首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 796 毫秒
1.
Throughout the tropics, agroforests are often the only remaining habitat with a considerable tree cover. Agroforestry systems can support high numbers of species and are therefore frequently heralded as the future for tropical biodiversity conservation. However, anthropogenic habitat modification can facilitate species invasions that may suppress native fauna. We compared the ant fauna of lower canopy trees in natural rainforest sites with that of cacao trees in agroforests in Central Sulawesi, Indonesia in order to assess the effects of agroforestry on occurrence of the Yellow Crazy Ant Anoplolepis gracilipes, a common invasive species in the area, and its effects on overall ant richness. The agroforests differed in the type of shade-tree composition, tree density, canopy cover, and distance to the village. On average, 43% of the species in agroforests also occurred in the lower canopy of nearby primary forest and the number of forest ant species that occurred on cacao trees was not related to agroforestry characteristics. However, A. gracilipes was the most common non-forest ant species, and forest ant richness decreased significantly with the presence of this species. Our results indicate that agroforestry may have promoted the occurrence of A. gracilipes, possibly because tree management in agroforests negatively affects ant species that depend on trees for nesting and foraging, whereas A. gracilipes is a generalist when it comes to nesting sites and food preference. Thus, agroforestry management that includes the thinning of tree stands can facilitate ant invasions, thereby threatening the potential of cultivated land for the conservation of tropical ant diversity.  相似文献   

2.
By maintaining a forest-like structure, shaded cocoa plantations contribute to the conservation of ants that usually live in the soil, leaf litter or canopy of tropical forests. Here we synthesize the available information on the diversity and community structure of ants in shaded cocoa plantations in the Atlantic forest region of Brazil, compare ant assemblages in cocoa agroforests with forests and other forms of agriculture, and discuss how these shaded plantations contribute to the conservation of the ants in the Atlantic Forest region. We also discuss ants of economical importance and of special interest, including Camponotus, Dolichoderus, Gnamptogenys, Pachycondyla, Pseudomyrmex and other litter dwelling genera. We discuss the situation of the tramp ant Wasmannia auropunctata in the Bahian cocoa-producing region where it is considered as native, and that of the two cryptobiotic genera Thaumatomyrmex and Typhlomyrmex, as well as that of proven and possible endangered army ant and Ponerini species. A total of 192 ant species from four strata were found in extensive sampling of a cocoa plantation with a relatively simple shade canopy (comprised primarily of Erythrina). Species richness in the cocoa plantations corresponded roughly to that of low diversity native forests, and species composition of cocoa plantations was most similar to native habitats (forest and mangroves) while ant composition in other agricultural habitats was most similar to that of urban areas. Although occurrences of Wasmannia auropunctata were similar in cocoa plantations and forests, abundance of Thaumatomyrmex and Typhlomyrmex, generally thought to be rare ants, was relatively high in cocoa plantations. These results, from cocoa plantations with relatively simple shade, demonstrate the importance of cocoa for ant conservation in the Atlantic forest region of Brazil. It is likely that cocoa plantations with a greater number of vegetation strata and higher tree species richness (such as traditional cabruca plantations) provide even more important habitat for ants generally and for ant species of conservation concern.  相似文献   

3.
To assess the contributions of rustic shade cacao plantations to vascular epiphyte conservation, we compared epiphyte species richness, abundance, composition, and vertical distributions on shade trees and in the understories of six plantations and adjacent natural forests. On three phorophytes and three 10 × 10 m understory plots in each of the agroforestry plantations and natural forests, 54 and 77 species were observed, respectively. Individual-based rarefaction curves revealed that epiphyte species richness was significantly higher on forest phorophytes than on cacao farm shade trees; detailed analyses showed that the differences were confined to the inner and outer crown zones of the phorophytes. No differences in epiphyte species richness were found in understories. Araceae, Piperaceae, and Pteridophyta were less species-rich in plantations than in forests, while there were no differences in Orchidaceae and Bromeliaceae. Regression analysis revealed that epiphyte species richness on trunks varied with canopy cover, while abundance was more closely related to soil pH, canopy cover, and phorophyte height. For crown epiphytes, phorophyte diameter at breast height (dbh) explained much of the variation in species richness and abundance. There were also pronounced downward shifts in the vertical distributions of epiphyte species in agroforests relative to natural forests. The results confirm that epiphyte diversity, composition, and vertical distributions are useful indicators of human disturbance and showed that while the studied plantations serve to preserve portions of epiphyte diversity in the landscape, their presence does not fully compensate for the loss of forests.  相似文献   

4.
Theobroma cacao plantings, when managed under the shade of rainforest trees, provide habitat for many resident and migratory bird species. We compared the bird diversity and community structure in organic cacao farms and nearby forest fragments throughout mainland Bocas del Toro, Panama. We used this dataset to ask the following questions: (1) How do bird communities using cacao habitat compare to communities of nearby forest fragments? (2) To what extent do Northern migratory birds use shaded cacao farms, and do communities of resident birds shift their abundances in cacao farms seasonally? (3) Do small scale changes in shade management of cacao farms affect bird diversity? Using fixed radius point counts and additional observations, we recorded 234 landbird species, with 102 species that were observed in both cacao and forest fragments, 86 species that were only observed in cacao farms, and 46 species that were restricted to forest fragments. Cacao farms were rich in canopy and edge species such as tanagers, flycatchers and migratory warblers, but understory insectivores were nearly absent from cacao farms. We observed 27 migratory species, with 18 species in cacao farms only, two species in forest only, and seven species that occurred in both habitats. In cacao farms, the diversity of birds was significantly greater where there was less intensive management of the canopy shade trees. Shade tree species richness was most important for explaining variance in bird diversity. Our study shows that shaded cacao farms in western Panama provide habitat for a wide variety of resident and migratory bird species. Considering current land use trends in the region, we suggest that action must be taken to prevent conversion away from shaded cacao farms to land uses with lower biodiversity conservation value.  相似文献   

5.
In many tropical landscapes, agroforestry systems are the last forested ecosystems, providing shade, having higher humidity, mitigating potential droughts, and possessing more species than any other crop system. Here, we tested the hypothesis that higher levels of shade and associated humidity in agroforestry enhance coffee ant richness more during the dry than rainy season, comparing ant richness in 22 plots of three coffee agroforestry types in coastal Ecuador: simple-shade agroforests (intensively managed with low tree species diversity), complex-shade agroforests (extensively managed with intermediate tree species diversity) and abandoned coffee agroforests (abandoned for 10-15 yr and resembling secondary forests). Seasonality affected responses of ant richness but not composition to agroforestry management, in that most species were observed in abandoned coffee agroforests in the dry season. In the rainy season, however, most species were found in simple-shade agroforests, and complex agroforestry being intermediate. Foraging coffee ants species composition did not change differently according to agroforestry type and season. Results show that shade appears to be most important in the dry seasons, while a mosaic of different land-use types may provide adequate environmental conditions to ant species, maximizing landscape-wide richness throughout the year.  相似文献   

6.
In tropical rain forests, the ant community can be divided into ground and arboreal faunas. Here, we report a thorough sampling of the arboreal ant fauna of La Selva Biological Station, a Neotropical rain forest site. Forty-five canopy fogging samples were centered around large trees. Individual samples harbored an average of 35 ant species, with up to 55 species in a single sample. The fogging samples yielded 163 observed species total, out of a statistically estimated 199 species. We found no relationship between within-sample ant richness and focal tree species, nor were the ant faunas of nearby trees more similar to each other than the faunas of widely spaced trees. Species density was high, and beta diversity was low: A single column of vegetation typically harbors at least a fifth of the entire arboreal ant fauna. Considering the entire fauna, based on 23,326 species occurrence records using a wide variety of collecting methods, 182 of 539 observed species (196 of 605, estimated statistically) were entirely arboreal. The arboreal ant fauna is thus about a third of the total La Selva ant fauna, a robust result because inventory completeness was similar for ground and arboreal ants. The taxonomic history of discovery of the species that make up the La Selva fauna reveals no disproportionately large pool of undiscovered ant species in the canopy. The "last biotic frontier" for tropical ants has been the rotten wood, leaf litter, and soil of the forest floor.  相似文献   

7.
Large‐scale forest restoration relies on approaches that are cost‐effective and economically attractive to farmers, and in this context agroforestry systems may be a valuable option. Here, we compared ecological outcomes among (1) 12–15‐year‐old coffee agroforests established with several native shade trees, (2) 12–15‐year‐old high‐diversity restoration plantations, and (3) reference old‐growth forests, within a landscape restoration project in the Pontal do Paranapanema region, in the Atlantic Forest of southeastern Brazil. We compared the aboveground biomass, canopy cover, and abundance, richness, and composition of trees, and the regenerating saplings in the three forest types. In addition, we investigated the landscape drivers of natural regeneration in the restoration plantations and coffee agroforests. Reference forests had a higher abundance of trees and regenerating saplings, but had similar levels of species richness compared to coffee agroforests. High‐diversity agroforests and restoration plantations did not differ in tree abundance. However, compared to restoration plantations, agroforests showed higher abundance and species richness of regenerating saplings, a higher proportion of animal‐dispersed species, and higher canopy cover. The abundance of regenerating saplings declined with increasing density of coffee plants, thus indicating a potential trade‐off between productivity and ecological benefits. High‐diversity coffee agroforests provide a cost‐effective and ecologically viable alternative to high‐diversity native tree plantations for large‐scale forest restoration within agricultural landscapes managed by local communities, and should be included as part of the portfolio of reforestation options used to promote the global agenda on forest and landscape restoration.  相似文献   

8.
Tropical secondary forest and agroforestry systems have been identified as important refuges for the local species diversity of birds and other animal groups, but little is known about the importance of these systems for terrestrial herbs. In particular, few studies report how the conversion from tropical forest to technified cacao plantation affects the species richness and the community structure of herbs. We conducted surveys in 43 cacao plantations along the border of the Lore Lindu National Park in Central Sulawesi, ranging from agroforests to technified cacao, categorizing the plantations as rustic cacao, planted shade cacao, and technified cacao. We recorded 91 herb species. Of the 74 species determined to species level, 21 were also found in natural forests, while 53 were recorded only in agricultural habitats. Araceae was the most forest‐dependent plant family while Asteraceae included the highest number of nonforest species. Overall, the presence of forest species was confined to moderately intensively managed rustic and planted shaded plantations. Distance from the forest, which has been identified as a crucial parameter for the diversity and composition of other taxa in cacao agroforests, only played a minimal role for herbs. Our study suggests that native forest herbs maybe more vulnerable to forest conversion than animal groups. The intensification of cacao plantation management increases the presence of weedy species to the detriment of native forest species.  相似文献   

9.
Abstract.  1. Intensive agricultural practices drive biodiversity loss with potentially drastic consequences for ecosystem services. To advance conservation and production goals, agricultural practices should be compatible with biodiversity. Traditional or less intensive systems (i.e. with fewer agrochemicals, less mechanisation, more crop species) such as shaded coffee and cacao agroforests are highlighted for their ability to provide a refuge for biodiversity and may also enhance certain ecosystem functions (i.e. predation).
2. Ants are an important predator group in tropical agroforestry systems. Generally, ant biodiversity declines with coffee and cacao intensification yet the literature lacks a summary of the known mechanisms for ant declines and how this diversity loss may affect the role of ants as predators.
3. Here, how shaded coffee and cacao agroforestry systems protect biodiversity and may preserve related ecosystem functions is discussed in the context of ants as predators. Specifically, the relationships between biodiversity and predation, links between agriculture and conservation, patterns and mechanisms for ant diversity loss with agricultural intensification, importance of ants as control agents of pests and fungal diseases, and whether ant diversity may influence the functional role of ants as predators are addressed. Furthermore, because of the importance of homopteran-tending by ants in the ecological and agricultural literature, as well as to the success of ants as predators, the costs and benefits of promoting ants in agroforests are discussed.
4. Especially where the diversity of ants and other predators is high, as in traditional agroforestry systems, both agroecosystem function and conservation goals will be advanced by biodiversity protection.  相似文献   

10.
The diversity of beetle assemblages in different habitat types (primary forest, logged forest, acacia plantation and oil palm plantation) in Sabah, Malaysia was investigated using three different methods based on habitat levels (Winkler sampling, flight-interception-trapping and mist-blowing). The overall diversity was extremely high, with 1711 species recorded from only 8028 individuals and 81 families (115 family and subfamily groups). Different degrees of environmental changes had varying effects on the beetle species richness and abundance, with oil palm plantation assemblage being most severely affected, followed by acacia plantation and then logged forest. A few species became numerically dominant in the oil palm plantation. In terms of beetle species composition, the acacia fauna showed much similarity with the logged forest fauna, and the oil palm fauna was very different from the rest. The effects of environmental variables (number of plant species, sapling and tree densities, amount of leaf litter, ground cover, canopy cover, soil pH and compaction) on the beetle assemblage were also investigated. Leaf litter correlated with species richness, abundance and composition of subterranean beetles. Plant species richness, tree and sapling densities correlated with species richness, abundance and composition of understorey beetles while ground cover correlated only with the species richness and abundance of these beetles. Canopy cover correlated only with arboreal beetles. In trophic structure, predators represented more than 40% of the species and individuals. Environmental changes affected the trophic structure with proportionally more herbivores (abundance) but fewer predators (species richness and abundance) in the oil palm plantation. Biodiversity, conservation and practical aspects of pest management were also highlighted in this study.  相似文献   

11.
The soil Coleoptera community was sampled with pitfall traps in shaded and unshaded coffee agroecosystems in Veracruz, Mexico. The insect collection resulted in a total of 31 species which belong to nine families. The most frequent families collected in this study (in terms of species and number of organisms) were Scarabaeidae and Carabidae.Species diversity was measured using the Hill's family of diversity numbers. The Coleoptera community was more diverse in shaded than in unshaded coffee. Also, the collected organisms were more evenly distributed between species in shaded coffee.The diversity of the scarab beetles was shown to be strongly affected by the degree of forest perturbation. The richness and evenness of scarab beetles was correlated with the diversity of shade trees present in coffee agro-ecosystems; scarab richness drops from 19 species collected in virgin tropical rain-forests, to five species in polyspecific shade (more than ten species of shade trees) and six species in monogeneric shade (three species of shade trees) coffee agro-ecosystems, and to three scarab species in unshaded coffee. Evenness in scarab beetles follows a similar pattern: a single species tends to gradually become dominant as more shade trees are removed from the agro-ecosystem. It is suggested that some shade trees should be preserved within the agro-ecosystem during the intensification of coffee production in Mexico.  相似文献   

12.
Aim Plant and arthropod diversity are often related, but data on the role of mature tree diversity on canopy insect communities are fragmentary. We compare species richness of canopy beetles across a tree diversity gradient ranging from mono‐dominant beech to mixed stands within a deciduous forest, and analyse community composition changes across space and time. Location Germany’s largest exclusively deciduous forest, the Hainich National Park (Thuringia). Methods We used flight interception traps to assess the beetle fauna of various tree species, and applied additive partitioning to examine spatiotemporal patterns of diversity. Results Species richness of beetle communities increased across the tree diversity gradient from 99 to 181 species per forest stand. Intra‐ and interspecific spatial turnover among trees contributed more than temporal turnover among months to the total γ‐beetle diversity of the sampled stands. However, due to parallel increases in the number of habitat generalists and the number of species in each feeding guild (herbivores, predators and fungivores), no proportional changes in community composition could be observed. If only beech trees were analysed across the gradient, patterns were similar but temporal (monthly) species turnover was higher compared to spatial turnover among trees and not related to tree diversity. Main conclusions The changes in species richness and community composition across the gradient can be explained by habitat heterogeneity, which increased with the mix of tree species. We conclude that understanding temporal and spatial species turnover is the key to understanding biodiversity patterns. Mono‐dominant beech stands are insufficient to conserve fully the regional species richness of the remaining semi‐natural deciduous forest habitats in Central Europe, and analysing beech alone would have resulted in the misleading conclusion that temporal (monthly) turnover contributes more to beetle diversity than spatial turnover among different tree species or tree individuals.  相似文献   

13.
Cocoa agroforests can significantly support biodiversity, yet intensification of farming practices is degrading agroforestry habitats and compromising ecosystem services such as biological pest control. Effective conservation strategies depend on the type of relationship between agricultural matrix, biodiversity and ecosystem services, but to date the shape of this relationship is unknown. We linked shade index calculated from eight vegetation variables, with insect pests and beneficial insects (ants, wasps and spiders) in 20 cocoa agroforests differing in woody and herbaceous vegetation diversity. We measured herbivory and predatory rates, and quantified resulting increases in cocoa yield and net returns. We found that number of spider webs and wasp nests significantly decreased with increasing density of exotic shade tree species. Greater species richness of native shade tree species was associated with a higher number of wasp nests and spider webs while species richness of understory plants did not have a strong impact on these beneficial species. Species richness of ants, wasp nests and spider webs peaked at higher levels of plant species richness. The number of herbivore species (mirid bugs and cocoa pod borers) and the rate of herbivory on cocoa pods decreased with increasing shade index. Shade index was negatively related to yield, with yield significantly higher at shade and herb covers<50%. However, higher inputs in the cocoa farms do not necessarily result in a higher net return. In conclusion, our study shows the importance of a diverse shade canopy in reducing damage caused by cocoa pests. It also highlights the importance of conservation initiatives in tropical agroforestry landscapes.  相似文献   

14.
In Brazil, cacao is mostly planted beneath shade trees. The diversity of shade trees varies from monospecific to highly diverse canopies, characteristic of pristine Atlantic Forest. This study evaluates the relationships between family richness of Hymenoptera-Parasitica and Chrysidoidea, and tree species richness and density, the species richness of herbaceous understorey, and the area and age of the cacao agroforestry system. We sampled 16 cacao agroforestry systems, with canopy diversity ranging from one to 22 tree species per hectare, in three seasons: summer (March), winter (August) and spring (November). Parasitoids were sampled using eight Malaise-Townes traps per site. Tree species richness and density were enumerated within 1 ha at each site, and herbaceous plant species richness was calculated in eight 1 m2 plots, within the hectare. The number of parasitoid families increased with tree species richness and density in spring and summer, but decreased in winter. Neither species richness of herbaceous plants nor area and age of the system affected parasitoid family richness. We suggest that the increase of parasitoid diversity with tree species richness and density in warmer seasons reflects increasing heterogeneity and availability of resources. The decrease in parasitoid family number with tree density in winter may be due to local impoverishment of resources, leading to parasitoid emigration to neighbouring forest remnants. This result implies that a higher diversity of shade trees will help to maintain high parasitoid levels and, in consequence, higher levels of natural enemies of cacao pests, particularly in the warmer seasons. This prediction is borne out in the experience of cacao producers. The proper management of shade tree diversity will play a vital role in maintaining the sustainability of cacao agroforestry production systems in the tropics and, concurrently, will maintain high biodiversity values in these locations.  相似文献   

15.
1.?Species diversity of arboreal arthropods tends to increase during rainforest succession so that primary forest communities comprise more species than those from secondary vegetation, but it is not well understood why. Primary forests differ from secondary forests in a wide array of factors whose relative impacts on arthropod diversity have not yet been quantified. 2.?We assessed the effects of succession-related determinants on a keystone ecological group, arboreal ants, by conducting a complete census of 1332 ant nests from all trees with diameter at breast height?≥?5?cm occurring within two (unreplicated) 0·32-ha plots, one in primary and one in secondary lowland forest in New Guinea. Specifically, we used a novel rarefaction-based approach to match number, size distribution and taxonomic structure of trees in primary forest communities to those in secondary forest and compared the resulting numbers of ant species. 3.?In total, we recorded 80 nesting ant species from 389 trees in primary forest but only 42 species from 295 trees in secondary forest. The two habitats did not differ in the mean number of ant species per tree or in the relationship between ant diversity and tree size. However, the between-tree similarity of ant communities was higher in secondary forest than in primary forest, as was the between-tree nest site similarity, suggesting that secondary trees were more uniform in providing nesting microhabitats. 4.?Using our rarefaction method, the difference in ant species richness between two forest types was partitioned according to the effects of higher tree density (22·6%), larger tree size (15·5%) and higher taxonomic diversity of trees (14·3%) in primary than in secondary forest. The remaining difference (47·6%) was because of higher beta diversity of ant communities between primary forest trees. In contrast, difference in nest density was explained solely by difference in tree density. 5.?Our study shows that reduction in plant taxonomic diversity in secondary forests is not the main driver of the reduction in canopy ant species richness. We suggest that the majority of arboreal species losses in secondary tropical forests are attributable to simpler vegetation structure, combined with lower turnover of nesting microhabitats between trees.  相似文献   

16.
In the last decades, due to human land management that uses fire as a tool, and due to abnormal droughts, many tropical forests have become more susceptible to recurrent wildfires with negative consequences for biodiversity. Yet, studies are usually focused on few taxa and rarely compare different fire frequencies. We examined if the effects of single and recurrent fires are consistent for leaf litter ants, dung beetles, birds (sampled with point‐counts PC and mist net‐MN), saplings, and trees. Recurrent fires had a great effect on forest structure, reducing live tree biomass and number of lianas, and increasing canopy openness and numbers of saplings alive. Recurrent fires had consistently stronger effects on species richness and composition across all sample groups than single fires, except ants. Birds and plants were more grouped in the congruence analysis. The average dissimilarities between control and recurrent‐burned forest were higher than between control and once‐burned forest for all sample groups, furthermore birds and vegetation communities in recurrent‐burned forest are almost entirely dissimilar from the unburned forest. While beta diversity of ants, birds (MN), and trees was not affected by the frequency of fire, it changed for dung beetles, birds (PC), and saplings. Effects of fire on faunal community structure were more due to indirect effects, through vegetation, than through the fire itself. These results reinforce the effect of single and recurrent fires on tropical forests, and highlight the mechanisms acting behind them. Policy‐makers need to explicitly address protection of tropical forests from wildfires in conservation planning.  相似文献   

17.
18.
Forests support high concentrations of species and beetles in particular are often used to evaluate forest biodiversity. Ancient pasture woodlands are facing a major decline in Europe mainly due to the abandonment of traditional management and subsequent succession. We studied click beetles (Coleoptera: Elateridae) in one of the largest central-European remnants of pasture woodland in Lány Game Park (Czech Republic) using flight interception traps placed at standing veteran trees. The gradient of sun-exposure, circumference of stem, height and vitality of tree and tree species were studied in relation to the species richness of click beetles and their ecological groups. Total species richness reached nearly one half of the recently documented fauna in the study area and species accumulations showed us that the majority of species were represented. Most species preferred solitary trees in sun-exposed habitats and avoided shaded trees in closed canopies. The same results were obtained for ecological groups, such as saproxylic and non-saproxylic species, functional groups and guilds. Our results showed that the species richness of one of the most ecologically diverse beetle families, click beetles, benefits from a high level of sun exposure. Thus, the long spatial and temporal continuity of sun-exposed veteran trees could be a good predictor for sustainable forest management.  相似文献   

19.
Little is known about how tropical land-use systems contribute to the conservation of functionally important insect groups, including dung beetles. In a study at the margin of Lore Lindu National Park (a biodiversity hotspot in Central Sulawesi, Indonesia) dung-beetle communities were sampled in natural forest, young secondary forest, agroforestry systems (cacao plantations with shade trees) and annual cultures (maize fields), each with four replicates (n = 16 sites). At each site we used 10 pitfall traps, baited with cattle dung, along a 100 m transect for six 3-day periods. The number of trapped specimens and species richness at the natural forest sites was higher than in all land-use systems, which did not significantly differ. Each land-use system contained, on average, 75% of the species richness of the natural forest, thereby indicating their importance for conservation. However, a two-dimensional scaling plot based on NESS indices (m = 6) indicated distinct dung beetle communities for both forest types, while agroforestry systems and annual cultures exhibited a pronounced overlap. Mean body size of dung beetles was not significantly influenced by land-use intensity. Five of the six most abundant dung beetle species were recorded in all habitats, whereas the abundance of five other species was significantly related to habitat type. Mean local abundance and number of occupied sites were closely correlated, further indicating little habitat specialisation. The low dung beetle diversity (total of 18 recorded species) may be due to the absence of larger mammals in Sulawesi during historical times, even though Sulawesi is the largest island of Wallacea. In conclusion, the dung beetle fauna of the lower montane forest zone in Central Sulawesi appears to be relatively robust to man-made habitat changes and the majority of species did not exhibit strong habitat preferences.  相似文献   

20.
In the current deforestation context, agroforestry is increasingly considered in the tropical zone for its potential contribution to biodiversity conservation. In Guinée Forestière (Guinea, West Africa), coffee-based species rich agroforests are currently expanding on agricultural land around most villages. To assess the role these agroforests play with respect to biodiversity conservation, we compared their tree structure and diversity with those of a neighbouring natural forest. Eighty plots were sampled using a variable area transect method (60 plots distributed into 3 village agroforests, 20 natural forest plots). The structure of coffee-based agroforests showed obvious signs of farmers’ management: density of mature trees was significantly lower than in natural forest and most juvenile trees were eliminated and replaced by coffee trees. However, tree seedling density was not significantly different than in natural forest. Tree species richness and diversity were also lower than in natural forest but much higher than in any other agricultural or agroforestry land use system. These results are close to those obtained in the coffee-based agroforests of Central America, confirming that coffee-based agroforests retain many forest species that play a key role in the conservation of regional forest tree diversity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号