首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Specific polyclonal antibodies were used to investigate the distribution of two cytochrome P-450 isozymes (5 and 8), NADPH cytochrome c reductase, and epoxide hydrolase in adult human hepatocytes cultured alone or co-cultured with rat liver epithelial cells. The enzymes were localized by the indirect immunoperoxidase technique following fixation with a paraformaldehyde-glutaraldehyde mixture and membrane permeabilization with saponin. The pattern of distribution of the four enzymes after 24 hr in culture was similar to that found in vivo. Virtually all the hepatocytes exhibited nearly homogeneous positive staining for cytochrome P-450-8, whereas only 60-80% were positive for cytochrome P-450-5. Nearly homogeneous staining was also observed in all hepatocytes for NADPH cytochrome c reductase and epoxide hydrolase. During the first 12 days in pure culture, the intensity of staining, as well as the number of positively stained cells, decreased slightly except for epoxide hydrolase, which did not show any obvious change. In contrast, even after 15 days in co-culture the extent of staining for all the enzymes decreased less than in pure culture. These results indicate that adult human hepatocytes continue to express specific drug-metabolizing enzymes for several days in culture and provide further evidence that those cells are more stable than rodent hepatocytes in primary culture.  相似文献   

2.
The time course of induction of rat liver microsomal cytochromes P-450a, P-450b + P-450e, P-450c, and P-450d and epoxide hydrolase has been determined in immature male rats administered a single large dose [1500 mumol (500 mg)/kg body wt] of the polychlorinated biphenyl mixture Aroclor 1254. Differential regulation of these xenobiotic-metabolizing enzymes was indicated by their characteristic patterns of induction. The rate of induction of cytochrome P-450a and epoxide hydrolase was relatively slow, and steady-state levels of these enzymes were maintained from approximately Days 9 to 15 after Aroclor 1254 treatment. In contrast, cytochrome P-450c was maximally induced 2 days after Aroclor 1254 treatment and remained at a constant level through Day 15. Steady-state levels of cytochrome P-450d, beginning 1 week after Aroclor 1254 treatment, were preceded by a fairly rapid rate of induction and possibly by a small decline from maximal levels observed around Days 4 to 5. Like those of the other cytochrome P-450 isozymes and epoxide hydrolase, the levels of cytochromes P-450b + P-450e were constant from Day 9 to 15 after Aroclor 1254 treatment. However, an unexpected but reproducible decline (approximately 25%) in total cytochrome P-450 content observed between Days 4 and 9 after Aroclor 1254 treatment principally reflected a dramatic and totally unanticipated decrease (approximately 45%) in the level of cytochromes P-450b + P-450e. This transient decline in the level of cytochromes P-450b + P-450e was not due to an unusual effect of a mixture of polychlorinated biphenyls, since identical results were obtained with two individual congeners, namely 2,3,4,5,4'-penta- and 2,3,4,5,3',4'-hexachlorobiphenyl, that induced the same isozymes as Aroclor 1254. In contrast, when rats were treated with 2,4,5,2',4',5'-hexachlorobiphenyl, which induces cytochromes P-450a and P-450b + P-450e and epoxide hydrolase but not cytochromes P-450c or P-450d, maximal levels of cytochromes P-450b + P-450e were attained on Day 4 and no decrease was observed over the next 11 days. These results suggest that there may be an interaction in the regulation of induction of certain individual cytochrome P-450 isozymes.  相似文献   

3.
The coding nucleotide sequence for rat liver microsomal, xenobiotic epoxide hydrolase was determined from two overlapping cDNA clones, which together contain 1750 nucleotides complementary to epoxide hydrolase mRNA. The single open reading frame of 1365 nucleotides codes for a 455 amino acid polypeptide with a molecular weight of 52,581. The deduced amino acid composition agrees well with those determined by direct amino acid analysis of the rat protein, and the amino acid sequence is 81% identical to that of rabbit epoxide hydrolase. Analysis of codon usage for epoxide hydrolase, and that of rabbit epoxide hydrolase. Analysis of codon usage for epoxide hydrolase, and comparison to codon usage for NADPH-cytochrome P-450 oxidoreductase and cytochromes P-450b, P-450d, and P-450PCN, suggest that epoxide hydrolase is more conserved than cytochromes P-450b and P-450PCN; comparison of the extent of sequence conservation for 12 homologous proteins between the rat and rabbit, including cytochrome P-450b, supports this hypothesis, and indicates that much of epoxide hydrolase is constrained to maintain its hydrophobic character, consistent with its intramembranous location. The predicted membrane topology of epoxide hydrolase delineates 6 membrane-spanning segments, less than the 8 or 10 predicted for two cytochrome P-450 isozymes; the lower number of membrane-spanning segments predicted for epoxide hydrolase correlates with its lesser dependence on the membrane for maintenance of its tertiary structure and catalytic activity.  相似文献   

4.
In principle, target inactivation analysis provides a means of determining the molecular weights (Mr) and states of aggregation of proteins in native environments where they are functionally active. We applied this irradiation technique to the rat liver microsomal membrane proteins: cytochrome b5, epoxide hydrolase, flavin-containing monooxygenase, NADH-ferricyanide reductase, NADPH-cytochrome P-450 reductase, and seven different forms of cytochrome P-450. Catalytic activities, spectral analysis of prosthetic groups, and sodium dodecyl sulfate-polyacrylamide electrophoresis/peroxidase-coupled immunoblotting were used to estimate apparent Mr values in rat liver microsomal membranes. Except in one case (cytochrome P-450PCN-E), the estimated Mr corresponded most closely to that of a monomer. Purified cytochrome P-450PB-B, NADPH-cytochrome P-450 reductase and epoxide hydrolase were also subjected to target inactivation analysis, and the results also suggested monomeric structures for all three proteins under these conditions. However, previous hydrodynamic and gel-exclusion results clearly indicate that all three of these proteins are oligomeric under these conditions. The discrepancy between target inactivation Mr estimates and hydrodynamic results is attributed to a lack of energy transfer between monomeric units. Thus, while P-450PCN-E may be oligomeric in microsomal membranes, target inactivation analysis does not appear to give conclusive results regarding the states of aggregation of these microsomal proteins.  相似文献   

5.
Polyclonal antibodies to the major beta-naphthoflavone (BNF)-inducible form of cytochrome P-450 (P450IA) and to the major phenobarbitone (PB)-inducible form (P450IIB) have been used to quantify the contribution of these subfamilies to the total amount of cytochrome P-450 in rat livers and rat hepatocyte cultures treated with PB, BNF and metyrapone for 24 and 72 h. The P450IA and IIB subfamilies were not detectable (less than 5 pmol/mg of microsomal protein) in the livers of control rats, but administration of BNF resulted in the P450IA subfamily comprising more than 80% of the total hepatic cytochrome P-450. Administration of PB and metyrapone to rats did not elevate the level of this subfamily but elevated the levels of the P450IIB subfamily to 60% and 30% respectively of the total. Thus metyrapone is a ''PB-like'' inducer. However, in contrast with their effects in vivo, treatment with PB and metyrapone of rat hepatocytes did not elevate the proportion of the P450IIB subfamily relative to that in untreated cells but rather, like BNF, increased the P450IA subfamily. This would account for the ability of metyrapone to produce in hepatocyte culture, like BNF, a pronounced induction of ethoxyresorufin O-de-ethylase activity, but it does not account for why of all inducers studied only metyrapone can maintain the total cytochrome P-450 content of cultured hepatocytes, or the activity of ethylmorphine N-demethylase. This activity is generally considered to be associated with the P450IIB subfamily, but the lack of effect of metyrapone on this subfamily in hepatocyte culture must suggest that metyrapone is able to prevent the loss of the total amount of the cytochrome by increasing the expression of other cytochromes P-450.  相似文献   

6.
Using dietary administration, mice were exposed to eight substances known to cause peroxisome proliferation (i.e. clofibrate clofibric acid, 2,4-dichlorophenoxyacetic acid, 2,4,5-trichlorophenoxyacetic acid, nafenopin, ICI-55.897, S-8527 and Wy-14.643) or the related substance p-chlorophenoxyacetic acid (group A). Other animals received di(2-ethylhexyl)phthalate, mono(2-ethylhexyl)phthalate, 2-ethylhexanoic acid, or one of 12 other metabolically and/or structurally related compounds (group B). The effects of these treatments on liver cytosolic and microsomal epoxide hydrolases, microsomal cytochrome P-450, cytosolic glutathione transferase activity, the liver-somatic index and the protein contents of the microsomal and cytosolic fractions prepared from liver were subsequently monitored. In general, peroxisome proliferation was accompanied by increases in cytosolic epoxide hydrolase activity. Many peroxisome proliferators also caused increases in microsomal epoxide hydrolase activity, although the correlation was poorer in this case. Immunochemical quantitation by radial immunodiffusion demonstrated that the increases observed in both of these enzyme activities reflected equivalent increases in enzyme protein, i.e. that induction truly occurred. Induction of total microsomal cytochrome P-450 was obtained after dietary exposure to clofibrate, clofibric acid, 2,4-dichlorophenoxyacetic acid, 2,4,5-trichlorophenoxyacetic acid, nafenopin, Wy-14.643, di(2-ethylhexyl)phthalate and di(2-ethylhexyl)phosphate. The most pronounced effects on cytosolic glutathione transferase activity were the decreases obtained after treatment with clofibrate, clofibric acid and Wy-14.643. Our results, together with those reported by others, suggest that the processes of peroxisome proliferation and induction of cytosolic epoxide hydrolase are intimately related. One possible explanation for this is presented.  相似文献   

7.
Cytochromes P-450 and epoxide hydrolase in hamsters were studied by using two-dimensional gel electrophoresis of hepatic microsomes from untreated animals and those treated with phenobarbital, 3-methylcholanthrene, beta-naphthoflavone, trans-stilbene oxide, and pregnenolone-16 alpha-carbonitrile. Coelectrophoresis with corresponding microsomes from rats and in situ peptide mapping were used to identify resolved microsomal polypeptides as cytochromes P-450 or epoxide hydrolase. Two forms of hepatic microsomal epoxide hydrolase were shown to exist in hamsters; these evidenced extensive structural homology with the corresponding enzyme in rats and were induced by the same xenobiotics. At least eight inducible polypeptides in microsomes from hamsters were tentatively identified as cytochromes P-450. Two of these were electrophoretically identical and structurally related with previously characterized forms of the enzyme in rats. Homologues of several major cytochromes P-450 induced by pregnenolone-16 alpha-carbonitrile and/or phenobarbital in the rat were apparently not present in the hamster. In most cases, putative forms of inducible cytochrome P-450 in the hamster existed at significant levels in microsomes from untreated animals whereas in rats the levels of most inducible forms of the enzyme were low in control microsomes, being more strictly dependent on xenobiotic pretreatment. In contrast with epoxide hydrolase, the molecular complexity of hepatic cytochrome P-450 seems to be comparable for rats and hamsters, but the structure and control of these hemoproteins appear to have markedly diverged.  相似文献   

8.
9.
Cytosolic epoxide hydrolase   总被引:3,自引:0,他引:3  
Epoxide hydrolase activity is recovered in the high-speed supernatant fraction from the liver of all mammals so far examined, including man. For some as yet unexplained reason, the rat has a very low level of this activity, so that cytosolic epoxide hydrolase is generally studied in mice. This enzyme selectively hydrolyzes trans epoxides, thereby complementing the activity of microsomal epoxide hydrolase, for which cis epoxides are better substrates. Cytosolic epoxide hydrolase has been purified to homogeneity from the livers of mice, rabbits and humans. Certain of the physicochemical and enzymatic properties of the mouse enzyme have been thoroughly characterized. Neither the primary amino acid, cDNA nor gene sequences for this protein are yet known, but such characterization is presently in progress. Unlike microsomal epoxide hydrolase and most other enzymes involved in xenobiotic metabolism, cytosolic epoxide hydrolase is not induced by treatment of rodents with substances such as phenobarbital, 2-acetylaminofluorene, trans-stilbene oxide, or butylated hydroxyanisole. The only xenobiotics presently known to induce cytosolic epoxide hydrolase are substances which also cause peroxisome proliferation, e.g., clofibrate, nafenopin and phthalate esters. These and other observations indicate that this enzyme may actually be localized in peroxisomes in vivo and is recovered in the high-speed supernatant because of fragmentation of these fragile organelles during homogenization, i.e., recovery of this enzyme in the cytosolic fraction is an artefact. The functional significance of cytosolic epoxide hydrolase is still largely unknown. In addition to deactivating xenobiotic epoxides to which the organism is exposed directly or which are produced during xenobiotic metabolism, primarily by the cytochrome P-450 system, this enzyme may be involved in cellular defenses against oxidative stress.  相似文献   

10.
This study was performed in order to study the response of epoxide hydrolases in different subcellular compartments of mouse liver to treatment with various compounds. Male C57BL/6 mice were treated with 31 different compounds--including traditional inducers of xenobiotic-metabolizing systems, liver carcinogens, stilbene derivatives, endogenous compounds and various other drugs and xenobiotics. The effects on liver somatic index; protein contents in 'mitochondria', microsomes and cytosol prepared from the liver; epoxide hydrolase activity towards trans- or cis-stilbene oxide in these three fractions; microsomal cytochrome P-450 content; cytosolic and 'mitochondrial' glutathione transferase activity and cytosolic DT-diaphorase activity were then determined. Cytosolic epoxide hydrolase activity was induced by chlorinated paraffins, di(2-ethylhexyl)phthalate and clofibrate and depressed by alpha-naphthylisothiocyanate, 3-methylcholanthrene, benzil and quercitin. Radial immunodiffusion revealed similar changes in the amount of enzyme protein present, except for two cases, where the increase in amount was larger; and the enzyme seems to be inhibited by benzil. Microsomal epoxide hydrolase activity was induced by these same compounds and several others as well, including dibenzoylmethane, butylated hydroxyanisole and polychlorinated biphenyls. 'Mitochondrial' epoxide hydrolase activity towards trans-stilbene oxide was not affected by those compounds which induced the cytosolic enzyme, but increased about two-fold after treatment with 2-acetylaminofluorene, DL-ethionine, aflatoxin B1 and phenobarbital. There does not seem to be any co-regulation of different forms of epoxide hydrolase in mouse liver. In general small effects were observed on liver weight and protein contents in the different subcellular fractions. Polychlorinated biphenyls were the most potent of the 8 compounds which induced cytochrome P-450, while butylated hydroxyanisole induced cytosolic glutathione transferase activity to the highest extent. 'Mitochondrial' glutathione transferase activity was most induced by certain of the stilbene derivatives. The most potent inducers of DT-diaphorase activity were 3-methylcholanthrene, polychlorinated biphenyls and dinitrotoluene.  相似文献   

11.
The in vitro and in vivo effect of a carcinogenic variety of asbestos, chrysotile, both on xenobiotic metabolizing enzymes such as benzo[a]pyrene hydroxylase, epoxide hydrolase as well as glutathione-S-transferase activities and microsomal lipid peroxidation in rat lung were examined. The in vitro incubation of chrysotile with microsomes significantly adsorbed heme proteins, cytochrome P-450 and P-448 with the concomitant decrease in the dependent monooxygenase activities. The prolonged incubation of this mineral fibre with microsomes also resulted in the release of heme. It also led to the depletion in the activities of epoxide hydrolase and glutathione-S-transferase. However, it induced lipid peroxidation. When these in vitro effects were validated in vivo, the exposure to early stages produced similar alterations as observed in in vitro studies. However, reverse pattern in the alterations was observed after 90 days of exposure except in the case of lipid peroxidation which remained induced.  相似文献   

12.
The levels of microsomal cytochrome P-450, steroidogenesis and microsomal and cytosolic epoxide hydrolase activities in normal human adrenal tissue (obtained from adult kidney transplant donors and autopsy material) and corresponding hyperplasia, adenomas and carcinomas (surgical biopsies) were determined. The increased steroid production demonstrated by most of the pathological tissue samples examined here was associated with either an unchanged or dramatically decreased specific microsomal content of cytochrome P-450. Furthermore, specific microsomal epoxide hydrolase activity was also found to be reduced in adrenocortical carcinomas, while the corresponding cytosolic activity was also decreased in at least two of these carcinomas. It is of interest to note in this connection that the level of microsomal epoxide hydrolase in slightly atropic adrenal cortex surrounding adrenocortical carcinomas was also found to be reduced. This would indicate that despite its appearance, this surrounding tissue is not normal in all respects. Thus, adrenocortical carcinomas fit into the common pattern in that their specific contents of microsomal cytochrome P-450 are dramatically decreased, but the simultaneous decrease in their microsomal epoxide hydrolase activity is more unusual.  相似文献   

13.
The cytochrome P-450 content of nuclear membranes isolated from the livers of male Sprague-Dawley rats fed a semipurified diet containing 0.05% w/w 2-acetylaminofluorene (AAF) for 3 weeks, was only about 20% of the values in control rats fed the same diet devoid of AAF. This effect was apparent after only 1 week of AAF treatment and persisted in nuclear membranes from isolated hyperplastic nodules (HPN) generated by 4 cycles of interrupted AAF-feeding. The microsomal cytochrome P-450 content, on the other hand, remained at control levels after 1 week of AAF treatment, and it was only slightly decreased after 3 weeks. In contrast, microsomes from HPN generated by prolonged AAF treatment had markedly decreased amounts of cytochrome P-450. The AAF treatment also caused changes in cholesterol epoxide hydrolase activity, which paralleled those observed for cytochrome P-450 content. Nuclear membranes from livers of rats fed AAF for 3 weeks, and from isolated HPN, had only 30-50% of the cholesterol epoxide hydrolase activity present in controls, whereas the microsomal enzyme activity remained at control levels after 3 weeks of AAF feeding but was 50% depressed in microsomes from HPN. The selective loss of cytochrome P-450 and of cholesterol epoxide hydrolase in hepatic nuclear membrane, but not in microsomes, of rats fed AAF for 3 weeks suggests independent control for these enzymes in these two membrane fractions. Cytochrome P-450 plays a role both in the activation of AAF (N-hydroxylation) as well as in its detoxification (ring hydroxylation) whereas cholesterol epoxide hydrolase initiates the detoxification of cholesterol epoxide. Therefore, our findings suggest the hypothesis that AAF treatment causes an early loss, at the surface of the nucleus, of the last line of defense for detoxification of transforming or promoting metabolites generated by microsomal activation of natural substances such as cholesterol and of xenobiotics such as AAF.  相似文献   

14.
The amounts of five different forms of cytochrome P-450 and of microsomal epoxide hydrolase were determined immunochemically in rat liver microsomes before and after treatment of the animals with 2-acetylaminofluorene and 15 structurally related compounds. The amount of cytochrome P-450c was found to be increased about 60-fold after treatment with 2-aminofluorene and 3-aminofluorene. Administration of 1-aminofluorene, 4-aminofluorene, 2-acetylaminofluorene and nitrofluorene increased this isozyme about 15-19 times. 2-Aminofluorene was found to inhibit the binding of 2,3,7,8-tetrachlorodibenzo-p-dioxin to a cytoplasmic receptor 50% at a concentration of 3.12 microM, while no such inhibition could be detected with 2-acetylaminofluorene. Induction of ethoxyresorufin O-deethylase activity was found to be highly correlated (+0.95) with the induction of cytochrome P-450c. Also correlated with the induction of this form was the amount of cytochrome P-450d (+0.84), which could be maximally increased about fourfold. Cytochromes P-450b + e were induced by 2-acetylaminofluorene, 4-acetylaminofluorene and fluorene (about tenfold), while 4-aminofluorene and 4-acetylaminofluorene were found to elevate cytochrome P-450PB/PCN-E about threefold. Microsomal epoxide hydrolase was induced by many of the compounds tested, with 2,7-diaminofluorene, 2,7-diacetylaminofluorene, 2-acetylaminofluorene and 2-(N-hydroxy)acetylaminofluorene being the most potent. No correlation of the induction of this enzyme with the induction of any isozyme of cytochrome P-450 was observed.  相似文献   

15.
A major form of pulmonary cytochrome P-450 (pulmonary P-450MC) was purified approximately 165-fold from lung microsomes of 3-methylcholanthrene (MC)-treated hamsters. The purified preparation contained 14.2 nmol of cytochrome P-450 (P-450) per mg protein and was essentially free from NADPH-cytochrome P-450 (cytochrome c)-reductase (NADPH-reductase) and epoxide hydrolase. Pulmonary P-450MC exhibits an absorption maximum at 446.5 nm in the difference spectrum of reduced hemoprotein-CO complex, and a low-spin state of ferric iron in the heme. By sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis, the molecular weight of pulmonary P-450MC was estimated to be 56,000. In a reconstituted system, pulmonary P-450MC efficiently catalyzed benzo(a)pyrene (BP) hydroxylation, but showed low activities for 7-ethoxycoumarin O-deethylation and benzphetamine N-demethylation. In Ouchterlony double diffusion analysis, hamster pulmonary P-450MC reacted to the antibody prepared against rat hepatic P-450MC to form a faint precipitation line with a spur, indicating that the two P-450MCs have a common antigenic site but are not immunologically identical. When incubated with [14C]BP in a reconstituted system containing NADPH-reductase and epoxide hydrolase, hamster pulmonary P-450MC formed much higher amounts of BP diols, especially 7,8-diol, than were formed by rat pulmonary P-450MC.  相似文献   

16.
Treatments affecting the loss of cytochrome P-450 in rat hepatocyte culture are reviewed and the way in which these have produced an understanding of the mechanisms involved are discussed extensively. A simple way to prevent the loss of P-450 in hepatocytes is to culture them with 0.5 mM metyrapone which appears to restore the cytochromes' synthesis and degradation to steady state values. Knowledge of this mechanism has led to the formulation of special culture medium and the application of both culture systems to the study of drug metabolism and toxicity are described. Finally the effect of these culture systems on the expression of the multiple forms of cytochrome P-450 are presented to illustrate the potential of cultured hepatocytes in induction studies.  相似文献   

17.
Cytochrome P-450IIE1 is induced by a variety of agents, including acetone, ethanol and pyrazole. Recent studies employing immunohistochemical methods have shown that P-450IIE1 was expressed primarily in the pericentral zone of the liver. In order to evaluate whether catalytic activity of P-450IIE1 is preferentially localized in the pericentral zone of the liver acinus, the oxidation of aniline and p-nitrophenol, two effective substrates for P-450IIE1, by periportal and pericentral hepatocytes isolated from pyrazole-treated rats was determined. Periportal and pericentral hepatocytes were prepared by a digitonin-collagenase procedure; the marker enzymes glutamine synthetase and gamma-glutamyl transpeptidase indicated reasonable separation of the two cell populations. Viability, yield and total cytochrome P-450 content were similar for the periportal and pericentral hepatocytes. Pericentral hepatocytes oxidized aniline and p-nitrophenol at rates that were 2-4-fold greater than periportal hepatocytes under a variety of conditions. Carbon monoxide inhibited the oxidation of the substrates with both preparations and abolished the increased oxidation found with the pericentral hepatocytes. Pyrazole or 4-methylpyrazole, added in vitro, effectively inhibited the oxidation of aniline and p-nitrophenol and prevented the augmented rate of oxidation by the pericentral hepatocytes. Western blots carried out using isolated microsomes revealed a more than 2-fold increase in immunochemical staining with microsomes isolated from the pericentral hepatocytes, which correlated to the 2-4-fold increase in the rate of oxidation of aniline or p-nitrophenol by the pericentral hepatocytes. These results suggest that functional catalytic activity of cytochrome P-450IIE1 is preferentially localized in the pericentral zone of the liver acinus, and that most of the induction by pyrazole of P-450IIE1 appears to occur within the pericentral zone.  相似文献   

18.
As is the case for cytochrome P-450c, arene 1,2-oxides have been identified as initial metabolites when naphthalene and anthracene are oxidized by cytochrome P-450b in a highly purified, reconstituted system. Overall rates of metabolism by cytochrome P-450b are greater than 3-fold and greater than 50-fold lower than the respective rates of metabolism by cytochrome P-450c. For both hydrocarbons, the (-)-(1S,2R)-oxide predominates (74%) with cytochrome P-450b as the terminal oxidant, based on trapping the labile arene oxides as N-acetyl-L-cysteine S-conjugates of known absolute configuration. This result is in marked contrast to data obtained with cytochrome P-450c where the (+)-(1R,2S)-oxides predominate (73-greater than 95%). In the absence of added epoxide hydrolase, the metabolically formed arene oxides rapidly isomerize to phenols. Addition of increasing amounts of epoxide hydrolase to the incubation medium results in the formation of trans-1,2-dihydrodiols at the expense of phenols from the common arene oxide intermediates. Evaluation of the kinetic parameters (Km and kcat) for the hydration of the (+)- and (-)-enantiomers of both arene oxides by epoxide hydrolase has indicated that the (+)-(1R,2S)-enantiomers exhibit lower values of Km (approximately 1 microM) whereas the values of kcat are similar for both enantiomers of a given arene oxide. These parameters have allowed construction of a mathematical model which predicts the enantiomer composition of the dihydrodiols formed from naphthalene in reconstituted systems containing specific epoxide hydrolase concentrations. The data reported argue against a selective functional coupling mechanism between cytochrome P-450c and epoxide hydrolase in the metabolism of naphthalene and anthracene to the 1,2-dihydrodiols.  相似文献   

19.
A procedure for the preparation of monospecific antibody directed against rat liver microsomal cytochrome P-45-a is described. This antibody, together with monospecific antibodies to cytochromes P-450b and P-450c, has been used to show that these three forms of cytochrome P-450 are distinct and share no common antigenic determinants. These antibodies (a) give single immunoprecipitin bands with detergent-solubilized microsomes; (b) do not cross-react with the purified heterologous antigens in Ouchterlony double diffusion analyses; (c) have no effect on catalytic activity of the heterologous antigens but completely inhibit the enzymatic activity of the homologous antigens; and (d) remove only the homologous antigen from detergent-solubilized microsomes when covalently bound to a solid support. With radial immunodiffusion assay, we have quantitated these three forms of cytochrome P-450 in liver microsomes after treatment of rats with seven different inducers of cytochrome P-450. The levels of these cytochrome P-450 isozymes vary independently and are also regulated by the age and sex of the animal. The antibodies have also been used to assess the contribution of cytochromes P-450a, P-450b, and P-450c in the metabolism of xenobiotics by rat liver microsomes. A large proportion of benzo(a)pyrene metabolism and testosterone 16 alpha-hydroxylation in microsomes from untreated rats is not catalyzed by cytochromes P-450a, P-450b, and P-450c. Epoxide hydrolase, another microsomal enzyme involved in the metabolism of xenobiotics, was also quantitated by radial immunodiffusion after prior treatment of rats with microsomal enzyme inducers. The inductions of epoxide hydrolase varies independently of the induction of cytochromes P-450a, P-450b, and P-450c.  相似文献   

20.
A system of primary cultures of postnatal rat hepatocytes has been developed to serve as an experimental model for drug metabolism and toxicity investigations. The purpose of this study was to examine the reported loss of cytochrome P-450 of hepatocytes when placed in culture and to compare activity in culture to intact liver and freshly isolated hepatocytes. A medium enriched with several hormones and a system of floating filters as a substratum for cell attachment were investigated as methods to reduce the expected loss of cytochrome P-450. When compared to initial values of cytochrome P-450 in whole liver and isolated hepatocytes, these methods failed to prevent the reduction of cytochrome P-450 in culture. However, our results compare favorably with other values reported in the literature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号