromonal development in relation to pollen consumption of selected workers. Individuals that did not consume pollen had significantly more developed ovaries and produced significantly more queen mandibular pheromone than workers that fed directly on pollen. Our results suggest that workers producing queen-like secretions are fed trophallactically. However, reproductive workers that lacked queen pheromones had consumed little or no pollen, suggesting that they also obtained trophallaxis. Although pollen consumption might contribute to sustaining oogenesis, it does not appear to be sufficient. Trophallaxis as a means of obtaining proteins seems to be necessary to attain reproductive status in queenless honeybee colonies.  相似文献   

12.
Restricted reproduction is traditionally posited as the defining feature of eusocial insect workers. The discovery of worker reproduction in foreign colonies challenges this view and suggests that workers’ potential to pursue selfish interests may be higher than previously believed. However, whether such reproductive behaviour truly relies on a reproductive decision is still unknown. Workers’ reproductive decisions thus need to be investigated to assess the extent of workers’ reproductive options. Here, we show in the bumblebee Bombus terrestris that drifting is a distinct strategy by which fertile workers circumvent competition in their nest and reproduce in foreign colonies. By monitoring workers’ movements between colonies, we show that drifting is a remarkably dynamic behaviour, widely expressed by both fertile and infertile workers. We demonstrate that a high fertility is, however, central in determining the propensity of workers to enter foreign colonies as well as their subsequent reproduction in host colonies. Moreover, our study shows that the drifting of fertile workers reflects complex decision-making processes associated with in-nest reproductive competition. This novel finding therefore adds to our modern conception of cooperation by showing the previously overlooked importance of alternative strategies which enable workers to assert their reproductive interests.  相似文献   

13.
Social parasitism is widespread in the eusocial insects. Although social parasites often show a reduced worker caste, unmated workers can also parasitize colonies. Cape honeybee workers, Apis mellifera capensis, can establish themselves as social parasites in host colonies of other honeybee subspecies. However, it is unknown whether social parasitism by laying workers also occurs among Cape honeybee colonies. In order to address this question we genotyped worker offspring of six queenless A. m. capensis colonies and determined the maternity of the reproducing workers. We found that three non-nestmate workers dominated reproduction in a host colony and produced 62.5% of the progeny. Our results show that social parasitism by laying workers is a naturally occurring part of the biology of Cape honeybees. However, such social parasitism is not frequently found (6.41% of the total worker offspring) probably due to co-evolutionary processes among A. m. capensis resulting in an equilibrium between selection for reproductive dominance in workers, colony maintenance and queen adaptation. Received 28 July 2005; revised 19 September and 11 November 2005; accepted 16 November 2005.  相似文献   

14.
Summary: An important evolutionary characteristic of the formicine subfamily Ponerinae is the occurrence of various alternative reproductive tactics within single species. In Platythyrea punctata Smith, 1858, queens, gamergates and parthenogenetic workers co-occur in the same species. Morphological queens, both alate and dealate, were present in only 29 percent of the colonies collected in Florida, but absent from colonies collected in Barbados and Puerto Rico. One of the six queens which were dissected (three alate and three dealate) was found to be inseminated but not fertile. Instead, in most queenless colonies, a single uninseminated worker monopolized reproduction by means of thelytokous parthenogenesis, i.e., it produced female offspring from unfertilized eggs. A single mated, reproductive worker (gamergate) was found dominating reproduction in the presence of an inseminated alate queen in one of the Florida colonies. Thelytokous parthenogenesis was examined in artificial groups of virgin laboratory-reared workers, where one worker typically monopolized reproduction despite the presence of several individuals with elongated ovaries. In 16 colonies collected in Florida, a total of 66 individuals differed morphologically from queens and workers. Their thorax morphology varied from a worker-like to an almost queen-like structure. We refer to these individuals as "intercastes" (sensu Peeters, 1991a). The remarkable complexity of reproductive strategies renders P. punctata unique within ants.  相似文献   

15.
Summary. In social Hymenoptera worker policing that inhibits direct reproduction of workers occurs mainly in the two ways: (1) destruction of worker progenies (postovipositional policing), and (2) aggression towards ovary-developed workers (preovipositional policing). In the queenless ponerine ant, Diacamma sp. from Japan, the existence of the former type of worker policing has been reported, whereas previous studies have failed to find the latter type. We examine the presence of the latter type of worker policing in this species using more careful observational methods. By a series of experiments reuniting previously separated orphaned and non-orphaned subcolonies we found the following facts. Immediately after the colony reunification, aggression frequently took place. Unlike the one-on-one dominance interaction that occurs in non-manipulated colonies, aggression was often directed towards a single victim from multiple attackers, grasping and pulling the victim. The duration of each aggressive interaction was on average far longer in this situation than that of usual dominance interactions. Most victims consisted of ex-orphan workers, while the majority of the attackers were ex-non-orphan workers. Dissection after the above behavioral observation revealed that the ovaries of the victims were on average more active, often containing mature oocytes, than those of non-victims, while the ovaries of attackers were always inactive. The above findings indicate that worker policing via immobilization, which has been reported in some other Ponerinae, also exists in Diacamma sp. from Japan.Received 22 April 2003; revised 28 June and 19 August 2004; accepted 1 September 2004.  相似文献   

16.
The rejection or acceptance of a foreign reproductive by an alien colony may not always be as straightforward as cue recognition between worker termites. This paper aims to determine whether adoption of foreign reproductives is caused simply by lack of intraspecific aggression or is contingent on the reproductive status of the host colony. In the fungus-culturing termites, Macrotermes gilvus (Hagen) and Macrotermes carbonarius (Hagen), major workers showed low intraspecific aggression towards non-nestmates irrespective of geographic distance between source colonies. Our results indicated that workers were hardly aggressive towards non-nestmates. In royal cell-swapping experiments, both species responded in a similar way: (1) in host colonies with nymphs present, the foreign reproductives were rejected; while (2) in host colonies without nymphs the foreign reproductives were either accepted and breeding resumed or the host colonies died eventually. Workers from the host colonies preferentially maintained offspring nymphs from which adultoid replacement reproductives develop rather than accepting foreign reproductives. There is no fitness gain for the queenless workers in accepting foreign reproductives; however, there is overall benefit to the newly born population.  相似文献   

17.
In a variety of social animals, individuals can secure reproductive rights through aggressive dominance. Direct individual benefits of aggression are widely recognized, but underlying costs affecting group productivity, and thus indirect benefits, are less clear. Costs of aggressive regulation of reproduction are especially important in small social insect colonies, where individual workers could potentially dominate male production. We estimated the energetic costs associated with the regulation of worker reproduction in the ponerine ant Pachycondyla obscuricornis, using the total CO2 emission of a colony as a measure. The level of CO2 emission of 12 experimental colonies varied significantly during five periods with varying levels of aggression and egg-laying. Overall, CO2 emission increased with the degree of fighting in a colony, but was not associated with differences in egg-laying. Aggressive regulation of reproduction and the formation of a dominance hierarchy thus pose an energetic cost to the colony. Furthermore, workers reduce their work-activities immediately after experimental orphaning, giving a further cost to the colony. These costs might influence the outcome of conflicts over male production in ants. This paper presents the first quantification of energetic costs of aggressive behavior regulating reproduction in ants.  相似文献   

18.
Since workers of the ant Aphaenogaster senilis can lay male eggs, reproductive conflict may occur between these workers. We examined the occurrence of worker conflicts in groups of workers either with or without the queen. Intranidal aggression was observed in each nest for 10 min each day, and the immatures produced were counted once a week for two months. Pairs of workers involved in aggression were taken regularly from each nest and used for chemical, morphological and anatomical analyses. The attacker and the attacked workers differed in their cuticular hydrocarbon profiles. The attacker and the attacked ants were at the same middle-aged fertile stage. The attacker ant was significantly larger and more fertile than the attacked ant, and more mature physiologically (poison gland was darker). There was apparently no stable hierarchy between laying workers. In the first weeks under queenless conditions, most eggs and larvae were destroyed, but they were later reared to obtain males. The intranidal worker aggression in this highly evolved ant is discussed in relation to dominance and worker policing. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

19.
Unlike the queens of other primitively eusocial species, Ropalidia marginata queens are strikingly docile and non-aggressive individuals, never at the top of the behavioural dominance hierarchy of their colonies. Nevertheless, these queens are completely successful at suppressing worker reproduction, suggesting that they do not use aggression but employ some other mechanism (e.g. pheromones) to do so. Upon removal of the queen from a colony, a single worker, the 'potential queen', immediately begins to display highly elevated levels of aggression towards her nest mates. This individual becomes the next docile queen if the original queen is not returned. We attempt to understand the function of the temporary and amplified dominance behaviour displayed by the potential queen. We find that the dominance behaviour shown by the potential queen is unrelated to the number of her nest mates, their dominance ranks or ovarian condition. This suggests that aggression may not be used to actively suppress other workers and counter threat. Instead we find evidence that dominance behaviour is required for the potential queen's rapid ovarian development, facilitating her speedy establishment as the sole reproductive individual in the colony.  相似文献   

20.
Bombus terrestris colonies go through two major phases: the “pre-competition phase” in which the queen is the sole reproducer and aggression is rare, and the “competition phase” in which workers aggressively compete over reproduction. Conflicts over reproduction are partially regulated by a group of octyl esters that are produced in Dufour’s gland of reproductively subordinate workers and protect them from being aggressed. However, workers possess octyl esters even before overt aggression occurs, raising the question of why produce the ester-signal before it is functionally necessary?In most insect societies, foragers show reduced aggression and low dominance rank. We hypothesize that ester production in B. terrestris is not only correlated with sterility but also with foraging, signaling cooperative behavior by subordinate workers. Such a signal helps to maintain social organization, reduce the cost of fights between reproductives and helpers, and increase colony productivity, enabling subordinates to gain greater inclusive fitness. We demonstrate that foragers produce larger amounts of esters compared to non-foragers, and that their amounts positively correlate with foraging efforts. We further suggest that task performance, potential fecundity, and aggression are interlinked, and that worker–worker interactions are involved in regulating foraging behavior.B. terrestris, being an intermediate phase between primitive and derived eusocial insects, provides an excellent model for understanding the evolution of early phases of eusociality. Our results, combined with those in primitively eusocial wasps, suggest that at early stages of social evolution, reproduction was regulated by a “primordial division of labor”, that comprised foragers and reproducers, which further evolved to a more complex division of labor, a hallmark of eusociality.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号