首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Mild hyperuricemia has been linked to the development and progression of tubulointerstitial renal damage. However the mechanisms by which uric acid may cause these effects are poorly explored. We investigated the effect of uric acid on apoptosis and the underlying mechanisms in a human proximal tubule cell line (HK-2). Increased uric acid concentration decreased tubule cell viability and increased apoptotic cells in a dose dependent manner (up to a 7-fold increase, p<0.0001). Uric acid up-regulated Bax (+60% with respect to Ctrl; p<0.05) and down regulated X-linked inhibitor of apoptosis protein. Apoptosis was blunted by Caspase-9 but not Caspase-8 inhibition. Uric acid induced changes in the mitochondrial membrane, elevations in reactive oxygen species and a pronounced up-regulation of NOX 4 mRNA and protein (p<0.05). In addition, both reactive oxygen species production and apoptosis was prevented by the NADPH oxidase inhibitor DPI as well as by Nox 4 knockdown. URAT 1 transport inhibition by probenecid and losartan and its knock down by specific siRNA, blunted apoptosis, suggesting a URAT 1 dependent cell death. In summary, our data show that uric acid increases the permissiveness of proximal tubule kidney cells to apoptosis by triggering a pathway involving NADPH oxidase signalling and URAT 1 transport. These results might explain the chronic tubulointerstitial damage observed in hyperuricaemic states and suggest that uric acid transport in tubular cells is necessary for urate-induced effects.  相似文献   

2.
We previously found that mitochondrial aquaporin-8 (mtAQP8) channels facilitate mitochondrial H2O2 release in human hepatoma HepG2 cells and that their knockdown causes oxidant-induced mitochondrial dysfunction and loss of viability. Here, we studied whether apoptosis or necrosis is involved as the mode of cell death. We confirmed that siRNA-induced mtAQP8 knockdown significantly decreased HepG2 viability by MTT assay, LDH leakage, and trypan blue exclusion test. Analysis of mitochondrial proapoptotic Bax-to-antiapoptotic BclXL ratio, mitochondrial cytochrome c release and caspase-3 activation showed no alterations in mtAQP8-knockdown cells. This indicates a primary mechanism of cell death other than the intrinsic mitochondrial apoptotic pathway. Thus, nuclear staining with DAPI did not reveal any increase of apoptotic features, i.e. chromatin condensation or nuclear fragmentation. Flow cytometry studies after double cell staining with annexin V and propidium iodide confirmed lack of apoptosis and suggested necrosis as the primary mechanism of death in mtAQP8-knockdown HepG2 cells. Necrosis was further supported by the increased nuclear delocalization and extracellular release of the High Mobility Group Box 1 protein. The knockdown of mtAQP8 in another human hepatoma-derived cell line, i.e. HuH-7 cells, also induced necrotic but not apoptotic death. Our data suggest that mtAQP8 knockdown induces necrotic cell death in human neoplastic hepatic cells, a finding that might be relevant to therapeutic strategies against hepatoma cells.  相似文献   

3.
Aquaporin-8 (AQP8) is a membrane channel permeable to water and ammonia. As AQP8 is expressed in the inner mitochondrial membrane of several mammalian tissues, we studied the effect of the AQP8 expression on the mitochondrial transport of ammonia. Recombinant rat AQP8 was expressed in the yeast Saccharomyces cerevisiae. The presence of AQP8 in the inner membrane of yeast mitochondria was demonstrated by subcellular fractionation and immunoblotting analysis. The ammonia transport was determined in isolated mitochondria by stopped flow light scattering using formamide as ammonia analog. We found that the presence of AQP8 increased by threefold mitochondrial formamide transport. AQP8-facilitated mitochondrial formamide transport in rat native tissue was confirmed in liver (a mitochondrial AQP8-expressing tissue) vs. brain (a mitochondrial AQP8 non-expressing tissue). Comparative studies indicated that the AQP8-mediated mitochondrial movement of formamide was markedly higher than that of water. Together, our data suggest that ammonia diffusional transport is a major function for mitochondrial AQP8.  相似文献   

4.
Aquaporin (AQP)8-facilitated transport of NH3 has been suggested recently by increased NH3 permeability in Xenopus oocytes and yeast expressing human or rat AQP8. We tested the proposed roles of AQP8-facilitated NH3 transport in mammalian physiology by comparative phenotype studies in wild-type vs. AQP8-null mice. AQP8-facilitated NH3 transport was confirmed in mammalian cell cultures expressing rat or mouse AQP8, in which the fluorescence of a pH-sensing yellow fluorescent protein was measured in response to ammonia (NH3/NH4+) gradients. Relative AQP8 single-channel NH3-to-water permeability was 0.03. AQP8-facilitated NH3 and water permeability in a native tissue was confirmed in membrane vesicles isolated from testes of wild-type vs. AQP8-null mice, in which BCECF was used as an intravesicular pH indicator. A series of in vivo studies were done in mice, including 1) serum ammonia measurements before and after ammonia infusion, 2) renal ammonia clearance, 3) colonic ammonia absorption, and 4) liver ammonia accumulation and renal ammonia excretion after acute and chronic ammonia loading. Except for a small reduction in hepatic ammonia accumulation and increase in ammonia excretion in AQP8-null mice loaded with large amounts of ammonia, there were no significant differences in wild-type vs. AQP8-null mice. Our results support the conclusion that AQP8 can facilitate NH3 transport but provide evidence against physiologically significant AQP8-facilitated NH3 transport in mice. water transport; transgenic mouse; liver  相似文献   

5.
《FEBS letters》2014,588(9):1686-1691
We recently reported that hepatocyte mitochondrial aquaporin-8 (mtAQP8) channels facilitate the uptake of ammonia and its metabolism into urea. Here we studied the effect of bacterial lipopolysaccharides (LPS) on ammonia-derived ureagenesis. In LPS-treated rats, hepatic mtAQP8 protein expression and diffusional ammonia permeability (measured utilizing ammonia analogues) of liver inner mitochondrial membranes were downregulated. NMR studies using 15 N-labeled ammonia indicated that basal and glucagon-induced ureagenesis from ammonia were significantly reduced in hepatocytes from LPS-treated rats. Our data suggest that hepatocyte mtAQP8-mediated ammonia removal via ureagenesis is impaired by LPS, a mechanism potentially relevant to the molecular pathogenesis of defective hepatic ammonia detoxification in sepsis.  相似文献   

6.
Alpha-1-antitrypsin (AAT) is a hepatic stress protein with protease inhibitor activity. Recent evidence indicates that ischemic or toxic injury can evoke selective changes within kidney that resemble a hepatic phenotype. Hence, we tested the following: i) Does acute kidney injury (AKI) up-regulate the normally renal silent AAT gene? ii) Does rapid urinary AAT excretion result? And iii) Can AAT''s anti-protease/anti-neutrophil elastase (NE) activity protect injured proximal tubule cells? CD-1 mice were subjected to ischemic or nephrotoxic (glycerol, maleate, cisplatin) AKI. Renal functional and biochemical assessments were made 4–72 hrs later. Rapidly following injury, 5–10 fold renal cortical and isolated proximal tubule AAT mRNA and protein increases occurred. These were paralleled by rapid (>100 fold) increases in urinary AAT excretion. AKI also induced marked increases in renal cortical/isolated proximal tubule NE mRNA. However, sharp NE protein levels declines resulted, which strikingly correlated (r, −0.94) with rising AAT protein levels (reflecting NE complexing by AAT/destruction). NE addition to HK-2 cells evoked ∼95% cell death. AAT completely blocked this NE toxicity, as well as Fe induced oxidant HK-2 cell attack. Translational relevance of experimental AAT gene induction was indicated by ∼100–1000 fold urinary AAT increases in 22 AKI patients (matching urine NGAL increases). We conclude: i) AKI rapidly up-regulates the renal cortical/proximal tubule AAT gene; ii) NE gene induction also results; iii) AAT can confer cytoprotection, potentially by blocking/reducing cytotoxic NE accumulation; and iv) marked increases in urinary AAT excretion in AKI patients implies clinical relevance of the AKI- AAT induction pathway.  相似文献   

7.
Aquaporin-8 (AQP8) water channels, which are expressed in rat hepatocyte bile canalicular membranes, are involved in water transport during bile formation. Nevertheless, there is no conclusive evidence that AQP8 mediates water secretion into the bile canaliculus. In this study, we directly evaluated whether AQP8 gene silencing by RNA interference inhibits canalicular water secretion in the human hepatocyte-derived cell line, HepG2. By RT-PCR and immunoblotting we found that HepG2 cells express AQP8 and by confocal immunofluorescence microscopy that it is localized intracellularly and on the canalicular membrane, as described in rat hepatocytes. We also verified the expression of AQP8 in normal human liver. Forty-eight hours after transfection of HepG2 cells with RNA duplexes targeting two different regions of human AQP8 molecule, the levels of AQP8 protein specifically decreased by 60-70%. We found that AQP8 knockdown cells showed a significant decline in the canalicular volume of approximately 70% (P < 0.01), suggesting an impairment in the basal (nonstimulated) canalicular water movement. We also found that the decreased AQP8 expression inhibited the canalicular water transport in response either to an inward osmotic gradient (-65%, P < 0.05) or to the bile secretory agonist dibutyryl cAMP (-80%, P < 0.05). Our data suggest that AQP8 plays a major role in water transport across canalicular membrane of HepG2 cells and support the notion that defective expression of AQP8 causes bile secretory dysfunction in human hepatocytes.  相似文献   

8.
Mitochondria are remarkably plastic organelles constantly changing their shape to fulfil their various functional activities. Although the osmotic movement of water into and out of the mitochondrion is central for its morphology and activity, the molecular mechanisms and the pathways for water transport across the inner mitochondrial membrane (IMM), the main barrier for molecules moving into and out of the organelle, are completely unknown. Here, we show the presence of a member of the aquaporin family of water channels, AQP8, and demonstrate the strikingly high water permeability (Pf) characterizing the rat liver IMM. Immunoblotting, electron microscopy, and biophysical studies show that the largest mitochondria feature the highest AQP8 expression and IMM Pf. AQP8 was also found in the mitochondria of other organs, whereas no other known aquaporins were seen. The osmotic water transport of liver IMM was partially inhibited by the aquaporin blocker Hg2+, while the related activation energy remained low, suggesting the presence of a Hg2+-insensitive facilitated pathway in addition to AQP8. It is suggested that AQP8-mediated water transport may be particularly important for rapid expansions of mitochondrial volume such as those occurring during active oxidative phosphorylation and those following apoptotic signals.  相似文献   

9.
Chronic exposure to cadmium causes preferential accumulation of cadmium in the kidney, leading to nephrotoxicity. In the process of renal cadmium accumulation, the cadmium bound to a low-molecular-weight metal-binding protein, metallothionein, has been considered to play an important role in reabsorption by epithelial cells of proximal tubules in the kidney. However, the role and mechanism of the transport of Cd(2+) ions in proximal tubule cells remain unclear. Zinc transporters such as Zrt, Irt-related protein 8 (ZIP8) and ZIP14, and divalent metal transporter 1 (DMT1) have been reported to have affinities for Cd(2+) and Mn(2+). To examine the roles of these metal transporters in the absorption of luminal Cd(2+) and Mn(2+) into proximal tubule cells, we utilized a cell culture system, in which apical and basolateral transport of metals can be separately examined. The uptake of Cd(2+) and Mn(2+) from the apical side of proximal tubule cells was inhibited by simultaneous addition of Mn(2+) and Cd(2+), respectively. The knockdown of ZIP8, ZIP14 or DMT1 by siRNA transfection significantly reduced the uptake of Cd(2+) and Mn(2+) from the apical membrane. The excretion of Cd(2+) and Mn(2+) was detected predominantly in the apical side of the proximal tubule cells. In situ hybridization of these transporters revealed that ZIP8 and ZIP14 are highly expressed in the proximal tubules of the outer stripe of the outer medulla. These results suggest that ZIP8 and ZIP14 expressed in the S3 segment of proximal tubules play significant roles in the absorption of Cd(2+) and Mn(2+) in the kidney.  相似文献   

10.
Renal ammonia excretion is the predominant component of renal net acid excretion. The majority of ammonia excretion is produced in the kidney and then undergoes regulated transport in a number of renal epithelial segments. Recent findings have substantially altered our understanding of renal ammonia transport. In particular, the classic model of passive, diffusive NH3 movement coupled with NH4+ "trapping" is being replaced by a model in which specific proteins mediate regulated transport of NH3 and NH4+ across plasma membranes. In the proximal tubule, the apical Na+/H+ exchanger, NHE-3, is a major mechanism of preferential NH4+ secretion. In the thick ascending limb of Henle's loop, the apical Na+-K+-2Cl- cotransporter, NKCC2, is a major contributor to ammonia reabsorption and the basolateral Na+/H+ exchanger, NHE-4, appears to be important for basolateral NH4+ exit. The collecting duct is a major site for renal ammonia secretion, involving parallel H+ secretion and NH3 secretion. The Rhesus glycoproteins, Rh B Glycoprotein (Rhbg) and Rh C Glycoprotein (Rhcg), are recently recognized ammonia transporters in the distal tubule and collecting duct. Rhcg is present in both the apical and basolateral plasma membrane, is expressed in parallel with renal ammonia excretion, and mediates a critical role in renal ammonia excretion and collecting duct ammonia transport. Rhbg is expressed specifically in the basolateral plasma membrane, and its role in renal acid-base homeostasis is controversial. In the inner medullary collecting duct (IMCD), basolateral Na+-K+-ATPase enables active basolateral NH4+ uptake. In addition to these proteins, several other proteins also contribute to renal NH3/NH4+ transport. The role and mechanisms of these proteins are discussed in depth in this review.  相似文献   

11.
NH4Cl-induced acidosis in rats resulted in renal enlargement and increase in activities of phosphate-dependent glutaminase and glutamic dehydrogenase. The renal enlargement was associated with protein synthesis but not deoxyribonucleic acid synthesis. In control rats histochemical activity of glutamic dehydrogenase was seen dominantly in the proximal straight tubule. In acidotic rats high activity was noted in the proximal convoluted tubule as well as in the proximal straight tubule. By electron microscopy reaction product was in mitochondria. The results suggest that urine ammonia is produced in mitochondria of epithelial cells in the proximal straight tubule in both normal and acidotic rats. Increased enzyme activity in acidotic rats is largely associated with epithelial cells of the proximal convoluted tubule.  相似文献   

12.

Background

Cultures of human proximal tubule cells have been widely utilized to study the role of EMT in renal disease. The goal of this study was to define the role of growth media composition on classic EMT responses, define the expression of E- and N-cadherin, and define the functional epitope of MT-3 that mediates MET in HK-2 cells.

Methods

Immunohistochemistry, microdissection, real-time PCR, western blotting, and ELISA were used to define the expression of E- and N-cadherin mRNA and protein in HK-2 and HPT cell cultures. Site-directed mutagenesis, stable transfection, measurement of transepithelial resistance and dome formation were used to define the unique amino acid sequence of MT-3 associated with MET in HK-2 cells.

Results

It was shown that both E- and N-cadherin mRNA and protein are expressed in the human renal proximal tubule. It was shown, based on the pattern of cadherin expression, connexin expression, vectorial active transport, and transepithelial resistance, that the HK-2 cell line has already undergone many of the early features associated with EMT. It was shown that the unique, six amino acid, C-terminal sequence of MT-3 is required for MT-3 to induce MET in HK-2 cells.

Conclusions

The results show that the HK-2 cell line can be an effective model to study later stages in the conversion of the renal epithelial cell to a mesenchymal cell. The HK-2 cell line, transfected with MT-3, may be an effective model to study the process of MET. The study implicates the unique C-terminal sequence of MT-3 in the conversion of HK-2 cells to display an enhanced epithelial phenotype.  相似文献   

13.
Junctional adhesion molecule-A (JAM-A) is one component of tight junctions which are involved in important processes like paracellular permeability, cell polarity, adhesion, migration, and angiogenesis. Here we describe JAM-A expression in distal convoluted tubule, connecting tubule, and in cells of the collecting duct of the healthy human kidney. In addition, JAM-A was weakly expressed in cells of the proximal tubule. Using immunofluorescence, FACS and Western blot analysis we investigated JAM-A expression in tubular cells in vitro. Interestingly, treatment of HK-2 cells with IFN-γ and TNF-α resulted in a metalloproteinase mediated downregulation of JAM-A. Importantly, in a tissue micro-array JAM-A protein expression was significantly downregulated in patients with clear cell renal cell carcinoma. Furthermore, knockdown of JAM-A with JAM-A specific siRNA induced the migration of RCC4 cells. In summary, downregulation of JAM-A is an early event in the development of renal cancer and increases the migration of renal cancer cells.  相似文献   

14.
15.
Nifedipine, a calcium antagonist, has diuretic and natriuretic properties. However, the molecular mechanisms by which these effects are produced are poorly understood. We examined kidney abundance of aquaporins (AQP1, AQP2, and AQP3) and major sodium transporters [type 3 Na/H exchanger (NHE-3); type 2 Na-Pi cotransporter (NaPi-2); Na-K-ATPase; type 1 bumetanide-sensitive cotransporter (BSC-1); and thiazide-sensitive Na-Cl cotransporter (TSC)] as well as inner medullary abundance of AQP2, phosphorylated-AQP2 (p-AQP2), AQP3, and calcium-sensing receptor (CaR). Rats treated with nifedipine orally (700 mg/kg) for 19 days had a significant increase in urine output, whereas urinary osmolality and solute-free water reabsorption were markedly reduced. Consistent with this, immunoblotting revealed a significant decrease in the abundance of whole kidney AQP2 (47 +/- 7% of control rats, P < 0.05) and in inner medullary AQP2 (60 +/- 7%) as well as in p-AQP2 abundance (17 +/- 6%) in nifedipine-treated rats. In contrast, whole kidney AQP3 abundance was significantly increased (219 +/- 28%). Of potential importance in modulating AQP2 levels, the abundance of CaR in the inner medulla was significantly increased (295 +/- 25%) in nifedipine-treated rats. Nifedipine treatment was also associated with increased urinary sodium excretion. Consistent with this, semiquantitative immunoblotting revealed significant reductions in the abundance of proximal tubule Na(+) transporters: NHE-3 (3 +/- 1%), NaPi-2 (53 +/- 12%), and Na-K-ATPase (74 +/- 5%). In contrast, the abundance of the distal tubule Na-Cl cotransporter (TSC) was markedly increased (240 +/- 29%), whereas BSC-1 in the thick ascending limb was not altered. In conclusion, 1) increased urine output and reduced urinary concentration in nifedipine-treated-rats may, in part, be due to downregulation of AQP2 and p-AQP2 levels; 2) CaR might be involved in the regulation of water reabsorption in the inner medulla collecting duct; 3) reduced expression of proximal tubule Na(+) transporters (NHE-3, NaPi-2, and Na, K-ATPase) may be involved in the increased urinary sodium excretion; and 4) increase in TSC expression may occur as a compensatory mechanism.  相似文献   

16.
Aquaporin-11 (AQP11) has been identified with unusual pore-forming NPA (asparagine-proline-alanine) boxes, but its function is unknown. We investigated its potential contribution to the kidney. Immunohistochemistry revealed that AQP11 was localized intracellularly in the proximal tubule. When AQP11 was transfected in CHO-K1 cells, it was localized in intracellular organelles. AQP11-null mice were generated; these mice exhibited vacuolization and cyst formation of the proximal tubule. AQP11-null mice were born normally but died before weaning due to advanced renal failure with polycystic kidneys, in which cysts occupied the whole cortex. Remarkably, cyst epithelia contained vacuoles. These vacuoles were present in the proximal tubules of newborn mice. In 3-week-old mice, these tubules contained multiple cysts. Primary cultured cells of the proximal tubule revealed an endosomal acidification defect in AQP11-null mice. These data demonstrate that AQP11 is essential for the proximal tubular function. AQP11-null mice are a novel model for polycystic kidney diseases and will provide a new mechanism for cystogenesis.  相似文献   

17.
18.
Activation of A(1) adenosine receptors (ARs) protects against renal ischemia-reperfusion (I/R) injury by reducing necrosis, apoptosis, and inflammation. However, extrarenal side effects (bradycardia, hypotension, and sedation) may limit A(1)AR agonist therapy for ischemic acute kidney injury. Here, we hypothesized that an allosteric enhancer for A(1)AR (PD-81723) protects against renal I/R injury without the undesirable side effects of systemic A(1)AR activation by potentiating the cytoprotective effects of renal adenosine generated locally by ischemia. Pretreatment with PD-81723 produced dose-dependent protection against renal I/R injury in A(1)AR wild-type mice but not in A(1)AR-deficient mice. Significant reductions in renal tubular necrosis, neutrophil infiltration, and inflammation as well as tubular apoptosis were observed in A(1)AR wild-type mice treated with PD-81723. Furthermore, PD-81723 decreased apoptotic cell death in human proximal tubule (HK-2) cells in culture, which was attenuated by a specific A(1)AR antagonist (8-cyclopentyl-1,3-dipropylxanthine). Mechanistically, PD-81723 induced sphingosine kinase (SK)1 mRNA and protein expression in HK-2 cells and in the mouse kidney. Supporting a critical role of SK1 in A(1)AR allosteric enhancer-mediated renal protection against renal I/R injury, PD-81723 failed to protect SK1-deficient mice against renal I/R injury. Finally, proximal tubule sphingosine-1-phosphate type 1 receptors (S1P(1)Rs) are critical for PD-81723-induced renal protection, as mice selectively deficient in renal proximal tubule S1P(1)Rs (S1P(1)R(flox/flox) PEPCK(Cre/-) mice) were not protected against renal I/R injury with PD-81723 treatment. Taken together, our experiments demonstrate potent renal protection with PD-81723 against I/R injury by reducing necrosis, inflammation, and apoptosis through the induction of renal tubular SK1 and activation of proximal tubule S1P(1)Rs. Our findings imply that selectively enhancing A(1)AR activation by locally produced renal adenosine may be a clinically useful therapeutic option to attenuate ischemic acute kidney injury without systemic side effects.  相似文献   

19.
Oxidative stress is involved in a variety of kidney diseases, and heme oxygenase 1 (HO-1) induction is a protective response to oxidative stress. Downregulation of bone morphogenetic protein 6 (BMP6) is associated with renal damage in intrauterine growth-restricted newborns. However, it is unknown whether BMP6 has a renoprotective effect or HO-1 induction property. In this study, we demonstrate that BMP6 effectively protects renal proximal tubule cells (HK-2) against hydrogen peroxide (H2O2)-induced cell injury. BMP6 also increased HO-1 gene expression and activity of HO. Inhibition of de novo gene expression, the HO inhibitor ZnPPIX, HO-1 knockdown, or the carbon monoxide (CO) scavenger hemoglobin attenuated the cytoprotective effect of BMP6, whereas HO-1 constitutive expression, the HO-1 inducer hemin, or the hemin metabolites bilirubin and CO ameliorated H2O2-induced cell injury. Stimulation of HK-2 cells with BMP6 activated Smad signaling but not mitogen-activated protein kinases. In addition, BMP6-mediated induction of HO-1 expression and increase in HO activity were inhibited by Smad5 knockdown. Furthermore, deletion or mutation of the Smad-binding element in the HO-1 promoter also inhibited BMP6-induced luciferase activity. In summary, these findings suggest that induction of HO-1 through a Smad-dependent mechanism is responsible for the cytoprotective effect of BMP6 in H2O2-mediated renal cell injury.  相似文献   

20.
In the intact kidney, renal proximal tubule cells accumulate p-aminohippurate (PAH) via a basolateral, probenecid- and sodium-sensitive transport system. Primary cultures of rabbit proximal tubule cells retain sodium-glucose co-transport in culture, but little is known about PAH transport in this system. Purified proximal tubule cells from a rabbit were grown in culture and assessed for PAH and alpha-methyl-D-glucoside uptake capacities as well as proximal tubule marker enzyme activities. Control PAH uptake on collagen-coated filters (20 +/- 3 pmol/mg protein.min; n = 8) was not significantly different from uptake in the presence of 1 mM probenecid (19 +/- 4 pmol/mg protein.min; n = 8). Uptake from the basal side of the cell was 3.9 +/- 0.7 times greater than that from the apical side. In multi-well plate studies, the uptake was significantly reduced by removing sodium from the medium and stimulated by coating the wells with collagen. Glutarate (10 mM) had no effect on the uptake of PAH. Other differentiated proximal tubule characteristics were retained in culture, including the ability to form domes and to transport glucose by a phlorizin-sensitive system. Phlorizin-sensitive 1 mM alpha-methyl-D-glucoside uptake was 134 +/- 42 pmol/mg protein.min (n = 7; P less than 0.02). The proximal tubule marker enzymes alkaline phosphatase and gamma-glutamyltranspeptidase, increased in activity in the cultures after confluence. It was concluded that whereas some differentiated properties were retained during primary culture of rabbit proximal tubule cells, the PAH transport system was selectively lost or modified from that present in the intact kidney.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号