首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Tubuloglomerular feedback (TGF) stabilizes nephron function from minute to minute and adapts to different steady-state inputs to maintain this capability. Such adaptation inherently renders TGF less efficient at buffering long-term disturbances, but the magnitude of loss is unknown. We undertook the present study to measure the compromise between TGF and TGF adaptation in transition from acute to chronic decline in proximal reabsorption (Jprox). As a tool, we blocked proximal tubule sodium-glucose cotransport with the SGLT2 blocker dapagliflozin in hyperglycemic rats with early streptozotocin diabetes, a condition in which a large fraction of proximal fluid reabsorption owes to SGLT2. Dapagliflozin acutely reduced proximal reabsorption leading to a 70% increase in early distal chloride, a saturated TGF response, and a major reduction in single nephron glomerular filtration rate (SNGFR). Acute and chronic effects on Jprox were indistinguishable. Adaptations to 10-12 days of dapagiflozin included increased reabsorption by Henle's loop, which caused a partial relaxation in the increased tone exerted by TGF that could be explained without desensitization of TGF. In summary, TGF contributes to long-term fluid and salt balance by mediating a persistent decline in SNGFR as the kidney adapts to a sustained decrease in Jprox.  相似文献   

2.
In previous studies, we used a mathematical model of the thick ascending limb (TAL) to investigate nonlinearities in the tubuloglomerular feedback (TGF) loop. That model does not represent other segments of the nephron, the water, and NaCl transport along which may impact fluid flow rate and NaCl transport along the TAL. To investigate the extent to which those transport processes affect TGF mediation, we have developed a mathematical model for TGF signal transduction in a short loop nephron. The model combines a simple representation of the renal cortex with a highly-detailed representation of the outer medulla (OM). The OM portion of the model is based on an OM urine concentrating mechanism model previously developed by Layton and Layton (Am. J. Renal 289:F1346–F1366, 2005a). When perturbations are applied to intratubular fluid flow at the proximal straight tubule entrance, the present model predicts oscillations in fluid flow and solute concentrations in the cortical TAL and interstitium, and in all tubules, vessels, and interstitium in the OM. Model results suggest that TGF signal transduction by the TAL is a generator of nonlinearities: if a sinusoidal oscillation is added to constant intratubular fluid flow, the time required for an element of tubular fluid to traverse the TAL is oscillatory, but nonsinusoidal; those results are consistent with our previous studies. As a consequence, oscillations in NaCl concentration in tubular fluid alongside the macula densa (MD) will be nonsinusoidal and contain harmonics of the original sinusoidal frequency. Also, the model predicts that the oscillations in NaCl concentration at the loop-bend fluid are smaller in amplitude than those at the MD, a result that further highlights the crucial role of TAL in the nonlinear transduction of TGF signal from SNGFR to MD NaCl concentration.  相似文献   

3.
Inconsistencies in previous reports regarding changes in early distal NaCl concentration (ED(NaCl)) and renin secretion during osmotic diuresis motivated our reinvestigation. After intravenous infusion of 10% mannitol, ED(NaCl) fell from 42.6 to 34.2 mM. Proximal tubular pressure increased by 12.6 mmHg. Urine flow increased 10-fold, and sodium excretion increased by 177%. Plasma renin concentration (PRC) increased by 58%. Renal blood flow and glomerular filtration rate decreased, however end-proximal flow remained unchanged. After a similar volume of hypotonic glucose (152 mM), ED(NaCl) increased by 3.6 mM, (P < 0.01) without changes in renal hemodynamics, urine flow, sodium excretion rate, or PRC. Infusion of 300 micromol NaCl in a smaller volume caused ED(NaCl) to increase by 6.4 mM without significant changes in PRC. Urine flow and sodium excretion increased significantly. There was a significant inverse relationship between superficial nephron ED(NaCl) and PRC. We conclude that ED(Na) decreases during osmotic diuresis, suggesting that the increase in PRC was mediated by the macula densa. The results suggest that the natriuresis during osmotic diuresis is a result of impaired sodium reabsorption in distal tubules and collecting ducts.  相似文献   

4.
Autoregulation of renal blood flow is ineffective when arterial pressure perturbations occur at frequencies above 0.05 Hz. To determine whether wave propagation velocity to the macula densa is rate limiting, we estimated compliances of the proximal tubule and the loop of Henle, and used these values in a model of pressure and flow as functions of time and distance in the nephron. Compliances were estimated from measurements of pressures and flows in early proximal, late proximal, and early distal tubules in rats under normal and Ringer-loaded conditions. A model of steady pressure and flow in a compliant, reabsorbing tubule was fitted to these results. The transient model was a set of nonlinear, hyperbolic partial differential equations with split, nonlinear boundary conditions, and was solved with finite difference methods. The loop of Henle compliance was larger than the proximal tubule compliance, and impulses in glomerular filtration rate were attenuated in magnitude and delayed in time in the loop of Henle. Simulated step forcings revealed a similar pattern. Periodic variations of GFR were attenuated at frequencies greater than 0.05 Hz, and there was a delay of 5 s between variations in GFR and macula densa flow rate. The high compliance of the loop slows wave propagation to the macular densa and reduces the amplitude of high frequency waves originating in the glomerulus, but other parts of the signal chain also contribute to the slow response of macula densa feedback.  相似文献   

5.
何小瑞  姚泰 《生理学报》1992,44(4):405-408
在麻醉大鼠肾脏近曲小管和远曲小管分别进行微穿刺,采集小管液。测定单个肾单位肾小球滤过率(SNGFR)。由于微穿刺部位对管球反馈造成的影响,在同一肾单位,采集近曲小管末段小管液测出的SNGFR值(SNGFR_p)比在远曲小管起始段测出的SNGFR值(SNG-FR_d)高,故可将在这两个部位测得的SNGFR值的差(SNGFR_(p-d))用作衡量管球反馈(TGF)敏感性的间接指标。脑室内注射高张盐水(icv.HS)后,SNGFR_(p-d)减小,表明脑内渗透压感受器受刺激可使TGF的敏感性降低。静脉注射速尿后,icv.HS不再引起肾血浆流量和肾小球滤过率的增加,但仍能引起尿钠排出增多。上述结果表明,刺激脑内渗透压感受器可通过减弱TGF导致肾脏血流动力学的改变,而其增加尿钠排出的效应则是通过抑制肾小管的重吸收实现的。  相似文献   

6.
T N?rgaard 《Histochemistry》1979,63(1):103-113
A quantitative fluorimetric method is described for estimating the activity of glucose-6-phosphate dehydrogenase in isolated fractions of rabbit nephron from the superficial part of the renal cortex: macula densa, proximal convoluted tubule, distal convoluted tubule and glomerulus. The mean activity in the macula densa region was 2.5 X 10(-18) mol/micrometers 3/min, which was about twice the mean activity of the proximal and distal tubular cells and four times that of the glomeruli. As glucose-6-phosphate dehydrogenase is located in the cytoplasm, the average cytoplasmic enzyme activity of the different tubular cells was calculated: macula densa activity was 4.0 X 10(-18) mol/micrometers 3/min whilst proximal tubular cells showed about a third, and distal tubular cells about a quarter of this activity.  相似文献   

7.
The inherited deficiency of arylsulfatase A (ASA) causes lysosomal accumulation of sulfoglycolipids (mainly sulfo-galactosylceramide, S-GalCer ) and leads to metachromatic leukodystrophy in humans. Among visceral organs, kidneys are particularly affected. In the present study, the regional distribution and temporal development of sulfoglycolipid storage in kidneys of ASA-/- mice was investigated histochemically (alcian blue) and ultrastructurally. Furthermore, the sulfoglycolipid storage was examined in kidneys of double-knockout mice, which are incapable of: (a) degrading any sulfolipids (ASA-/-) and (b) synthesizing the major sulfolipid S-GalCer because of deficiency for galactosylceramide synthase (CGT), with the aim to search for additional ASA substrates. In ASA-/- mice, the nephron segments could be ranged in the order of decreasing sulfolipid storage: thin limbs of long-looped nephrons approximately thick ascending limbs > distal convoluted tubules > collecting ducts approximately short thin limbs. Macula densa and proximal tubules were unaffected. In ASA-/-/CGT-/- mice, the long thin limbs and distal convoluted tubules resembled those of ASA-/-/CGT+/+ mice, while the other segments showed less storage. The results suggest that the turnover of sulfolipids in general is highest in the distal nephron except macula densa, and that long thin limbs and distal convoluted tubules are the main sites for turnover of a minor sulfolipid species, which is known to be synthesized in the kidney of CGT-/- mice.  相似文献   

8.
Summary Glucose-6-phosphate dehydrogenase activity was measured quantitatively in isolated cortical fractions of the nephron in sodium-depeleted and sodium-loaded rabbits. The samples consisted of isolated fractions of macula densa, proximal convoluted tubule, distal convoluted tubule and glomerulus. In sodium-depleted rabbits enzyme activity was identical to that of normal rabbits. In sodium-loaded rabbits a significant decrease in enzyme activity was found in the macula densa and proximal convoluted tubule. However, using conventional histochemical incubation methods semiquantitative estimation of glucose-6-phosphate dehydrogenase showed a slight decrease in enzyme activity in the macula densa and distal convoluted tubule, and a slight increase in the proximal convoluted tubule during sodiumdepletion. During sodium-load a pronounced decrease in enzyme activity was seen in the macula densa and distal convoluted tubule. These results show that semiquantitative histochemical evaluation of changes in enzyme activity is less reliable than the more precise quantitative method especially when there are only slight changes in enzyme activity. Only where there were marked changes in histochemical enzyme activity might the results of quantitative and semiquantitative methods be in accord.  相似文献   

9.
In several previous studies, we used a mathematical model of the thick ascending limb (TAL) to investigate nonlinearities in the tubuloglomerular feedback (TGF) loop. That model, which represents the TAL as a rigid tube, predicts that TGF signal transduction by the TAL is a generator of nonlinearities: if a sinusoidal oscillation is added to constant intratubular fluid flow, the time interval required for an element of tubular fluid to traverse the TAL, as a function of time, is oscillatory and periodic but not sinusoidal. As a consequence, NaCl concentration in tubular fluid alongside the macula densa will be nonsinusoidal and thus contain harmonics of the original sinusoidal frequency. We hypothesized that the complexity found in power spectra based on in vivo time series of key TGF variables arises in part from those harmonics and that nonlinearities in TGF-mediated oscillations may result in increased NaCl delivery to the distal nephron. To investigate the possibility that a more realistic model of the TAL would damp the harmonics, we have conducted new studies in a model TAL that has compliant walls and thus a tubular radius that depends on transmural pressure. These studies predict that compliant TAL walls do not damp, but instead intensify, the harmonics. In addition, our results predict that mean TAL flow strongly influences the shape of the NaCl concentration waveform at the macula densa. This is a consequence of the inverse relationship between flow speed and transit time, which produces asymmetry between up- and downslopes of the oscillation, and the nonlinearity of TAL NaCl absorption at low flow rates, which broadens the trough of the oscillation relative to the peak. The dependence of waveform shape on mean TAL flow may be the source of the variable degree of distortion, relative to a sine wave, seen in experimental recordings of TGF-mediated oscillations.  相似文献   

10.
IQGAP1 is a multifunctional junction molecule that is involved in cell migration, proliferation, differentiation, cell polarity, and cell–cell adhesion. It is highly expressed in the kidney and has recently been identified in the glomerular basement membrane as a nephrin-associated protein. However, the distribution of IQGAP1 in renal tubular epithelial cells is unknown. We performed confocal microscopic studies to localize IQGAP1 in each nephron segment using dual immunofluorescence staining with various antibodies against segment-specific markers. We found that IQGAP1 was strongly expressed in the distal convoluted tubule (DCT), collecting duct, and macula densa and moderately in the thick ascending limb and proximal tubule. In the DCT, the IQGAP1–F-actin complex forms a comb-like structure with multiple parallel spikes sitting on the basal membrane. In the macula densa cells, IQGAP1 is strongly expressed in the apical membrane, whereas in type A intercalated cells, IQGAP1 is expressed in the basolateral membrane, where it colocalizes with anion exchanger 1, and in principal cells, it is diffusely expressed. In conclusion, we showed the expression and subcellular localization of IQGAP1 in various nephron segments. The site-specific expression pattern of this potent modulator of multiple biological pathways in the renal tubules suggests that IQGAP1 may have multiple important roles in various renal functions. (J Histochem Cytochem 56:659–666, 2008)  相似文献   

11.
1. The effects of intrarenal infusion of iodoacetate, an inhibitor of anaerobic glycolysis, on urea transport in kidney of sheep was studied by micropuncture free-flow technique. 2. Iodoacetate decreased the tubular fluid to plasma urea ratio in late distal tubules only; no changes were found in both the late proximal and early distal tubules. Fractional delivery of urea to the same superficial segments of nephron and the urea excretion by whole kidney were not significantly influenced. 3. Our results do not support the concept of active urea transport in the kidney of sheep which would be dependent on energy derived from anaerobic metabolism.  相似文献   

12.
Summary A quantitative fluorimetric method is described for estimating the activity of glucose-6-phosphate dehydrogenase in isolated fractions of rabbit nephron from the superficial part of the renal cortex: macula densa, proximal convoluted tubule, distal convoluted tubule and glomerulus. The mean activity in the macula densa region was 2.5×10–18 mol/m3/min, which was about twice the mean activity of the proximal and distal tubular cells and four times that of the glomeruli. As glucose-6-phosphate dehydrogenase is located in the cytoplasm, the average cytoplasmic enzyme activity of the different tubular cells was calculated: macula densa activity was 4.0×10–18 mol/m3/min whilst proximal tubular cells showed about a third, and distal tubular cells about a quarter of this activity.  相似文献   

13.
While studying a normal juxtaglomerular complex (JGC) under light optic and electron microscope, histotopographic dependence in distribution of its components in the renal cortical substance was stated. In normal periglomerular cells, processes of synthesis and excretion of renine granules are taking place that is demonstrated by the presence of young maturing, mature forms and subsequent excretion of their contents. In 157 rats during the development of experimental renovascular hypertension, correlation of the JGC of various classes of granularity was increasing towards the latter. Hyperfunction of the periglomerular cells is dynamically performed transferring from the accumulative type into the secretory one; this is proved by both changing in granularity index and correlation in stages of granule formation and excretion of their contents. Juxtavascular cells (Goormaghtigh's cells) and mesangiocytes are the reserve for renine production. Cellular reaction of macula densa is manifested in metaplasia of epitheliocytes of the distal part of the nephron, in increasing index of macula densa and in ultrastructural changes.  相似文献   

14.
Angiotensin II (ANG II) infusion increases renal superoxide (O(2)(-)) and enhances renal vasoconstriction via macula densa (MD) regulation of tubuloglomerular feedback, but the mechanism is unclear. We targeted the p22(phox) subunit of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase (NOX) with small-interfering RNA (siRNA) to reduce NADPH oxidase activity and blood pressure response to ANG II in rats. We compared single nephron glomerular filtration rate (SNGFR) in samples collected from the proximal tubule (PT), which interrupts delivery to the MD, and from the distal tubule (DT), which maintains delivery to the MD, to assess MD regulation of GFR. SNGFR was measured in control and ANG II-infused rats (200 ng.kg(-1).min(-1) for 7 days) 2 days after intravenous injection of vehicle or siRNA directed to p22(phox) to test the hypothesis that p22(phox) mediates MD regulation of SNGFR during ANG II. The regulation of SNGFR by MD, determined by PT SNGFR-DT SNGFR, was not altered by siRNA in control rats (control + vehicle, 13 +/- 1, n = 8; control + siRNA, 12 +/- 2 nl/min, n = 8; not significant) but was reduced by siRNA in ANG II-treated rats (ANG II + vehicle, 13 +/- 2, n = 7; ANG II + siRNA, 7 +/- 1 nl/min, n = 8; P < 0.05). We conclude that p22(phox) and NADPH oxidase regulate the SNGFR during ANG II infusion via MD-dependent mechanisms.  相似文献   

15.
Hyperfiltration has been implicated in the progression toward diabetic nephropathy in type 2 diabetes mellitus (DM2). This study focuses for the first time on the in vivo modulation of single-nephron GFR (SNGFR) in the classic B6.Cg-m(+/+)Lepr(db)/J (db/db) mouse model of DM2. To obtain stable preparations, it was necessary to use a sustaining infusion of 3.3 ml.100 g body wt(-1) x h(-1), or higher. SNGFR (measured both proximally and distally) was greater in db/db vs. heterozygote (db/m) mice (P < 0.05) but not vs. the wild-type (WT) mice. The tubuloglomerular feedback (TGF) responses, determined as free-flow proximal vs. distal SNGFR differences, were significant in db/db mice (11.6 +/- 0.8 vs. 9.3 +/- 1.0 nl/min, P < 0.01), in db/m mice (8.0 +/- 0.8 vs. 7.2 +/- 0.6 nl/min, P < 0.02), and WT mice (9.9 +/- 0.6 vs. 8.9 +/- 0.7 nl/min, P < 0.05). After increasing the sustaining infusion in the db/db mice, to offset glycosuric urine losses, the SNGFR increased significantly, and the TGF response was abolished. In these volume-replete db/db mice, absolute fluid reabsorption measured both at the late proximal and distal tubular sites were significantly increased vs. db/m mice infused at 3.3 ml.100 g body wt(-1) x h(-1). After infusion of the neuronal nitric oxide synthase (nNOS) inhibitor S-methylthiocitrulline, SNGFR fell in both db/db and db/m mice. These studies show that SNGFR is elevated in this mouse model of DM2, is suppressed by nNOS inhibition, and is modulated by TGF influences that are altered by the diabetic state and responsive to changes in extracellular fluid volume.  相似文献   

16.
Tubuloglomerular feedback (TGF) is a renal autoregulatory mechanism that constricts the afferent arteriole in response to increases in distal NaCl. Heme oxygenases (HO-1 and HO-2) release carbon monoxide (CO) and biliverdin, which may help control renal function. We showed in vitro that HO products inhibit TGF; however, we do not know whether this also occurs in vivo or the mechanism(s) involved. We hypothesized that in vivo HO-1 and HO-2 in the nephron inhibit TGF via release of CO and biliverdin. We first performed laser capture microdissection followed by real-time PCR and found that both HO-1 and HO-2 are expressed in the macula densa. We next performed micropuncture experiments in vivo on individual rat nephrons, adding different compounds to the perfusate, and found that an HO inhibitor, stannous mesoporphyrin (SnMP), potentiated TGF (P < 0.05, SnMP vs. control). The CO-releasing molecule (CORM)-3 partially inhibited TGF at 50 μmol/l (P < 0.01, CORM-3 vs. control) and blocked it completely at higher doses. A soluble guanylyl cyclase (sGC) inhibitor, LY83583, blocked the inhibitory effect of CORM-3 on TGF. Biliverdin also partially inhibited TGF (P < 0.01, biliverdin vs. control), most likely attributable to decreased superoxide (O(2)(-)) because biliverdin was rendered ineffective by tempol, a O(2)(-) dismutase mimetic. We concluded that HO-1 and HO-2 in the nephron inhibit TGF by releasing CO and biliverdin. The inhibitory effect of CO on TGF is mediated by the sGC/cGMP signaling pathway, whereas biliverdin probably acts by reducing O(2)(-).  相似文献   

17.
Previously, we developed a dynamic model for the tubuloglomerular feedback (TGF) system in a single, short-looped nephron of the mammalian kidney. In that model, a semi-linear hyperbolic partial differential equation was used to represent two fundamental processes of solute transport in the nephron’s thick ascending limb (TAL): chloride advection by fluid flow along the TAL lumen and transepithelial chloride transport from the lumen to the interstitium. An empirical function and a time delay were used to relate glomerular filtration rate to the chloride concentration at the macula densa of the TAL. Analysis of the model equations indicated that stable limit-cycle oscillations (LCO) in nephron fluid flow and chloride concentration can emerge for sufficiently large feedback gain magnitude and time delay. In this study, the single-nephron model was extended to two nephrons, which were coupled through their filtration rates. Explicit analytical conditions were obtained for bifurcation loci corresponding to two special cases: (1) identical time delays but differing feedback gains, and (2) identical gains but differing delays. Similar to the case of a single nephron, our analysis indicates that stable LCO can emerge in coupled nephrons for sufficiently large gains and delays. However, these LCO may emerge at lower values of the feedback gain, relative to a single (i.e., uncoupled) nephron, or at shorter delays, provided the delays are sufficiently close. These results suggest that, in vivo, if two nephrons are sufficiently similar, then coupling will tend to increase the likelihood of LCO.  相似文献   

18.
The function of single superficial nephrons has been studied by means of several micropuncture methods in 22-, 30- and 42-day rats. It was shown that intratubular hydrostatic pressure, transit time of tubular fluid through a proximal tubule and Henle's loop, as well as local reabsorption in the proximal tubules measured by Gertz's split oil droplet method increase between the 22nd and the 30th days. The ration of tubular fluid and plasma (TF/P) inulin concentrations in late proximal and in early distal tubules increases with age. The values of TF/P for Na in early distal tubules are higher in 22- and 30-day rats than in older ones. TF/P for K does not change simultaneously with that for Na. These data are consistent with the assumption that the sodium load in the distal part of the nephron is higher in young rats than in adult ones.  相似文献   

19.
Amphibians inhabit areas ranging from completely aqueous to terrestrial environments and move between water and land. The kidneys of all anurans are similar at the gross morphological level: the structure of their nephrons is related to habitat. According to the observation by light and electron microscopy, the cells that make up the nephron differ among species. Immunohistochemical studies using antibodies to various ATPases showed a significant species difference depending on habitat. The immunoreactivity for Na+,K(+)-ATPase was low in the proximal tubules but high in the basolateral membranes of early distal tubules to collecting ducts in all species. In the proximal tubule, apical membranes of the cells were slightly immunoreactive to H(+)-ATPase antibody in aquatic species. In the connecting tubule and the collecting duct, the apical membrane of intercalated cells was immunoreactive in all species. In aquatic species, H+,K(+)-ATPase immunoreactivity was observed in cell along the proximal, distal tubule to the collecting duct. However, H+,K(+)-ATPase was present along the intercalated cells of the distal segments from early distal to collecting tubules in terrestrial and semi-aquatic species. In the renal corpuscle, the neck segment and the intermediate segment, immunoreactivities to ion pumps were not observed in any of the species examined. Taking together our observations, we conclude that in the aquatic species, a large volume of plasma must be filtered in a large glomerulus and the ultrafiltrate components are reabsorbed along a large and long proximal segment of the nephron. Control of tubular transport may be poorly developed when a small short distal segment of the nephron is observed. On the contrary, terrestrial species have a long and well-developed distal segment and regulation mechanisms of tubular transport may have evolved in these segments. Thus, the development of the late distal segments of the nephron is one of the important factors for the terrestrial adaptation.  相似文献   

20.
Asymmetric (N(G),N(G))-dimethylarginine (ADMA) inhibits nitric oxide (NO) synthases (NOS). ADMA is a risk factor for endothelial dysfunction, cardiovascular mortality, and progression of chronic kidney disease. Two isoforms of dimethylarginine dimethylaminohydrolase (DDAH) metabolize ADMA. DDAH-1 is the predominant isoform in the proximal tubules of the kidney and in the liver. These organs extract ADMA from the circulation. DDAH-2 is the predominant isoform in the vasculature, where it is found in endothelial cells adjacent to the cell membrane and in intracellular vesicles and in vascular smooth muscle cells among the myofibrils and the nuclear envelope. In vivo gene silencing of DDAH-1 in the rat and DDAH +/- mice both have increased circulating ADMA, whereas gene silencing of DDAH-2 reduces vascular NO generation and endothelium-derived relaxation factor responses. DDAH-2 also is expressed in the kidney in the macula densa and distal nephron. Angiotensin type 1 receptor activation in kidneys reduces the expression of DDAH-1 but increases the expression of DDAH-2. This rapidly evolving evidence of isoform-specific distribution and regulation of DDAH expression in the kidney and blood vessels provides potential mechanisms for nephron site-specific regulation of NO production. In this review, the recent advances in the regulation and function of DDAH enzymes, their roles in the regulation of NO generation, and their possible contribution to endothelial dysfunction in patients with cardiovascular and kidney diseases are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号