首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Soluble epoxide hydrolase (sEH) metabolizes epoxyeicosatrienoic acids (EETs) to dihydroxyeicosatrienoic acids. EETs are formed from arachidonic acid during myocardial ischemia and play a protective role against ischemic cell death. Deletion of sEH has been shown to be protective against myocardial ischemia in the isolated heart preparation. We tested the hypothesis that sEH inactivation by targeted gene deletion or pharmacological inhibition reduces infarct size (I) after regional myocardial ischemia-reperfusion injury in vivo. Male C57BL\6J wild-type or sEH knockout mice were subjected to 40 min of left coronary artery (LCA) occlusion and 2 h of reperfusion. Wild-type mice were injected intraperitoneally with 12-(3-adamantan-1-yl-ureido)-dodecanoic acid butyl ester (AUDA-BE), a sEH inhibitor, 30 min before LCA occlusion or during ischemia 10 min before reperfusion. 14,15-EET, the main substrate for sEH, was administered intravenously 15 min before LCA occlusion or during ischemia 5 min before reperfusion. The EET antagonist 14,15-epoxyeicosa-5(Z)-enoic acid (EEZE) was given intravenously 15 min before reperfusion. Area at risk (AAR) and I were assessed using fluorescent microspheres and triphenyltetrazolium chloride, and I was expressed as I/AAR. I was significantly reduced in animals treated with AUDA-BE or 14,15-EET, independent of the time of administration. The cardioprotective effect of AUDA-BE was abolished by the EET antagonist 14,15-EEZE. Immunohistochemistry revealed abundant sEH protein expression in left ventricular tissue. Strategies to increase 14,15-EET, including sEH inactivation, may represent a novel therapeutic approach for cardioprotection against myocardial ischemia-reperfusion injury.  相似文献   

2.
Cytochrome P-450 metabolites of arachidonic acid, the epoxyeicosatrienoic acids (EETs) and hydrogen peroxide (H(2)O(2)), are important signaling molecules in the kidney. In renal arteries, EETs cause vasodilation whereas H(2)O(2) causes vasoconstriction. To determine the physiological contribution of H(2)O(2), catalase is used to inactivate H(2)O(2). However, the consequence of catalase action on EET vascular activity has not been determined. In rat renal afferent arterioles, 14,15-EET caused concentration-related dilations that were inhibited by Sigma bovine liver (SBL) catalase (1,000 U/ml) but not Calbiochem bovine liver (CBL) catalase (1,000 U/ml). SBL catalase inhibition was reversed by the soluble epoxide hydrolase (sEH) inhibitor tAUCB (1 μM). In 14,15-EET incubations, SBL catalase caused a concentration-related increase in a polar metabolite. Using mass spectrometry, the metabolite was identified as 14,15-dihydroxyeicosatrienoic acid (14,15-DHET), the inactive sEH metabolite. 14,15-EET hydrolysis was not altered by the catalase inhibitor 3-amino-1,2,4-triazole (3-ATZ; 10-50 mM), but was abolished by the sEH inhibitor BIRD-0826 (1-10 μM). SBL catalase EET hydrolysis showed a regioisomer preference with greatest hydrolysis of 14,15-EET followed by 11,12-, 8,9- and 5,6-EET (V(max) = 0.54 ± 0.07, 0.23 ± 0.06, 0.18 ± 0.01 and 0.08 ± 0.02 ng DHET·U catalase(-1)·min(-1), respectively). Of five different catalase preparations assayed, EET hydrolysis was observed with two Sigma liver catalases. These preparations had low specific catalase activity and positive sEH expression. Mass spectrometric analysis of the SBL catalase identified peptide fragments matching bovine sEH. Collectively, these data indicate that catalase does not affect EET-mediated dilation of renal arterioles. However, some commercial catalase preparations are contaminated with sEH, and these contaminated preparations diminish the biological activity of H(2)O(2) and EETs.  相似文献   

3.
The present study was designed to see if acute local inhibition of Ras-GTPase before or after ischemia (during perfusion) would produce protection against ischemia and reperfusion (I/R)-induced cardiac dysfunction. The effect of glibenclamide, an inhibitor of cardiac mitochondrial ATP-sensitive potassium (mitoK(ATP)) channels, on Ras-GTPase-mediated cardioprotection was also studied. A 40 min episode of global ischemia followed by a 30 min reperfusion in perfused rat hearts produced significantly impaired cardiac function, measured as left ventricular developed pressure (P(max)) and left ventricular end-diastolic pressure (LVEDP). Perfusion with Ras-GTPase inhibitor FPT III before I/R [FPT(pre)], significantly enhanced cardiac recovery in terms of left ventricular contractility. P(max) was significantly higher at the end of 30 min reperfusion in FPT(pre)-treated hearts compared to pre-conditioned hearts. However, the degree of improvement in left ventricular contractility was significantly less when FPT III was given only after ischemia during reperfusion [FPT(post)]. Combination treatment with FPT III and glibenclamide before I/R resulted in significant reduction of FPT III-mediated cardioprotection. These data suggest that activation of Ras-GTPase signaling pathways during ischemia are critical in the development of left ventricular dysfunction and that opening of mitoK(ATP) channels, at least in part, contributes to cardioprotection produced by Ras-GTPase inhibition.  相似文献   

4.
目的:探讨丙泊酚预处理对大鼠离体心肌浅低温缺血/再灌注(I/R)损伤后心肌细胞凋亡及线粒体细胞色素C释放的影响。方法:应用Langendorff离体心脏灌注模型,取50只SD大鼠随机分为5组:对照组(C组),二甲基亚砜(DMSO)预处理组(D组),25、50、100μmol·L^-1丙泊酚预处理纽(P1、P2、P3组)。各组均浅低温缺血55min,再常温灌注60min。D组、P1、P2、P3组在缺血前分别以含DMSO、相应浓度丙泊酚的K-H液灌注10min,再冲洗5min,重复2次。记录平衡灌注末、缺血前即刻、再灌注30、60min时的心功能指标。再灌注60min时测定凋亡细胞,提取心肌线粒体,测定线粒体和胞浆的细胞色素C水平。结果:与C组相比,P3组再灌注30min、60min时左室舒张末压(LVEDP)降低、左室发展压(LVDP)升高(P〈0.05或P〈0.01);P2、P3组再灌注末心肌细胞凋亡率降低(P〈0.05或P〈0.01),线粒体细胞色素c释放减少,胞浆细胞色素C的量明显降低(P〈0.05或P〈0.01)。结论:丙泊酚预处理能够通过抑制心肌线粒体细胞色素C释放到胞浆,降低浅低温I/R损伤心肌细胞凋亡率,减轻心肌桶伤.  相似文献   

5.
Adenosine-enhanced ischemic preconditioning (APC) extends the cardioprotection of ischemic preconditioning (IPC) by both significantly decreasing myocardial infarct size and significantly enhancing postischemic functional recovery. In this study, the role of adenosine receptors during ischemia-reperfusion was determined. Rabbit hearts (n = 92) were used for Langendorff perfusion. Control hearts were perfused for 180 min, global ischemia hearts received 30-min ischemia and 120-min reperfusion, and IPC hearts received 5-min ischemia and 5-min reperfusion before ischemia. APC hearts received a bolus injection of adenosine coincident with IPC. Adenosine receptor (A(1), A(2), and A(3)) antagonists were used with APC before ischemia and/or during reperfusion. GR-69019X (A(1)/A(3)) and MRS-1191/MRS-1220 (A(3)) significantly increased infarct size in APC hearts when administered before ischemia and significantly decreased functional recovery when administered during both ischemia and reperfusion (P < 0.05 vs. APC). DPCPX (A(1)) administered either before ischemia and/or during reperfusion had no effect on APC cardioprotection. APC-enhanced infarct size reduction is modulated by adenosine receptors primarily during ischemia, whereas APC-enhanced postischemic functional recovery is modulated by adenosine receptors during both ischemia and reperfusion.  相似文献   

6.
Epoxyeicosatrienoic acids (EETs) are metabolized by soluble epoxide hydrolase (sEH) to form dihydroxyeicosatrienoic acids (DHETs) and are putative endothelium-derived hyperpolarizing factors (EDHFs). EDHFs modulate microvascular tone; however, the chemical identity of EDHF in the human coronary microcirculation is not known. We examined the capacity of EETs, DHETs, and sEH inhibition to affect vasomotor tone in isolated human coronary arterioles (HCAs). HCAs from right atrial appendages were prepared for videomicroscopy and immunohistochemistry. In vessels preconstricted with endothelin-1, three EET regioisomers (8,9-, 11,12-, and 14,15-EET) each induced a concentration-dependent dilation that was sensitive to blockade of large-conductance Ca2+-activated K+ (BK(Ca)) channels by iberiotoxin. EET-induced dilation was not altered by endothelial denudation. 8,9-, 11,12-, and 14,15-DHET also dilated HCA via activation of BK(Ca) channels. Dilation was less with 8,9- and 14,15-DHET but was similar with 11,12-DHET, compared with the corresponding EETs. Immunohistochemistry revealed prominent expression of cytochrome P-450 (CYP450) 2C8, 2C9, and 2J2, enzymes that may produce EETs, as well as sEH, in HCA. Inhibition of sEH by 1-cyclohexyl-3-dodecylurea (CDU) enhanced dilation caused by 14,15-EET but reduced dilation observed with 11,12-EET. DHET production from exogenous EETs was reduced in vessels pretreated with CDU compared with control, as measured by liquid chromatography electrospray-ionization mass spectrometry. In conclusion, EETs and DHETs dilate HCA by activating BK(Ca) channels, supporting a role for EETs/DHETs as EDHFs in the human heart. CYP450s and sEH may be endogenous sources of these compounds, and sEH inhibition has the potential to alter myocardial perfusion, depending on which EETs are produced endogenously.  相似文献   

7.
Cytochrome P-450 (CYP) epoxygenases and their arachidonic acid (AA) metabolites, the epoxyeicosatrienoic acids (EETs), have been shown to produce increases in postischemic function via ATP-sensitive potassium channels (K(ATP)); however, the direct effects of EETs on infarct size (IS) have not been investigated. We demonstrate that two major regioisomers of CYP epoxygenases, 11,12-EET and 14,15-EET, significantly reduced IS in dogs compared to control (22.1 +/- 1.8%), whether administered 15 min before 60 min of coronary occlusion (6.4 +/- 1.9%, 11,12-EET; and 8.4 +/- 2.4%, 14.15-EET) or 5 min before 3 h of reperfusion (8.8 +/- 2.1%, 11,12-EET; and 9.7 +/- 1.4%, 14,15-EET). Pretreatment with the epoxide hydrolase metabolite of 14,15-EET, 14,15-dihydroxyeicosatrienoic acid, had no effect. The protective effect of 11,12-EET was abolished (24.3 +/- 4.6%) by the K(ATP) channel antagonist glibenclamide. Furthermore, one 5-min period of ischemic preconditioning (IPC) reduced IS to a similar extent (8.7 +/- 2.8%) to that observed with the EETs. The selective CYP epoxygenase inhibitor, N-methylsulfonyl-6-(2-propargyloxyphenyl)hexanamide (MS-PPOH), did not block the effect of IPC. However, administration of MS-PPOH concomitantly with N-methylsulfonyl-12,12-dibromododec-11-enanide (DDMS), a selective inhibitor of endogenous CYP omega-hydroxylases, abolished the reduction in myocardial IS expressed as a percentage of area at risk (IS/AAR) produced by DDMS (4.6 +/- 1.2%, DDMS; and 22.2 +/- 3.4%, MS-PPOH + DDMS). These data suggest that 11,12-EET and 14,15-EET produce reductions in IS/AAR primarily at reperfusion. Conversely, inhibition of CYP epoxygenases and endogenous EET formation by MS-PPOH, in the presence of the CYP omega-hydroxylase inhibitor DDMS blocked cardioprotection, which suggests that endogenous EETs are important for the beneficial effects observed when CYP omega-hydroxylases are inhibited. Finally, the protective effects of EETs are mediated by cardiac K(ATP) channels.  相似文献   

8.
Evidence indicates that ischemia/reperfusion (IR) results in endothelial dysfunction and neutrophil adhesion in the post-ischemic myocardium and that ischemic preconditioning (IPC), superoxide dismutase (SOD), and anti-endothelin-1 (ET-1) interventions prevent these effects. We tested the hypothesis that ET-1-induced superoxide (O(2)(-)) generation mediates endothelial injury and neutrophil accumulation in the IR heart, that IPC protects the endothelium and prevents the adhesion by attenuating post-ischemic ET-1, and thus O(2)(-), generation, and that the mitochondrial ATP-dependent potassium channel (mK(ATP)) triggers the IPC-induced protection. Langendorff-perfused guinea-pig hearts were subjected either to 30 min ischemia/35 min reperfusion (IR) or were preconditioned prior to IR with three cycles of either 5 min ischemia/5 min reperfusion or 5 min infusion/5 min wash-out of mK(ATP) opener diazoxide (0.5 microM). Neutrophils were infused to the hearts at 15-25 min of the reperfusion. Coronary flow responses to acetylcholine (ACh) and nitroprusside (SNP) served as measures of endothelium-dependent and -independent vascular function, respectively. Myocardial outflow of ET-1 and O(2)(-), P-selectin expression, neutrophil adhesion and functional recoveries were followed during reperfusion. IR augmented ET-1 and O(2)(-) outflow, P-selectin expression, and neutrophil adhesion, and impaired ACh response. These effects were attenuated or prevented by IPC and diazoxide, and 5-hydroxydecanoate (a selective mK(ATP) blocker) abolished the effects of IPC and diazoxide. SOD (150 U/ml) and tezosentan (5 nM, a mixed ET-1-receptor antagonist) mimicked the effects of IPC, although they had no effect on the ET-1 generation. The preventive effect of IPC, SOD and tezosentan on P-selectin expression preceded their effect on neutrophil adhesion. These data suggest that in guinea-pig heart: (i) ET-1-induced O(2)(-) generation mediates the post-ischemic endothelial dysfunction, P-selectin expression and neutrophil adhesion; (ii) IPC and diazoxide afford protection by attenuating the ET-1, and thus O(2)(-) generation; (iii) the mK(ATP) opening triggers the IPC protection; (iv) endothelial injury promotes post-ischemic neutrophil adhesion, but not vice versa.  相似文献   

9.
Epoxyeicosatrienoic acids (EETs) are vasodilator, natriuretic, and antiinflammatory lipid mediators. Both cis- and trans-EETs are stored in phospholipids and in red blood cells (RBCs) in the circulation; the maximal velocity (V(max)) of trans-EET hydrolysis by soluble epoxide hydrolase (sEH) is threefold that of cis-EETs. Because RBCs of the spontaneously hypertensive rat (SHR) exhibit increased sEH activity, a deficiency of trans-EETs in the SHR was hypothesized to increase blood pressure (BP). This prediction was fulfilled, since sEH inhibition with cis-4-[4-(3-adamantan-1-ylureido)cyclohexyloxy]benzoic acid (AUCB; 2 mg·kg(-1)·day(-1) for 7 days) in the SHR reduced mean BP from 176 ± 8 to 153 ± 5 mmHg (P < 0.05), whereas BP in the control Wistar-Kyoto rat (WKY) was unaffected. Plasma levels of EETs in the SHR were lower than in the age-matched control WKY (16.4 ± 1.6 vs. 26.1 ± 1.8 ng/ml; P < 0.05). The decrease in BP in the SHR treated with AUCB was associated with an increase in plasma EETs, which was mostly accounted for by increasing trans-EET from 4.1 ± 0.2 to 7.9 ± 1.5 ng/ml (P < 0.05). Consistent with the effect of increased plasma trans-EETs and reduced BP in the SHR, the 14,15-trans-EET was more potent (ED(50) 10(-10) M; maximum dilation 59 ± 15 μm) than the cis-isomer (ED(50) 10(-9) M; maximum dilation 30 ± 11 μm) in relaxing rat preconstricted arcuate arteries. The 11,12-EET cis- and trans-isomers were equipotent dilators as were the 8,9-EET isomers. In summary, inhibition of sEH resulted in a twofold increase in plasma trans-EETs and reduced mean BP in the SHR. The greater vasodilator potency of trans- vs. cis-EETs may contribute to the antihypertensive effects of sEH inhibitors.  相似文献   

10.
Hypoxia from birth increases resistance to myocardial ischemia in infant rabbits. We hypothesized that increased cardioprotection in hearts chronically hypoxic from birth persists following development in a normoxic environment and involves increased activation of nitric oxide synthase (NOS) and ATP-dependent K (K(ATP)) channels. Resistance to myocardial ischemia was determined in rabbits raised from birth to 10 days of age in a normoxic (Fi(O(2)) = 0.21) or hypoxic (Fi(O(2)) = 0.12) environment and subsequently exposed to normoxia for up to 60 days of age. Isolated hearts (n = 8/group) were subjected to 30 min of global ischemia followed by 35 min of reperfusion. At 10 days of age, resistance to myocardial ischemia (percent recovery postischemic recovery left ventricular developed pressure) was higher in chronically hypoxic hearts (68 +/- 4%) than normoxic controls (43 +/- 4%). At 10 days of age, N(G)-nitro-L-arginine methyl ester (200 microM) and glibenclamide (3 microM) abolished the cardioprotective effects of chronic hypoxia (45 +/- 4% and 46 +/- 5%, respectively) but had no effect on normoxic hearts. At 30 days of age resistance to ischemia in normoxic hearts declined (36 +/- 5%). However, in hearts subjected to chronic hypoxia from birth to 10 days and then exposed to normoxia until 30 days of age, resistance to ischemia persisted (63 +/- 4%). L-NAME or glibenclamide abolished cardioprotection in previously hypoxic hearts (37 +/- 4% and 39 +/- 5%, respectively) but had no effect on normoxic hearts. Increased cardioprotection was lost by 60 days. We conclude that cardioprotection conferred by adaptation to hypoxia from birth persists on subsequent exposure to normoxia and is associated with enhanced NOS activity and activation of K(ATP) channels.  相似文献   

11.
It has been recently reported that release of erythropoietin could mediate the cardioprotective effects of remote renal preconditioning. However, the mechanism of erythropoietin-mediated cardioprotection in remote preconditioning is still unexplored. Therefore, the present study was designed to investigate the possible signal transduction pathway of erythropoietin-mediated cardioprotection in remote preconditioning in rats. Remote renal preconditioning was performed by four episodes of 5 min renal artery occlusion followed by 5 min reperfusion. Isolated rat hearts were perfused on Langendorff apparatus and were subjected to global ischemia for 30 min followed by 120 min reperfusion. The levels of lactate dehydrogenase (LDH) and creatine kinase (CK) were measured in coronary effluent to assess the degree of myocardial injury. Extent of myocardial infarct size and coronary flow rate was also measured. Remote renal preconditioning and erythropoietin preconditioning (5,000 IUkg(-1), i.p.) attenuated ischemia-reperfusion-induced myocardial injury and produced cardioprotective effects. However, administration of diethyldithiocarbamic acid (150 mg kg(-1) i.p.), a selective NFkB inhibitor, and glibenclamide (5 mg kg(-1) i.p.), a selective K(ATP) channel blocker, attenuated cardioprotective effects of remote preconditioning and erythropoietin preconditioning. However, administration of minoxidil (1 mg kg(-1) i.v.), a selective K(ATP) channel opener, restored the attenuated cardioprotective effects of remote preconditioning and erythropoietin preconditioning in diethyldithiocarbamic acid pretreated rats. These results suggest that K(ATP) channel is a downstream mediator of NFkB activation in remote preconditioning and erythropoietin preconditioning. Therefore, it may be concluded that erythropoietin preconditioning and remote renal preconditioning trigger similar signaling mechanisms for cardioprotection, i.e., NFkB activation followed by opening of K(ATP) channels.  相似文献   

12.
In the myocardium, the Na(+)/H(+) exchanger isoform-1 (NHE1) activity is detrimental during ischemia-reperfusion (I/R) injury, causing increased intracellular Na(+) (Na(i)(+)) accumulation that results in subsequent Ca(2+) overload. We tested the hypothesis that increased expression of NHE1 would accentuate myocardial I/R injury. Transgenic mice were created that increased the Na(+)/H(+) exchanger activity specifically in the myocardium. Intact hearts from transgenic mice at 10-15 wk of age showed no change in heart performance, resting intracellular pH (pH(i)) or phosphocreatine/ATP levels. Transgenic and wild-type (WT) hearts were subjected to 20 min of ischemia followed by 40 min of reperfusion. Surprisingly, the percent recovery of rate-pressure product (%RPP) after I/R improved in NHE1-overexpressing hearts (64 +/- 5% vs. 41 +/- 5% in WT; P < 0.05). In addition, NMR spectroscopy revealed that NHE1 overexpressor hearts contained higher ATP during early reperfusion (levels P < 0.05), and there was no difference in Na(+) accumulation during I/R between transgenic and WT hearts. HOE642 (cariporide), an NHE1 inhibitor, equivalently protected both WT and NHE1-overexpressing hearts. When hearts were perfused with bicarbonate-free HEPES buffer to eliminate the contribution of HCO(3)(-) transporters to pH(i) regulation, there was no difference in contractile recovery after reperfusion between controls and transgenics, but NHE1-overexpressing hearts showed a greater decrease in ATP during ischemia. These results indicate that the basal activity of NHE1 is not rate limiting in causing damage during I/R, therefore, increasing the level of NHE1 does not enhance injury and can have some small protective effects.  相似文献   

13.
Whereas activation of ATP-dependent potassium (K(ATP)) channels greatly improves postischemic myocardial recovery, the final effector mechanism for K(ATP) channel-induced cardioprotection remains elusive. RhoA is a GTPase that regulates a variety of cellular processes known to be involved with K(ATP) channel cardioprotection. Our goal was to determine whether the activity of a key rhoA effector, rho kinase (ROCK), is required for K(ATP) channel-induced cardioprotection. Four groups of perfused rat hearts were subjected to 36 min of zero-flow ischemia and 44 min of reperfusion with continuous measurements of mechanical function and (31)P NMR high-energy phosphate data: 1) untreated, 2) pinacidil (10 microM) to activate K(ATP) channels, 3) fasudil (15 microM) to inhibit ROCK, and 4) both fasudil and pinacidil. Pinacidil significantly improved postischemic mechanical recovery [39 +/- 16 vs. 108 +/- 4 mmHg left ventricular diastolic pressure (LVDP), untreated and pinacidil, respectively]. Fasudil did not affect reperfusion LVDP (41 +/- 13 mmHg) but completely blocked the marked improvement in mechanical recovery that occurred with pinacidil treatment (54 +/- 15 mmHg). Substantial attenuation of the postischemic energetic recovery was also observed. These data support the hypothesis that ROCK activity plays a role in K(ATP) channel-induced cardioprotection.  相似文献   

14.
It has recently been reported that soluble epoxide hydrolase (sEH), the major enzyme that metabolizes epoxyeicosatrienoic acids (EETs), is expressed in axons of cortical neurons; however, the functional relevance of axonal sEH localization is unknown. Immunocytochemical analyses demonstrate predominant axonal localization of sEH in primary cultures of not only cortical but also sympathetic and sensory neurons. Morphometric analyses of cultured sensory neurons indicate that exposure to a regioisomeric mixture of EETs (0.01-1.0 μM) causes a concentration-dependent increase in axon outgrowth. This axon promoting activity is not a generalized property of all regioisomers of EETs as axonal growth is enhanced in sensory neurons exposed to 14,15-EET but not 8,9- or 11,12-EET. 14,15-EET also promotes axon outgrowth in cultured cortical neurons. Co-exposure to EETs and either of two structurally diverse pharmacological inhibitors of sEH potentiates the axon-enhancing activity of EETs in sensory and cortical neurons. Mass spectrometry indicates that sEH inhibition significantly increases EETs and significantly decreases dihydroxyeicosatrienoic acid metabolites in neuronal cell cultures. These data indicate that EETs enhance axon outgrowth and suggest that axonal sEH activity regulates EETs-induced axon outgrowth. These findings suggest a novel therapeutic use of sEH inhibitors in promoting nerve regeneration.  相似文献   

15.
Our laboratory has previously reported that acetaminophen confers functional cardioprotection following cardiac insult, including ischemia/reperfusion, hypoxia/reoxygenation, and exogenous peroxynitrite administration. In the present study, we further examined the mechanism of acetaminophen-mediated cardioprotection following ischemia/reperfusion injury. Langendorff-perfused guinea pig hearts were exposed to acute treatment with acetaminophen (0.35 mM) or vehicle beginning at 15 min of a 30-min baseline stabilization period. Low-flow global myocardial ischemia was subsequently induced for 30 min followed by 60 min of reperfusion. At the completion of reperfusion, hearts were homogenized and separated into cytosolic and mitochondrial fractions. Mitochondrial swelling and mitochondrial cytochromec release were assessed and found to be significantly and completely reduced in acetaminophen- vs. vehicle-treated hearts following reperfusion. In a separate group of hearts, ventricular myocytes were isolated and subjected to fluorescence-activated cell sorting. Acetaminophen-treated hearts showed a significant decrease in late stage apoptotic myocytes compared with vehicle-treated hearts following injury (58 +/- 1 vs. 81 +/- 5%, respectively). These data, together with electron micrograph analysis, suggest that acetaminophen mediates cardioprotection, in part, via inhibition of the mitochondrial permeability transition pore and subsequent apoptotic pathway.  相似文献   

16.
To determine whether the effects of fatty acids on the diabetic heart during ischemia involve altered glycolytic ATP and proton production, we measured energetics and intracellular pH (pH(i)) by using (31)P NMR spectroscopy plus [2-(3)H]glucose uptake in isolated rat hearts. Hearts from 7-wk streptozotocin diabetic and control rats, perfused with buffer containing 11 mM glucose, with or without 1.2 mM palmitate or the ketone bodies, 4 mM beta-hydroxybutyrate plus 1 mM acetoacetate, were subjected to 32 min of low-flow (0.3 ml x g wet wt(-1) x min(-1)) ischemia, followed by 32 min of reperfusion. In control rat hearts, neither palmitate nor ketone bodies altered the recovery of contractile function. Diabetic rat hearts perfused with glucose alone or with ketone bodies, had functional recoveries 50% lower than those of the control hearts, but palmitate restored recovery to control levels. In a parallel group with the functional recoveries, palmitate prevented the 54% faster loss of ATP in the diabetic, glucose-perfused rat hearts during ischemia, but had no effect on the rate of ATP depletion in control hearts. Palmitate decreased total glucose uptake in control rat hearts during low-flow ischemia, from 106 +/- 17 to 52 +/- 12 micromol/g wet wt, but did not alter the total glucose uptake in the diabetic rat hearts, which was 42 +/- 5 micromol/g wet wt. Recovery of contractile function was unrelated to pH(i) during ischemia; the glucose-perfused control and palmitate-perfused diabetic hearts had end-ischemic pH(i) values that were significantly different at 6.36 +/- 0.04 and 6.60 +/- 0.02, respectively, but had similar functional recoveries, whereas the glucose-perfused diabetic hearts had significantly lower functional recoveries, but their pH(i) was 6.49 +/- 0.04. We conclude that fatty acids, but not ketone bodies, protect the diabetic heart by decreasing ATP depletion, with neither having detrimental effects on the normal rat heart during low-flow ischemia.  相似文献   

17.
mitoKATP通道参与心肌缺血预处理保护作用的机制   总被引:1,自引:0,他引:1  
目的:探讨血管紧张素转换酶抑制剂(ACEI)和阈下缺血预处理联合预处理诱导的心肌保护作用中mi-toKatp通道激动后的作用机制:方法:采用离体大鼠心脏Langendorff灌流模型,观察心脏电脱耦联发生时间、细胞膜Na^+/K^+-ATPase和Ca^2+/Mg^2+-ATPase活性的改变:结果:单独使用卡托普利、或给予大鼠心脏2min缺血/10min复灌作为阈下缺血预处理,均不能改善长时间缺血/复灌引起的心脏收缩功能下降?而卡托普利和阂下缺血预处理联合使用可增高心脏收缩功能。mitoKatp通道特异性阻断剂5-HD可取消这一联合预处理的作用一联合预处理可引起缺血后电脱耦联发生时间延长,缺血心肌细胞膜Na^+/K^+-ATPase和Ca^2+/Mg^2+-ATPase活性增高;5-HD可取消此作用结论:mitoKatp通道参与了联合预处理延迟缺血引起的细胞间脱耦联和促进细胞膜离子通道稳定性维持的作用。  相似文献   

18.
The objective of this study was to determine if prior exposure of rat hearts to S-nitrosocysteine (CysNO) was able to provide protection against reperfusion injury. We probed NO release using the extracellular NO scavenger oxyhemoglobin (oxyHb), and we examined the involvement of the amino acid transport system L (L-AT), a known transporter of CysNO, using the L-AT competitor, L-leucine (L-Leu). Isolated (9- to 12-week-old Wistar male) rat hearts (six to eight per group) were perfused with CysNO (10 microM) for 30 min with or without the L-AT competitor L-Leu (1 mM) before 30 min of ischemia. Cardiac function was assessed before, during, and after treatment and during 120 min of reperfusion after ischemia. Functional recovery (rate-pressure product) was significantly improved in the CysNO group compared to hearts in the CysNO+L-Leu group and the control group (p<0.05). Necrosis, measured by triphenyltetrazolium chloride staining, was significantly reduced in CysNO hearts (p<0.05) and this improvement was reversed by L-Leu. The NO scavenger oxyHb (20 microM) was perfused either concomitant with CysNO or just before ischemia. In neither case did oxyHb affect the cardioprotection afforded by CysNO. OxyHb alone, given in either time window, did not alter the course of ischemia-reperfusion injury. When nitrite was used in place of CysNO, no protective effects were observed. Perfusion with CysNO increased tissue S-nitrosothiol (RSNO) levels from an unmeasurable background to a value of about 15.7+/-4.1 pmol RSNO/mg protein, as measured by triiodide-based chemiluminescence in the presence and absence of mercury(II) chloride. In the presence of L-Leu, this value dropped to 0.4+/-0.3 pmol RSNO/mg protein. This study demonstrates that exposure to CysNO before ischemia increases tissue S-nitrosothiol levels, improves postischemic contractile dysfunction, and attenuates necrosis. The mechanism of cardioprotection requires the uptake of CysNO via the L-AT and does not seem to involve NO release either during CysNO exposure or during ischemia. This suggests that the protective effects of CysNO are mediated through the posttranslational modification of cellular proteins through an NO-independent transnitrosation mechanism.  相似文献   

19.
All four adenosine receptor subtypes have been shown to play a role in cardioprotection, and there is evidence that all four subtypes may be expressed in cardiomyocytes. There is also increasing evidence that optimal adenosine cardioprotection requires the activation of more than one receptor subtype. The purpose of this study was to determine whether adenosine A(2A) and/or A(2B) receptors modulate adenosine A(1) receptor-mediated cardioprotection. Isolated perfused hearts of wild-type (WT), A(2A) knockout (KO), and A(2B)KO mice, perfused at constant pressure and constant heart rate, underwent 30 min of global ischemia and 60 min of reperfusion. The adenosine A(1) receptor agonist N(6)-cyclohexyladenosine (CHA; 200 nM) was administrated 10 min before ischemia and for the first 10 min of reperfusion. Treatment with CHA significantly improved postischemic left ventricular developed pressure (74 ± 4% vs. 44 ± 4% of preischemic left ventricular developed pressure at 60 min of reperfusion) and reduced infarct size (30 ± 2% with CHA vs. 52 ± 5% in control) in WT hearts, effects that were blocked by the A(1) antagonist 8-cyclopentyl-1,3-dipropylxanthine (100 nM). Treatments with the A(2A) receptor agonist CGS-21680 (200 nM) and the A(2B) agonist BAY 60-6583 (200 nM) did not exert any beneficial effects. Deletion of adenosine A(2A) or A(2B) receptor subtypes did not alter ischemia-reperfusion injury, but CHA failed to exert a cardioprotective effect in hearts of mice from either KO group. These findings indicate that both adenosine A(2A) and A(2B) receptors are required for adenosine A(1) receptor-mediated cardioprotection, implicating a role for interactions among receptor subtypes.  相似文献   

20.
Ischemic preconditioning (IPC) induces distinctive changes in mitochondrial bioenergetics during warm (37 degrees C) ischemia and improves function and tissue viability on reperfusion. We examined whether IPC before 2 h of hypothermic (27 degrees C) ischemia affords additive cardioprotection and improves mitochondrial redox balance assessed by mitochondrial NADH and flavin adenine dinucleotide (FAD) autofluorescence in intact hearts. A mediating role of ATP-sensitive K(+) (K(ATP)) channel opening was investigated. NADH and FAD fluorescence was measured in the left ventricular wall of guinea pig isolated hearts assigned to five groups of eight animals each: hypothermia alone, hypothermia with ischemia, IPC with cold ischemia, 5-hydroxydecanoic acid (5-HD) alone, and 5-HD with IPC and cold ischemia. IPC consisted of two 5-min periods of warm global ischemia spaced 5 min apart and 15 min of reperfusion before 2 h of ischemia at 27 degrees C and 2 h of warm reperfusion. The K(ATP) channel inhibitor 5-HD was perfused from 5 min before until 5 min after IPC. IPC before 2 h of ischemia at 27 degrees C led to better recovery of function and less tissue damage on reperfusion than did 27 degrees C ischemia alone. These improvements were preceded by attenuated increases in NADH and decreases in FAD during cold ischemia and the reverse changes during warm reperfusion. 5-HD blocked each of these changes induced by IPC. This study indicates that IPC induces additive cardioprotection with mild hypothermic ischemia by improving mitochondrial bioenergetics during and after ischemia. Because effects of IPC on subsequent changes in NADH and FAD were inhibited by 5-HD, this suggests that mitochondrial K(ATP) channel opening plays a substantial role in improving mitochondrial bioenergetics throughout mild hypothermic ischemia and reperfusion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号