首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Early sequential expression of mouse Hox genes is essential for their later function. Analysis of the relationship between early Hox gene expression and the laying down of anterior to posterior structures during and after gastrulation is therefore crucial for understanding the ontogenesis of Hox-mediated axial patterning. Using explants from gastrulation stage embryos, we show that the ability to express 3' and 5' Hox genes develops sequentially in the primitive streak region, from posterior to anterior as the streak extends, about 12 hours earlier than overt Hox expression. The ability to express autonomously the earliest Hox gene, Hoxb1, is present in the posterior streak region at the onset of gastrulation, but not in the anterior region at this stage. However, the posterior region can induce Hoxb1 expression in these anterior region cells. We conclude that tissues are primed to express Hox genes early in gastrulation, concomitant with primitive streak formation and extension, and that Hox gene inducibility is transferred by cell to cell signalling. Axial structures that will later express Hox genes are generated in the node region in the period that Hox expression domains arrive there and continue to spread rostrally. However, lineage analysis showed that definitive Hox codes are not fixed at the node, but must be acquired later and anterior to the node in the neurectoderm, and independently in the mesoderm. We conclude that the rostral progression of Hox gene expression must be modulated by gene regulatory influences from early on in the posterior streak, until the time cells have acquired their stable positions along the axis well anterior to the node.  相似文献   

2.
3.
Smads oppose Hox transcriptional activities   总被引:2,自引:0,他引:2  
  相似文献   

4.
5.
Axial skeletal patterning in mice lacking all paralogous group 8 Hox genes   总被引:9,自引:0,他引:9  
We present a detailed study of the genetic basis of mesodermal axial patterning by paralogous group 8 Hox genes in the mouse. The phenotype of Hoxd8 loss-of-function mutants is presented, and compared with that of Hoxb8- and Hoxc8-null mice. Our analysis of single mutants reveals common features for the Hoxc8 and Hoxd8 genes in patterning lower thoracic and lumbar vertebrae. In the Hoxb8 mutant, more anterior axial regions are affected. The three paralogous Hox genes are expressed up to similar rostral boundaries in the mesoderm, but at levels that strongly vary with the axial position. We find that the axial region affected in each of the single mutants mostly corresponds to the area with the highest level of gene expression. However, analysis of double and triple mutants reveals that lower expression of the other two paralogous genes also plays a patterning role when the mainly expressed gene is defective. We therefore conclude that paralogous group 8 Hox genes are involved in patterning quite an extensive anteroposterior (AP) axial region. Phenotypes of double and triple mutants reveal that Hoxb8, Hoxc8 and Hoxd8 have redundant functions at upper thoracic and sacral levels, including positioning of the hindlimbs. Interestingly, loss of functional Hoxb8 alleles partially rescues the phenotype of Hoxc8- and Hoxc8/Hoxd8-null mutants at lower thoracic and lumbar levels. This suggests that Hoxb8 affects patterning at these axial positions differently from the other paralogous gene products. We conclude that paralogous Hox genes can have a unique role in patterning specific axial regions in addition to their redundant function at other AP levels.  相似文献   

6.
The Hox paralogous group 1 (PG1) genes are the first and initially most anterior Hox genes expressed in the embryo. In Xenopus, the three PG1 genes, Hoxa1, Hoxb1 and Hoxd1, are expressed in a widely overlapping domain, which includes the region of the future hindbrain and its associated neural crest. We used morpholinos to achieve a complete knockdown of PG1 function. When Hoxa1, Hoxb1 and Hoxd1 are knocked down in combination, the hindbrain patterning phenotype is more severe than in the single or double knockdowns, indicating a degree of redundancy for these genes. In the triple PG1 knockdown embryos the hindbrain is reduced and lacks segmentation. The patterning of rhombomeres 2 to 7 is lost, with a concurrent posterior expansion of the rhombomere 1 marker, Gbx2. This effect could be via the downregulation of other Hox genes, as we show that PG1 function is necessary for the hindbrain expression of Hox genes from paralogous groups 2 to 4. Furthermore, in the absence of PG1 function, the cranial neural crest is correctly specified but does not migrate into the pharyngeal arches. Embryos with no active PG1 genes have defects in derivatives of the pharyngeal arches and, most strikingly, the gill cartilages are completely missing. These results show that the complete abrogation of PG1 function in Xenopus has a much wider scope of effect than would be predicted from the single and double PG1 knockouts in other organisms.  相似文献   

7.
Nuclear re-organisation of the Hoxb complex during mouse embryonic development   总被引:17,自引:0,他引:17  
The spatial and temporal co-linear expression of Hox genes during development is an exquisite example of programmed gene expression. The precise mechanisms underpinning this are not known. Analysis of Hoxb chromatin structure and nuclear organisation, during the differentiation of murine ES cells, has lent support to the idea that there is a progressive 'opening' of chromatin structure propagated through Hox clusters from 3'to 5', which contributes to the sequential activation of gene expression. Here, we show that similar events occur in vivo in at least two stages of development. The first changes in chromatin structure and nuclear organisation were detected during gastrulation in the Hoxb1-expressing posterior primitive streak region: Hoxb chromatin was decondensed and the Hoxb1 locus looped out from its chromosome territory, in contrast to non-expressing Hoxb9, which remained within the chromosome territory. At E9.5, when differential Hox expression along the anteroposterior axis is being established, we found concomitant changes in the organisation of Hoxb. Hoxb organisation differed between regions of the neural tube that had never expressed Hoxb [rhombomeres (r) 1 and 2], strongly expressed Hoxb1 but not b9 (r4), had downregulated Hoxb1 (r5), expressed Hoxb9 but not Hoxb1 (spinal cord), and expressed both genes (tail bud). We conclude that Hoxb chromatin decondensation and nuclear re-organisation is regulated in different parts of the developing embryo, and at different developmental stages. The differential nuclear organisation of Hoxb along the anteroposterior axis of the developing neural tube is coherent with co-linear Hox gene expression. In early development nuclear re-organisation is coupled to Hoxb expression, but does not anticipate it.  相似文献   

8.
9.
10.
We report a novel developmental mechanism. Anterior-posterior positional information for the vertebrate trunk is generated by sequential interactions between a timer in the early non-organiser mesoderm and the organiser. The timer is characterised by temporally colinear activation of a series of Hox genes in the early ventral and lateral mesoderm (i.e., the non-organiser mesoderm) of the Xenopus gastrula. This early Hox gene expression is transient, unless it is stabilised by signals from the Spemann organiser. The non-organiser mesoderm and the Spemann organiser undergo timed interactions during gastrulation which lead to the formation of an anterior-posterior axis and stable Hox gene expression. When separated from each other, neither non-organiser mesoderm nor the Spemann organiser is able to induce anterior-posterior pattern formation of the trunk. We present a model describing that convergence and extension continually bring new cells from the non-organiser mesoderm within the range of organiser signals and thereby create patterned axial structures. In doing so, the age of the non-organiser mesoderm, but not the age of the organiser, defines positional values along the anterior-posterior axis. We postulate that the temporal information from the non-organiser mesoderm is linked to mesodermal Hox expression.  相似文献   

11.
During development of the vertebrate hindbrain, Hox genes play multiple roles in the segmental processes that regulate anteroposterior (AP) patterning. Paralogous Hox genes, such as Hoxa3, Hoxb3 and Hoxd3, generally have very similar patterns of expression, and gene targeting experiments have shown that members of paralogy group 3 can functionally compensate for each other. Hence, distinct functions for individual members of this family may primarily depend upon differences in their expression domains. The earliest domains of expression of the Hoxa3 and Hoxb3 genes in hindbrain rhombomeric (r) segments are transiently regulated by kreisler, a conserved Maf b-Zip protein, but the mechanisms that maintain expression in later stages are unknown. In this study, we have compared the segmental expression and regulation of Hoxa3 and Hoxb3 in mouse and chick embryos to investigate how they are controlled after initial activation. We found that the patterns of Hoxa3 and Hoxb3 expression in r5 and r6 in later stages during mouse and chick hindbrain development were differentially regulated. Hoxa3 expression was maintained in r5 and r6, while Hoxb3 was downregulated. Regulatory comparisons of cis-elements from the chick and mouse Hoxa3 locus in both transgenic mouse and chick embryos have identified a conserved enhancer that mediates the late phase of Hoxa3 expression through a conserved auto/cross-regulatory loop. This block of similarity is also present in the human and horn shark loci, and contains two bipartite Hox/Pbx-binding sites that are necessary for its in vivo activity in the hindbrain. These HOX/PBC sites are positioned near a conserved kreisler-binding site (KrA) that is involved in activating early expression in r5 and r6, but their activity is independent of kreisler. This work demonstrates that separate elements are involved in initiating and maintaining Hoxa3 expression during hindbrain segmentation, and that it is regulated in a manner different from Hoxb3 in later stages. Together, these findings add further strength to the emerging importance of positive auto- and cross-regulatory interactions between Hox genes as a general mechanism for maintaining their correct spatial patterns in the vertebrate nervous system.  相似文献   

12.
13.
14.
15.
Here, we review a recently discovered developmental mechanism. Anterior–posterior positional information for the vertebrate trunk is generated by sequential interactions between a timer in the early non-organiser mesoderm and the Spemann organiser. The timer is characterised by temporally colinear activation of a series of Hox genes in the early ventral and lateral mesoderm (i.e., the non-organiser mesoderm) of the Xenopus gastrula. This early Hox gene expression is transient, unless it is stabilised by signals from the Spemann organiser. The non-organiser mesoderm (NOM) and the Spemann organiser undergo timed interactions during gastrulation which lead to the formation of an anterior–posterior axis and stable Hox gene expression. When separated from each other, neither non-organiser mesoderm nor the Spemann organiser is able to induce anterior–posterior pattern formation of the trunk. We present a model describing that NOM acquires transiently stable hox codes and spatial colinearity after involution into the gastrula and that convergence and extension then continually bring new cells from the NOM within the range of organiser signals that cause transfer of the mesodermal pattern to a stable pattern in neurectoderm and thereby create patterned axial structures. In doing so, the age of the non-organiser mesoderm, but not the age of the organiser, defines positional values along the anterior–posterior axis. We postulate that the temporal information from the non-organiser mesoderm is linked to mesodermal Hox expression. The role of the organiser was investigated further and this turns out to be only the induction of neural tissue. Apparently, development of a stable axial hox pattern requires neural hox patterning.  相似文献   

16.
Many Hox proteins are thought to require Pbx and Meis co-factors to specify cell identity during embryogenesis. Here we demonstrate that Meis3 synergizes with Pbx4 and Hoxb1b in promoting hindbrain fates in the zebrafish. We find that Hoxb1b and Pbx4 act together to induce ectopic hoxb1a expression in rhombomere 2 of the hindbrain. In contrast, Hoxb1b and Pbx4 acting together with Meis3 induce hoxb1a, hoxb2, krox20 and valentino expression rostrally and cause extensive transformation of forebrain and midbrain fates to hindbrain fates, including differentiation of excess rhombomere 4-specific Mauthner neurons. This synergistic effect requires that Hoxb1b and Meis3 have intact Pbx-interaction domains, suggesting that their in vivo activity is dependent on binding to Pbx4. In the case of Meis3, binding to Pbx4 is also required for nuclear access. Our results are consistent with Hoxb1b and Meis3 interacting with Pbx4 to form complexes that regulate hindbrain development during zebrafish embryogenesis.  相似文献   

17.
In vertebrates, the paraxial mesoderm already exhibits a complex Hox gene pattern by the time that segmentation occurs and somites are formed. The anterior boundaries of the Hox genes are always maintained at the same somite number, suggesting coordination between somite formation and Hox expression. To study this interaction, we used morpholinos to knockdown either the somitogenesis gene X-Delta-2 or the complete Hox paralogous group 1 (PG1) in Xenopus laevis. When X-Delta-2 is knocked down, Hox genes from different paralogous groups are downregulated from the beginning of their expression at gastrula stages. This effect is not via the canonical Notch pathway, as it is independent of the Notch effector Su(H). We also reveal for the first time a clear role for Hox genes in somitogenesis, as loss of PG1 gene function results in the perturbation of somite formation and downregulation of the X-Delta-2 expression in the PSM. This effect on X-Delta-2 expression is also observed during neurula stages, before the somites are formed. These results show that somitogenesis and patterning of the anteroposterior axis are closely linked via a feedback loop involving Hox genes and X-Delta-2, suggesting the existence of a coordination mechanism between somite formation and anteroposterior patterning. Such a mechanism is likely to be functional during gastrulation, before the formation of the first pair of somites, as suggested by the early X-Delta-2 regulation of the Hox genes.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号