首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Experimental animal models are extremely valuable for the study of human diseases, especially those with underlying genetic components. The exploitation of various animal models, from fruitflies to mice, has led to major advances in our understanding of the etiologies of many diseases, including cancer. Cutaneous malignant melanoma is a form of cancer for which both environmental insult (i.e., UV) and hereditary predisposition are major causative factors. Fish melanoma models have been used in studies of both spontaneous and induced melanoma formation. Genetic hybrids between platyfish and swordtails, different species of the genus Xiphophorus, have been studied since the 1920s to identify genetic determinants of pigmentation and melanoma formation. Recently, transgenesis has been used to develop zebrafish and medaka models for melanoma research. This review will provide a historical perspective on the use of fish models in melanoma research, and an updated summary of current and prospective studies using these unique experimental systems.  相似文献   

2.
Unlike breast and prostate cancers, the nature and sequence of critical genetic and epigenetic events involved in the initiation and progression of melanoma are not well understood. A contributing factor to this dilemma, especially given our current understanding of the importance of UV light in melanoma etiology, is the lack of quality UV-inducible melanoma animal models. In this study we elaborate on the capability of UV light to induce cutaneous malignant melanomas (CMM) in Xiphophorus fishes, which were previously found to develop melanomas after acute neonatal UVB irradiation. In two separate tumorigenesis experiments, we exposed adult Xiphophorus hybrids to either acute UVB irradiations (5 consecutive daily treatments) or chronic solar irradiations (continuous UVA/UVB treatment for 9 months). Acute adult UVB irradiation resulted in the significant induction of melanomas, and moreover, this induction rate is equivalent to that of animals exposed to acute neonatal UVB irradiation. This study represents the first evidence that acute adult UVB irradiation, in the absence of any early life exposures, induces CMM. Similar to the findings conducted on other divergent melanoma models, including HGF/SF transgenic mice and Monodelphis domestica, prolonged chronic solar UV was not a factor in melanomagenesis.  相似文献   

3.
Cutaneous malignant melanoma, the most lethal of the skin cancers, known for its intractability to current therapies, continues to increase in incidence, providing a significant public health challenge. There is a consensus that skin cancer is initiated by sunlight exposure. For non-melanoma skin cancer there is substantial evidence that chronic exposure to the ultraviolet B radiation (UVB) (280-320 nm) portion of the sunlight spectrum is responsible. Experimentally, UVB is mutagenic and chronic UVB exposure can cause non-melanoma skin cancer in laboratory animals. Non-melanoma tumors in animals and in humans show characteristic UVB signature lesions in the tumor suppressor p53 and/or in the patched (PTCH) gene. An action spectrum or wavelength dependence for squamous cell carcinoma in the mouse shows a major peak of efficacy in the UVB. For malignant melanoma, however, the situation is unclear and the critical direct target(s) of sunlight in initiating melanoma and even the wavelengths responsible are as yet unidentified. This lack of information is in major part a result of a paucity of animal models for melanoma which recapitulate the role of sunlight in initiating this disease. The epidemiology of melanoma differs significantly from non-melanoma skin cancer. Intense sporadic sunlight exposure in childhood, probably exacerbated by additional adult exposure, is associated with elevated melanoma risk. Melanoma is also a disease of gene-environment interactions with underlying genetic factors playing a significant role. These major differences indicate that extrapolation from information for non-melanoma skin cancer to melanoma is unlikely to be useful. We summarize in this review the experimental information available on the role of UV radiation in melanoma and give an overview of animal melanoma models. A new model derived by neonatal UV irradiation of hepatocyte growth factor/scatter factor (HGF/SF) transgenic mice is described which recapitulates the etiology, the histopathology and molecular pathogenesis of human disease. It is anticipated that the HGF/SF transgenic model will provide a means to access the mechanism(s) by which sunlight initiates this lethal disease and provide an appropriate vehicle for derivation of appropriate therapeutic and preventive strategies.  相似文献   

4.
UV radiation is a major environmental risk factor for the development of melanoma by causing DNA damage and mutations. Resistance to UV damage is largely determined by the capacity of melanocytes to respond to UV injury by repairing mutagenic photolesions. The nucleotide excision repair (NER) pathway is the major mechanism by which cells correct UV photodamage. This multistep process involves the basic steps of damage recognition, isolation, localized strand unwinding, assembly of a repair complex, excision of the damage‐containing strand 3′ and 5′ to the photolesion, synthesis of a sequence‐appropriate replacement strand, and finally ligation to restore continuity of genomic DNA. In melanocytes, the efficiency of NER is regulated by several hormonal pathways including the melanocortin and endothelin signaling pathways. Elucidating molecular mechanisms by which melanocyte DNA repair is regulated offers the possibility of developing novel melanoma‐preventive strategies to reduce UV mutagenesis, especially in UV‐sensitive melanoma‐prone individuals.  相似文献   

5.
The complex interplay of genetic and epigenetic factors linking sun exposure to melanoma in the red hair phenotype hinges on the peculiar physical and chemical properties of pheomelanins and the underlying biosynthetic pathway, which is switched on by the effects of inactivating polymorphisms in the melanocortin 1 receptor gene. In addition to the long recognized UV‐dependent pathways of toxicity and cell damage, a UV‐independent pro‐oxidant state induced by pheomelanin within the genetically determined background of the red hair phenotype has recently been disclosed. This review provides a detailed discussion of the possible UV‐dependent and UV‐independent chemical mechanisms underlying pheomelanin‐mediated oxidative stress, with special reference to the oxygen‐dependent depletion of glutathione and other cell antioxidants. The new concept of pheomelanin as a ‘living’ polymer and biocatalyst that may grow by exposure to monomer building blocks and may trigger autooxidative processes is also discussed. As a corollary, treatment of inflammatory skin diseases in RHP patients is briefly commented. Finally, possible concerted strategies for melanoma prevention in the red hair phenotype are proposed.  相似文献   

6.
New insight into BRAF mutations in cancer   总被引:13,自引:0,他引:13  
There has been much recent progress in our understanding of the role played by the RAS-RAF-MEK-ERK cascade in human cancer. RAS is an oncogene and this pathway is known to promote proliferation and malignant transformation. More recently, however, RAF has become the focus of attention, particularly in melanoma, where approximately 70% of cases carry mutations in the BRAF gene. The majority of the mutations in BRAF in cancer are activating, but rare mutants that cannot activate MEK have provided new insight into RAF signalling networks that exist in cancer and normal cells. Surprisingly, germline mutations in BRAF that occur in rare genetic syndromes have also recently been described. The induction of BRAF mutations in melanoma depends on the type of UV exposure that the skin receives, and some studies have suggested the existence of susceptibility loci that make it more likely that some individuals will acquire these mutations. Importantly, genetic profiling and microarray studies have provided insight into the spectrum of melanomas in which BRAF plays a role and also revealed intriguing new data that could be important for the diagnosis and treatment of human cancers.  相似文献   

7.
Melanoma is the most common form of cancer among young adults aged 25-29 years and the second most common cancer in those aged 15-29 years. We reviewed all the evidence regarding risk factors for melanoma, looking in particular at childhood exposure to ultraviolet radiation (UV). UV radiation is clearly the predominant environmental and thus potentially modifiable risk factor for melanoma. All activities related to tan-seeking behaviour and history of sunburns were shown to be significantly associated to melanoma. Host factors, such as pigmentary characteristics, and genetic predisposition plays also an important role. UV exposure is not only due to the sun but also to indoor tanning devices that have been shown to lead to an elevated risk of melanoma. The strongest evidence for a link between artificial UV and melanoma is found among individuals who had their first exposure to indoor tanning before the age of 30: they have a 75% increase risk of developing melanoma than individuals who had no exposure to indoor tanning. Prevention is very important, especially for children and young adults, as childhood and adolescence are critical periods in the development of later melanoma. Indoor tanning is a widespread practice in most developed countries, particularly in Northern Europe and the USA. In the recent decades more and more people, especially teenagers and women, are exposed to substantially high radiant exposures of UV through artificial sources and these trends raised a considerable concern. In fact the International Agency for Research on Cancer concluded that the association between skin cancer and exposure to solar radiation and the use of UV-emitting tanning devices are causal. Interesting analyses carried out in Iceland showed that when interventions to discourage sunbed use were introduced the incidence of melanoma among women decreased. All this evidence encouraged many countries to introduce regulations on sunbed use to avoid exposure before the age of 18.  相似文献   

8.
DNA microarray technology is a versatile platform that allows rapid genetic analysis to take place on a genome-wide scale and has revolutionized the way cancers are studied. This platform has enabled researchers to characterize mechanisms central to tumorigenesis and understand important molecular events in the multi-step tumor progression model of cutaneous melanoma and other cancers. In melanoma, multiple global gene expression profiling studies using various DNA microarray platforms and various experimental designs have been performed. Each study has been able to capture and characterize either the involvement of a novel pathway or a novel cause-effect-relationship. The use of microarrays to define subclasses, to identify differentially regulated genes within a mutational context to analyze epigenetically regulated genes has resulted in an unprecedented understanding of the biology of cutaneous melanoma that may lead to more accurate diagnosis, more comprehensive prognosis, prediction and more effective therapeutic interventions. Related DNA microarray platforms like array-comparative genomic hybridization (CGH) have also been instrumental to identify many non-random chromosomal alterations; however, studies identifying validated targets as a result of CGH are limited. Thus, there exists significant opportunity to discover novel melanoma genes and translate such discoveries into meaningful clinical endpoints. In this review, we focus on various DNA microarray-based studies performed in cutaneous melanoma and summarize our current understanding of the genetics and biology of melanoma progression derived from accumulating genomic information.  相似文献   

9.
Ultraviolet (UV) radiation is an environmental agent that has a major impact on humans, and cumulative exposure poses a serious risk in terms of developing skin cancer. Acute doses of UV induce apoptotic cell death in the skin via signalling pathways that are, in part, dependent on the p53 tumour suppressor protein. However, p53-independent mechanisms have also been described. Recent findings show that a high proportion of non-melanoma skin cancers contain human papillomavirus. The viral E6 protein effectively blocks the epidermal apoptotic response to UV and might play a key role in promoting tumour development in cooperation with the mutagenic effects of UV.  相似文献   

10.
UV irradiation has multiple effects on skin including erythema, immunosuppression and the induction of keratinocyte-derived skin cancers and cutaneous malignant melanoma (CMM). CMM which arises from damage to the melanocyte, the pigment cell of the skin, is associated in epidemiologic studies with sun-exposure of susceptible populations, especially children. Our experimental studies have supported the concept that the epidemiologically observed susceptibility in children has a biologic basis. Hepatocyte growth factor/scatter factor (HGF/SF) transgenic mice neonatally irradiated with UV produce melanomas which recapitulate human disease in histopathology and molecular pathogenesis. In this model, neonatal UV is necessary and sufficient for melanoma induction although an additional adult dose of UV radiation significantly increased melanoma multiplicity. One hypothesis for the susceptibility of neonatal mice to induction of melanoma is that neonatal skin contains a large number of immature melanocytes which may result in the retention of the consequences of UV damage throughout the lifetime of the animal. An alternate hypothesis is that the immaturity of the neonatal immune system results in tolerance to melanocytic antigens produced by UV exposure, thus permitting the subsequent outgrowth of melanoma. Here, we discuss the current state of knowledge about the differences between adult and neonatal mice in melanocytes and immune maturation as possible factors playing a role in the susceptibility to melanoma in UV irradiated HGF/SF transgenic mice.  相似文献   

11.
Ultraviolet (UV)-induced DNA damage is a major risk factor for skin cancers including melanoma. UVRAG, originally identified to complement UV sensitivity in xeroderma pigmentosum (XP), has since been implicated in modulating macroautophagy/autophagy, in coordinating different intracellular trafficking pathways, and in maintaining chromosomal stability. Intriguingly, our recent study has demonstrated that UVRAG plays an essential role in protecting cells from UV-induced DNA damage by activating the nucleotide excision repair (NER) pathway. Since NER is the major mechanism by which cells maintain DNA integrity against UV insult, the inactivation of UVRAG seen in some melanoma may impart these cells with an ability to accumulate high-load UV mutagenesis, leading to cancer progression. Thus, this property of UVRAG has untapped potential to be of fundamental importance in understanding the genetics and pathogenesis of human skin cancer.  相似文献   

12.
We investigate whether relative contributions of genetic and shared environmental factors are associated with an increased risk in melanoma. Data from the Queensland Familial Melanoma Project comprising 15,907 subjects arising from 1912 families were analyzed to estimate the additive genetic, common and unique environmental contributions to variation in the age at onset of melanoma. Two complementary approaches for analyzing correlated time-to-onset family data were considered: the generalized estimating equations (GEE) method in which one can estimate relationship-specific dependence simultaneously with regression coefficients that describe the average population response to changing covariates; and a subject-specific Bayesian mixed model in which heterogeneity in regression parameters is explicitly modeled and the different components of variation may be estimated directly. The proportional hazards and Weibull models were utilized, as both produce natural frameworks for estimating relative risks while adjusting for simultaneous effects of other covariates. A simple Markov Chain Monte Carlo method for covariate imputation of missing data was used and the actual implementation of the Bayesian model was based on Gibbs sampling using the free ware package BUGS. In addition, we also used a Bayesian model to investigate the relative contribution of genetic and environmental effects on the expression of naevi and freckles, which are known risk factors for melanoma.  相似文献   

13.
Consorcial projects focused on 5 cancer types, breast-, colorectal-, head and neck- and pediatric cancers, and malignant melanoma. Breast cancer studies revealed unique splicing mechanisms concerning BRCA1. In sporadic breast cancers the involvement of DNA-repair genes was proved to be dependent on the histological type. Bone-metastatic tumors have been characterized by decreased NM23 and increased c-met and p53 expressions. C-erbB2 genotype of the primary tumor was not maintained frequently in bone metastases. Application of DNA-microarray and quantitative PCR technologies improved the prediction of therapeutic sensitivity of breast cancers. Colorectal cancer studies revealed regional inhomogenities (clusters) in various geographical regions of Hungary, which were distinct in the case of colonic and rectal cancers. To increase the sensitivity of fecal blood test of colorectal cancer screening, a new double-antibody test was developed and tested in a large cohort of patients. Genetic analysis revealed that hypermethylation is a significant factor in microsatellite instability which, and plays a role in silencing of APC and E-cadherin genes as well. The Hungarian pattern of TS polymorphism was also determined and was correlated not only with the efficacy of 5-FU treatment but with the progression of the disease as well. Population-based studies have been carried out in head and neck cancer patients (HNC) and smokers as well to reveal the genetic background of increasing tumor incidence. These studies revealed polymorphism in XRCC1/3 methylation enzyme gene which has preventive role. Other studies found frequent local immunosuppression in HNC patients. Studies indicated that the success of irradiation in this cancer type is dependent on the anti-vascular effects. Pediatric cancer studies determined the parameters of neuroblastoma screening based on VMA measurements. New splice variants of the WT1 gene involved in the monitoring of MRD of ALL patients was also described this year. We also obtained positive experimental data for the retinoic acid therapy of ALL. Melanoma studies extensively used DNA-microarray technology which identified 4 melanoma-specific and 2 melanoma progression-specific genes. In experimental human melanoma xenograft models we have identified 3 anti-metastatic agents: low molecular weight heparin, 2-methoxyestradiol and erythropoietin-alpha, where the later was characterized by specific effects on tumor vasculature.  相似文献   

14.
All the people are exposed to solar ultraviolet radiation. Exposure to sun with living in an oxygen-rich atmosphere causes unwanted photodemage. Sunburned skin is a leading risk factor for melanoma and non-melanoma cancers. UV exposure causes immunosuppression via multiple mechanisms in the skin. In this review the main topic is to mention new or alternative ways of photoprotection. Sunscreens are commonly used as protection against sun damage. They reduce the penetration of damaging solar UV wavelengths in skin by reflecting or absorbing them. Sunscreens are very valuable, but they have limitations. They have to be used properly to gain the full effect (application a little while before UV exposure, at frequent time points and in adequate amounts). Also, they have the problem of photoinactivation, which is the degeneration of the UV-filter due to exposure to UV rays resulting in the loss of absorbing capacity. Products with immune protection factor contain DNA-repair enzymes and antioxidants that may reduce mutations and enable the immune system to combat photodamage. The use of antioxidants and polyphenols may exert an anti-aging effect by preventing and even reversing sun damage. Adequate photoprotection is essential to control photocarcinogenesis and photoaging.  相似文献   

15.
The major well-proven long-term health risks of excessive exposure to ultraviolet (UV) radiation relate to the skin. Premalignant skin lesions are seen very much earlier in white skinned populations exposed to excessive sunlight, and over time these same individuals develop larger numbers of all of the three major skin cancers than individuals who do not experience excessive UV exposure. These three skin cancers are squamous cell carcinoma (SCC), basal cell carcinoma (BCC), and malignant melanoma. In the case of SCC the major aetiological pattern is chronic long-term exposure, but for BCCs the pattern appears to be slightly different with short-term burning episodes being more important. In the case of melanomas, there is evidence that for the 4 main types of melanomas, the pattern of excess UV exposure which is most injurious varies.  相似文献   

16.
Malignant melanoma is one of the most aggressive cancers and can disseminate from a relatively small primary tumor and metastasize to multiple sites, including the lung, liver, brain, bone, and lymph nodes. Elucidating the molecular and genetic changes that take place during the metastatic process has led to a better understanding of why melanoma is so metastatic. Herein, we describe the unique features that distinguish melanoma from other solid tumors and contribute to the malignant phenotype of melanoma cells. For example, although melanoma cells are highly antigenic, they are extremely efficient at evading host immune response. Melanoma cells share numerous cell surface molecules with vascular cells, are highly angiogenic, are mesenchymal in nature, and possess a higher degree of ‘stemness’ than do other solid tumors. Finally, analysis of melanoma mutations has revealed that the gene expression profile of malignant melanoma is different from that of other cancers. Elucidating these molecular and genetic processes in highly metastatic melanoma can lead to the development of improved treatment and individualized therapy options.  相似文献   

17.
Chronic inflammation often precedes or accompanies a substantial number of cancers. Indeed, anti-inflammatory therapies have shown efficacy in cancer prevention and treatment. The exact mechanisms that turn a wound healing process into a cancer precursor are topics of intense research. A pathogenic link has been identified between inflammatory mediators, inflammation related gene polymorphisms and carcinogenesis. Animal models of cancer have been instrumental in demonstrating the diversity of mechanisms through which every tumor compartment and tumor stage may be affected by the underlying inflammatory process. In this review, we focus on the interaction between chronic inflammation, tumor stem cells and the tumor microenvironment. We summarize the proposed mechanisms that lead to the recruitment of bone marrow derived cells and explore the genetic and epigenetic alterations that may occur in inflammation associated cancers.  相似文献   

18.
Solar ultraviolet radiation (UV) is a major environmental factor that dramatically alters the homeostasis of the skin as an organ by affecting the survival, proliferation and differentiation of various cutaneous cell types. The effects of UV on the skin include direct damage to DNA, apoptosis, growth arrest, and stimulation of melanogenesis. Long‐term effects of UV include photoaging and photocarcinogenesis. Epidermal melanocytes synthesize two main types of melanin: eumelanin and pheomelanin. Melanin, particularly eumelanin, represents the major photoprotective mechanism in the skin. Melanin limits the extent of UV penetration through the epidermal layers, and scavenges reactive oxygen radicals that may lead to oxidative DNA damage. The extent of UV‐induced DNA damage and the incidence of skin cancer are inversely correlated with total melanin content of the skin. Given the importance of the melanocyte in guarding against the adverse effects of UV and the fact that the melanocyte has a low self‐renewal capacity, it is critical to maintain its survival and genomic integrity in order to prevent malignant transformation to melanoma, the most fatal form of skin cancer. Melanocyte transformation to melanoma involves the activation of certain oncogenes and the inactivation of specific tumor suppressor genes. This review summarizes the current state of knowledge about the role of melanin and the melanocyte in photoprotection, the responses of melanocytes to UV, the signaling pathways that mediate the biological effects of UV on melanocytes, and the most common genetic alterations that lead to melanoma.  相似文献   

19.
20.
Solar ultraviolet radiation (UV) is a major environmental factor that dramatically alters the homeostasis of the skin as an organ by affecting the survival, proliferation and differentiation of various cutaneous cell types. The effects of UV on the skin include direct damage to DNA, apoptosis, growth arrest, and stimulation of melanogenesis. Long-term effects of UV include photoaging and photocarcinogenesis. Epidermal melanocytes synthesize two main types of melanin: eumelanin and pheomelanin. Melanin, particularly eumelanin, represents the major photoprotective mechanism in the skin. Melanin limits the extent of UV penetration through the epidermal layers, and scavenges reactive oxygen radicals that may lead to oxidative DNA damage. The extent of UV-induced DNA damage and the incidence of skin cancer are inversely correlated with total melanin content of the skin. Given the importance of the melanocyte in guarding against the adverse effects of UV and the fact that the melanocyte has a low self-renewal capacity, it is critical to maintain its survival and genomic integrity in order to prevent malignant transformation to melanoma, the most fatal form of skin cancer. Melanocyte transformation to melanoma involves the activation of certain oncogenes and the inactivation of specific tumor suppressor genes. This review summarizes the current state of knowledge about the role of melanin and the melanocyte in photoprotection, the responses of melanocytes to UV, the signaling pathways that mediate the biological effects of UV on melanocytes, and the most common genetic alterations that lead to melanoma.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号