首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Biological nitrogen removal (BNR) based on partial nitrification and denitrification via nitrite is a cost-effective alternate to conventional nitrification and denitrification (via nitrate). The goal of this study was to investigate the microbial ecology, biokinetics, and stability of partial nitrification. Stable long-term partial nitrification resulting in 82.1 +/- 17.2% ammonia oxidation, primarily to nitrite (77.3 +/- 19.5% of the ammonia oxidized) was achieved in a lab-scale bioreactor by operation at a pH, dissolved oxygen and solids retention time of 7.5 +/- 0.1, 1.54 +/- 0.87 mg O(2)/L, and 3.0 days, respectively. Bioreactor ammonia oxidizing bacteria (AOB) and nitrite oxidizing bacteria (NOB) populations were most closely related to Nitrosomonas europaea and Nitrobacter spp., respectively. The AOB population fraction varied in the range 61 +/- 45% and was much higher than the NOB fraction, 0.71 +/- 1.1%. Using direct measures of bacterial concentrations in conjunction with independent activity measures and mass balances, the maximum specific growth rate (micro(max)), specific decay (b) and observed biomass yield coefficients (Y(obs)) for AOB were 1.08 +/- 1.03 day(-1), 0.32 +/- 0.34 day(-1), and 0.15 +/- 0.06 mg biomass COD/mg N oxidized, respectively. Corresponding micro(max), b, and Y(obs) values for NOB were 2.6 +/- 2.05 day(-1), 1.7 +/- 1.9 day(-1), and 0.04 +/- 0.02 mg biomass COD/mg N oxidized, respectively. The results of this study demonstrate that the highly selective partial nitrification operating conditions enriched for a narrow diversity of rapidly growing AOB and NOB populations unlike conventional BNR reactors, which host a broader diversity of nitrifying bacteria. Further, direct measures of microbial abundance enabled not only elucidation of mixed community microbial ecology but also estimation of key engineering parameters describing bioreactor systems supporting these communities.  相似文献   

2.
The anaerobic biodegradation of carbon tetrachloride (CT) was investigated during the granulation process by reducing the hydraulic retention time, increasing the chemical oxygen demand (COD) and CT loadings in a 2l laboratory-scale upflow anaerobic sludge blanket (UASB) reactor. Anaerobic unacclimated sludge and glucose were used as seed and primary substrate, respectively. Granules were developed 4 weeks after start-up, which grew at an accelerated rate for 8 months, and then became fully grown. The effect of operational parameters such as influent CT concentrations, COD, CT loading, food to biomass ratio and specific methanogenic activity (SMA) were also considered during granulation. The granular sludge cultivated had a maximum diameter of 2.1 mm and SMA of 1.6 g COD/g total suspended solid (TSS) day. COD and CT removal efficiencies of 92 and 88% were achieved when the reactor was firstly operating at CT and COD loading rates of 17.5 mg/l day and 12.5 g/l day, respectively. This corresponds to hydraulic retention time of 0.28 day and food to biomass ratio of 0.5 g COD/g TSS day. Kinetic coefficients of maximum specific substrate utilization rate, half velocity coefficient, growth yield coefficient and decay coefficient were determined to be 2.4 × 10–3 mg CT/TSS day–1, 1.37 mg CT/l, 0.69 mg TSS/mg CT and 0.046 day–1, respectively for CT biotransformation during granulation.  相似文献   

3.
Quantitative ratios of the biomasses of bacterio- and phytoplankton, interrelation of their production characteristics, and association of the functional characteristics with environmental factors were studied for Lake Khanka, the Yenisei River, and the Krasnoyarsk Reservoir. The ratio between the biomasses of bacterioplankton (Bb) and phytoplankton (Bp) in these water bodies was shown to vary within the range exceeding three orders of magnitude. Bacterioplankton biomass was relatively stable and varied from sample to sample by an order of magnitude. In more than 50% of the samples (total sample number, 495), bacterioplankton biomass exceeded that of the phytoplankton. The average Bb/Bp ratios for Lake Khanka, Yenisei River, and Krasnoyarsk Reservoir were 5.1, 2, and 1.4, respectively. Increased Bb/Bp ratios were found to correlate with elevated specific (per unit biomass) phytoplankton production. This finding indicated additional supply of biogenic elements to phytoplankton due to their recycling by bacterial communities. The ratio between bacterioplankton and phytoplankton production for Lake Khanka varied from year to year (0.07 to 0.76). For the Yenisei River and the Krasnoyarsk Reservoir these ratios were on average 0.19 and 0.27, respectively. According to the literature data for other water bodies, bacterial production may reach from 10 to over 100% of the primary production. The equilibrium density of bacterioplankton (maximal density of the population) in Lake Khanka was ~1.5 times higher than in the Yenisei River and the Krasnoyarsk Reservoir due to higher content of suspended mineral matter and associated organo-mineral detritus in the lake. The interaction between dissolved organic compounds sorbed on the surface of mineral particles results in chemical alteration of biochemically stable substrate into compounds which may be assimilated by aquatic microorganisms.  相似文献   

4.
Nitrification performance of a chemostat and a membrane-assisted bioreactor (MBR) was assessed at pilot scale for the treatment of sludge reject waters with NH4+-N concentrations up to 600 mg/L and low organic content (COD<200 mg/L). To prevent nitrifier washout the 1-m3 chemostat was operated at 20°C with minimum hydraulic retention time of F=2 days. At the 0.71 m3 MBR, F was successively reduced to 6.2 h. Complete sludge retention was achieved by means of a 2-m2 100,000-Dalton PES ultrafiltration membrane. Operation in crossflow mode with flow velocities from vF=2.4-3.7 m/s and transmembrane pressures (p=0.5-1.2 bar yielded a long-term permeate flux of 110 L/(m22h). In the MBR, nitrification rates up to 2,500 g N/(m32d) were measured with biomass concentrations between 4 and 15 g TSS/L. Despite low TSS values, about 0.2 g/L of the chemostat was able to nitrify 180 g N/(m32d). The microbial community composition differed considerably between the two reactors as determined by fluorescent in situ hybridisation (FISH) with rRNA-targeted oligonucleotide probes. For both reactors, the relative abundance of ammonia and nitrite oxidisers measured by FISH was consistent with results from dynamic simulation of the nitrification process.  相似文献   

5.
The integrated fixed-film activated sludge (IFAS) system is a variation of the activated sludge wastewater treatment process, in which hybrid suspended and attached biomass is used to treat wastewater. Although the function and performance of the IFAS system are well studied, little is known about its microbial community structure. In this study, the composition and diversity of the bacterial community of suspended and attached biomass samples were investigated in a full-scale IFAS system using a highthroughput pyrosequencing technology. Distinct bacterial community compositions were examined for each sample and appeared to be important for its features different from conventional activated sludge processes. The abundant bacterial groups were Betaproteobacteria (59.3%), Gammaproteobacteria (8.1%), Bacteroidetes (5.2%), Alphaproteobacteria (3.9%), and Actinobacteria (3.2%) in the suspended sample, whereas Actinobacteria (14.6%), Firmicutes (13.6%), Bacteroidetes (11.6%), Betaproteobacteria (9.9%), Gammaproteobacteria (9.25%), and Alphaproteobacteria (7.4%) were major bacterial groups in the attached sample. Regarding the diversity, totals of 3,034 and 1,451 operational taxonomic units were identified at the 3% cutoff for the suspended and attached samples, respectively. Rank abundance and community analyses demonstrated that most of the diversity was originated from rare species in the samples. Taken together, the information obtained in this study will be a base for further studies relating to the microbial community structure and function of the IFAS system.  相似文献   

6.
Potato chips industry wastewater was collected and analyzed for biochemical oxygen demand (BOD), chemical oxygen demand (COD), total suspended solids (TSS) and total carbohydrates. Two Aspergillus species, A. foetidus and A. niger, were evaluated for their ability to grow and produce biomass and reduce the organic load of the wastewater. A. foetidus MTCC 508 and A. niger ITCC 2012 were able to reduce COD by about 60% and produce biomass 2.4 and 2.85 gl(-1), respectively. Co-inoculation of both Aspergillus strains resulted in increased fungal biomass production and higher COD reduction than in individual culture at different culture pH. pH 6 was optimum for biomass production and COD reduction. Amendment of the wastewater with different N and P sources, increased the biomass production and COD reduction substantially. Under standardized conditions of pH 6 and amendment of wastewater with 0.1% KH2PO4 and 0.1% (NH4)2 SO4, a mixed culture gave 90% reduction in COD within 60 h of incubation.  相似文献   

7.
The performance of laboratory-scale attached growth (AG) and suspended growth (SG) membrane bioreactors (MBRs) was evaluated in treating synthetic wastewater simulating high strength domestic wastewater. This study investigated the influence of sponge suspended carriers in AG-MBR system, occupying 15% reactor volume, on the removal of chemical oxygen demand (COD), total nitrogen (TN) and total phosphorus (TP), and compared it to that of SG-MBR. Results showed that the removal efficiencies of COD, TN and TP in AG-MBR were 98%, 89% and 58%, respectively as compared to 98%, 74% and 38%, respectively in SG-MBR. Improved TN removal in AG-MBR systems was primarily based on simultaneous nitrification and denitrification (SND) process. These results infer that the presence of small bio-particles having higher microbial activity and the growth of complex biomass captured within the suspended sponge carriers resulted in improved TN and TP removal in AG-MBR.  相似文献   

8.
A two-stage anaerobic treatment pilot plant was tested for the treatment of raw domestic wastewater under temperatures ranging from 21 to 14 degrees C. The plant consisted of a hydrolytic upflow sludge bed (HUSB) digester (25.5m3) followed by an upflow anaerobic sludge blanket (UASB) digester (20.36m3). The hydraulic retention time (HRT) varied from 5.7 to 2.8h for the first stage (HUSB digester) and from 13.9 to 6.5h for the second stage (UASB digester). Total suspended solids (TSS), total chemical oxygen demand (TCOD), and biochemical oxygen demand (BOD) removals ranged from 76% to 89%, from 49% to 65%, and from 50% to 77%, respectively, for the overall system. The percentage of influent COD converted to methane was 36.1%, the hydrolysis of influent volatile suspended solids (VSS) reached 59.7% and excess biomass was 21.6% of the incoming VSS. Plant performance was influenced by the wastewater concentration and temperature, yet better results were obtained for influent COD higher than 250mg/l.  相似文献   

9.
The effect of hydraulic loading rate (HLR) and hydraulic retention time (HRT) on the bioremediation of municipal wastewater using a pilot scale subsurface horizontal flow constructed treatment wetland (HFCTW) vegetated with Cyprus papyrus was investigated. Different HLRs were applied to the treatment system namely 0.18, 0.10, and 0.07 m3/m2. d with corresponding HRTs of 1.8, 3.2, and 4.7 days, respectively. The flow rate was 8 m3/d, and the average organic loading rate (OLR) was 0.037 kg BOD/m3/d. Results showed that the performance of the HFCTW was linearly affected by decreasing the HLR and increasing the HRT. The highest treatment efficiency was achieved at HRT (4.7 days) and HLR (0.07 m3/m2. d). The percentage reductions of chemical oxygen demand (COD), biochemical oxygen demand (BOD), and total suspended solids (TSS) were 86%, 87%, and 80%, respectively. Satisfactory nutrient removal was obtained. Also, removal of 2–3 logs of bacterial indicators of pollution was achieved. The dry biomass of Cyperus was 7.7 kg/m2 and proved to be very efficient in nitrification processes due to high diversity of the roots that increase the treatment surface area.  相似文献   

10.
A bacterium designated Pseudonocardia sp. strain ENV478 was isolated by enrichment culturing on tetrahydrofuran (THF) and was screened to determine its ability to degrade a range of ether pollutants. After growth on THF, strain ENV478 degraded THF (63 mg/h/g total suspended solids [TSS]), 1,4-dioxane (21 mg/h/g TSS), 1,3-dioxolane (19 mg/h/g TSS), bis-2-chloroethylether (BCEE) (12 mg/h/g TSS), and methyl tert-butyl ether (MTBE) (9.1 mg/h/g TSS). Although the highest rates of 1,4-dioxane degradation occurred after growth on THF, strain ENV478 also degraded 1,4-dioxane after growth on sucrose, lactate, yeast extract, 2-propanol, and propane, indicating that there was some level of constitutive degradative activity. The BCEE degradation rates were about threefold higher after growth on propane (32 mg/h/g TSS) than after growth on THF, and MTBE degradation resulted in accumulation of tert-butyl alcohol. Degradation of 1,4-dioxane resulted in accumulation of 2-hydroxyethoxyacetic acid (2HEAA). Despite its inability to grow on 1,4-dioxane, strain ENV478 degraded this compound for > 80 days in aquifer microcosms. Our results suggest that the inability of strain ENV478 and possibly other THF-degrading bacteria to grow on 1,4-dioxane is related to their inability to efficiently metabolize the 1,4-dioxane degradation product 2HEAA but that strain ENV478 may nonetheless be useful as a biocatalyst for remediating 1,4-dioxane-contaminated aquifers.  相似文献   

11.
A partial nitrification system was investigated for 471 days under DO varying concentrations for assessing its stability and population dynamics. Within 130 days of operation at feed DO concentration of 1.0 ± 0.1 mg/L, more than 85% of nitrite was accumulated. Efficiency deteriorated when the feed DO concentration was increased to 4.2 ± 0.3 mg/L. Nitrite accumulation could not be re-established on decreasing feed DO to 1.0 ± 0.1 mg/L. Even at DO concentration of <0.05 mg/L, nitrate production was observed; a condition termed as anoxic nitrification. NOB was detected in the biomass even under this condition by Fluorescence in-situ hybridization (FISH) analysis. Through 16S rRNA gene sequencing a major fraction of unknown bacterial sequences closely resembling haloalkalophilic bacteria of marine origin were detected. The study indicated that these bacterial species might play a role in anoxic nitrification and that NOB could survive extreme low DO condition.  相似文献   

12.
Grazing by phagotrophic flagellates and ciliates is a major source of mortality for bacterioplankton in both marine and freshwater systems. Recent studies have demonstrated a positive relationship between clearance rate and prey size for bacterivorous protists. We tested the idea that, by selectively grazing the larger (more actively growing or dividing) cells in a bacterial assemblage, protists control bacterial standing stock abundances by directly cropping bacterial production. Samples of estuarine water were passed through 0.8-μm-pore-size filters (bacteria only) or 20-μm-mesh screens (bacteria and bacterivorous protists) and placed in dialysis tubing suspended in 7 liters of unfiltered water. Changes in total bacterial biovolume per milliliter (bacterial biomass), frequency of dividing cells (FDC), and average per cell biovolume were followed over a period of 24 h. In three experiments, the FDC increased more rapidly and attained higher values in water passed through 0.8-μm-pore-size filters (average, 5.1 to 8.9%; maximum, 15.5%) compared with FDC values in water passed through 20-μm-mesh screens (average, 2.7 to 5.3%; maximum, 6.7%). Increases in bacterial biomass per milliliter lagged behind increases in FDC by about 4 to 6 h. Grazed bacterial assemblages were characterized by lower total biomasses and smaller average cell sizes compared with those of cells in nongrazed assemblages. We conclude that bacterivorous protists control bacterial standing stock abundances partly by preferentially removing dividing cells. Selective grazing of the more actively growing cells may also explain, in part, the ability of slow-growing cells to persist in bacterioplankton assemblages.  相似文献   

13.
Summary A new approach to decreasing sludge production in aerobic biological wastewater treatment involving use of protozoa and metazoa was tested. The dissolved organics in the two synthetic wastewaters (based on acetic acid and methanol, respectively) tested were decomposed to >90% and the biomass production was decreased by 60–80%. The total sludge yield, expressed as total suspended solids per gram chemical oxygen demand removed, was 0.17 g TSS/g COD in the system fed acetic acid, whereas it was 0.05 g TSS/g COD in the system fed methanol. The explanation for this difference was that in the system fed methanol, dispersed bacteria were obtained that were easily grazed by the protozoa and metazoa in the predator stage. In the system fed acetic acid, the bacteria formed zoogloeal flocs, which protected them from grazing in the predator stage. With both carbon sources a significant release of nitrate (> 7 mg N/l) and of phosphate (> 2.5 mg P/l) was observed in the effluent.  相似文献   

14.
Chao Y  Zhang T 《Bioresource technology》2011,102(2):1549-1555
The growth behaviors of three bacterial species, i.e. Escherichia coli, Pseudomonas putida and Aquabaculum hongkongensis, in biofouling cake layer (attached form) were investigated using an unstirred dead-end continuous microfiltration system, and were compared with those in suspended form. Results showed that all the three bacteria had larger average growth rates in suspended form than in attached form under high substrates levels. Under oligotrophic conditions, the average growth rates in the attached form were faster than those in the suspended form, especially for A. hongkongensis. The growth behaviors analysis presented the same results due to all the tested bacteria had higher maximum growth rate and saturation constant in suspended form than attached form, indicating the dominant growth mode would be shifted from attached form to suspended form with substrate concentration increase. Finally, total filtration resistance determined in the experiments increased significantly with the bacterial growth in filtration system.  相似文献   

15.
A bacterium designated Pseudonocardia sp. strain ENV478 was isolated by enrichment culturing on tetrahydrofuran (THF) and was screened to determine its ability to degrade a range of ether pollutants. After growth on THF, strain ENV478 degraded THF (63 mg/h/g total suspended solids [TSS]), 1,4-dioxane (21 mg/h/g TSS), 1,3-dioxolane (19 mg/h/g TSS), bis-2-chloroethylether (BCEE) (12 mg/h/g TSS), and methyl tert-butyl ether (MTBE) (9.1 mg/h/g TSS). Although the highest rates of 1,4-dioxane degradation occurred after growth on THF, strain ENV478 also degraded 1,4-dioxane after growth on sucrose, lactate, yeast extract, 2-propanol, and propane, indicating that there was some level of constitutive degradative activity. The BCEE degradation rates were about threefold higher after growth on propane (32 mg/h/g TSS) than after growth on THF, and MTBE degradation resulted in accumulation of tert-butyl alcohol. Degradation of 1,4-dioxane resulted in accumulation of 2-hydroxyethoxyacetic acid (2HEAA). Despite its inability to grow on 1,4-dioxane, strain ENV478 degraded this compound for >80 days in aquifer microcosms. Our results suggest that the inability of strain ENV478 and possibly other THF-degrading bacteria to grow on 1,4-dioxane is related to their inability to efficiently metabolize the 1,4-dioxane degradation product 2HEAA but that strain ENV478 may nonetheless be useful as a biocatalyst for remediating 1,4-dioxane-contaminated aquifers.  相似文献   

16.
1 We quantified the effects of forest fire on littoral benthic macroinvertebrate biomass on a boreal subarctic plateau in Alberta, Canada. Water chemistry and benthos were collected from six lakes, 1 and 2 years following a 1995 fire which burned about 91% of their catchments (i.e. recently burnt lakes), and from four other lakes whose catchments burned between 1961 and 1985 (i.e. previously burnt lakes). Seven lakes whose catchments had not burned since at least 1957 served as reference systems.
2 Total benthic macroinvertebrate biomass and biomass of Chironomidae were 1.5‐ and 2‐fold (P<0.05) greater within recently burnt lakes than in reference systems, whereas the biomass of Oligochaeta (P=0.06) and Amphipoda (P=0.07) were marginally higher in burnt than reference lakes. Burnt lakes had greater colour (P<0.05) and marginally (P=0.06) higher concentrations of soluble reactive phosphorus than reference lakes.
3 Nutrient diffusing substrata deployed in a previously and a recently burnt lake indicated that littoral epilithic communities were co‐limited by the availability of phosphorus (P) and nitrogen (N), although co‐limitation was stronger in the previously burnt than the recently burnt lake. Epilithic chlorophyll a on natural stone surfaces in the recently burnt lake was also 3.5 times higher (P<0.05) than that from the previously burnt lake.
4 Among all 17 lakes, total benthic biomass and biomass of Chironomidae, Amphipoda and Nematoda, were significantly (P<0.05) or marginally (P=0.06) related to soluble reactive phosphorus (SRP) but not dissolved inorganic nitrogen or colour. These regressions explained between 11% and 64% of variation in benthic biomasses.
5 Linear regressions and second‐order polynomials explained 18% and 24% of the variation in concentrations of SRP and water colour with time since fire, respectively, and between 22% and 70% of variation in total biomass and biomass of the five dominant invertebrate groups. These analyses suggest that benthic biomasses continue to be elevated for about 15–20 years following fire before declining to pre‐disturbance levels.  相似文献   

17.
The feasibility of using methanotrophs in an attached-film, fluidized-bed (MAFFB) reactor system has been under investigation since 1987. Mixed culture, methane-utilizing attached biofilms were developed on diatomaceous earth particles and on granular activated carbon. The required feed gases, methane and oxygen, were supplied to the attached biofilm in disolved form using separate gas-liquid aeration columns. Biofilm growth was steady despite low influent dissolved methane concentrations (1 to 3 mg/L). A breeder MAFFB operated consistently for 4.1 years with attached biofilm concentrations as high as 51.7 g VS/L static-bed with minimal biomass wasting and with minimal buffer and nutrient inputs. The maximum biomass concentration observed was 75.6 g VS/L static-bed in a MAFFB reactor treating trichloroethene. Biofilm thickness reached 160 mum with typical values of 70 mum under methane and oxygen growht-rate-limited conditions. Biofilm densities of 120 to 190 g VS/L film were observed. Growth rates varied from <0.01/d to 0.17/d. Greater than 90% of the biomass concentration in the bed was attached, and effluent total suspended solids ranged from 5 to 74 mg/L, with an average of 24 mg/L over 27 runs in four MAFFB systems at upflow velocities of 11.4 to 25 m/h. Heterotrophic attached-film methanotrophs appear to be stable and useful for applications in toxics treatment, and other product manipulations. (c) 1992 John Wiley & Sons, Inc.  相似文献   

18.
三峡水库香溪河库湾春季水华期间悬浮物动态   总被引:3,自引:0,他引:3  
在三峡水库香溪河库湾春季藻类水华期间开展了水体悬浮物动态研究.调查结果表明:总悬浮物浓度的中位数是6.80 mg·L-1, 波动范围是0.66~134.92 mg·L-1,从河口到库尾入库点呈现逐渐递增的趋势;无机悬浮物空间格局与总悬浮物基本相似,而有机悬浮物空间格局与总悬浮物差异较大,与叶绿素a较为相似.回归分析表明:库湾中部水域叶绿素a与总悬浮物、有机悬浮物均有显著的线性关系,分别解释了总悬浮物、有机悬浮物总变异的66.7%~96.7% 和 58.9%~85.5%;在库湾两端(河口与库尾)叶绿素a与悬浮物参数均没有显著的线性关系.在库湾中部水域,有机悬浮物比无机悬浮物更能解释总悬浮物的变异;在库湾两端,无机悬浮物比有机悬浮物更能解释总悬浮物的变异.这意味着库湾中间水域总悬浮物的动态主要受有机悬浮物内源性生产的影响,而河口或库尾总悬浮物的动态主要受外源性的无机悬浮颗粒物输入的影响.  相似文献   

19.
Abstract The relationships between bacterial concentration, bacterial production, and cell-specific activity of both free and attached bacteria and environmental factors such as suspended solids, nutrients, and temperature were examined in four lakes, two in New Zealand and two in Switzerland. Estimates of cell-specific production were obtained by microautoradiographic counts of [3H]thymidine-labeled cells. Bacteria attached to particles accounted for only 1.3 to 11.6% of the total bacterial abundance, but showed overall 20-fold higher specific growth rates and were relatively more active than their free counterparts. On average, 80 to 100% of epibacteria were attached to organic particles. The abundance and production of free and attached bacteria were positively correlated; however, relationships between these fractions and some environmental variables differed. Cell-specific activities of active bacteria were not equivalent to mean cellular activities of the entire bacterial community and differed in their relationship to trophic state. [3H]Thymidine-positive bacteria were more tightly linked to chlorophyll a than were total bacteria. Our findings indicate that production by attached bacteria, fueled by phytoplankton carbon, supplies ``new' free bacteria to the bacterial community. Our results support the idea that particulate organic matter acts as a source of dissolved nutrients to free bacteria. Bottom-up control of bacterial biomass, as shown by regressions of biomass vs production, appeared to be stronger in two ultraoligotrophic lakes than in two more eutrophic ones. Received: 17 April 1998; Accepted: 24 August 1998  相似文献   

20.
Lim SJ  Fox P 《Bioresource technology》2011,102(22):10371-10376
An anaerobic/aerobic filter (AF/BAF) system was developed treating dairy wastewater. The influent was blended with recirculated effluent to allow for pre-denitrification in the AF followed by nitrification in the BAF. The recirculation ratio ranged 100-300%. The average chemical oxygen demand (COD) removal efficiency was 79.8-86.8% in the AF and the average total nitrogen removal efficiency was 50.5-80.8% in the AF/BAF system. Steady-state mass balances on the AF were used to analyze removal kinetics in the AF. The kinetic model values for effluent COD in the AF were overestimated as compared with experimental data. The integrated suspended and attached biomass growth rates in the AF were estimated. The specific growth rate of the integrated biomass at each recirculation ratios was 0.6213, 0.6647, and 1.20831/day, respectively. The increase in specific growth rate corresponded to increases in biomass sloughing as the recirculation ratio increased.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号