首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The thallus of the lichen Ramalina menziesii Tayl. is composed of net-like units that develop by diffuse expansion of perforated tissue produced at the net apex. Study of net tissue with transmission electron microscopy reveals that the cortical cells are surrounded by a succession of cell walls alternating with layers of an electron-transparent matrix substance. In the course of thallus growth the cortical cell walls are continually deformed and new ones constructed. The deposition of new walls and matrix layers displaces the older walls centrifugally from the cell. Electron-dense boundaries develop at the interfaces among cells where the remains of the oldest walls are compressed against those of neighboring cells. As new branch cells are inserted through the concentric accumulations, the dense boundaries appear to enclose fascicles of cells, visible in cross section with light microscopy. Cortical organization in Ramalina menziesii is contrasted with that reported in other lichens, and a functional relationship to diffuse growth of the thallus is suggested.  相似文献   

2.
本研究采用电镜技术研究了种衣剂17号对小麦条锈菌发育的影响。观察结果表明,该种衣剂引起病菌和寄主细胞内发生了一系列变化。病菌菌丝和吸器内脂肪粒和液泡明显增加;菌丝壁和吸器壁呈不规则加厚;菌丝分枝处无隔膜产生或隔膜畸形;有的吸器母细胞产生的畸形入侵栓,大都不能穿透寄主细胞壁,初生吸器外间质内沉积有染色较深的物质,次生吸器可产生多个不规则分枝,但不能扩张膨大;菌丝外渗的物质可能引起寄主细胞的坏死;大多数受侵寄主细胞可分泌形成较大的胼胝质,有时寄主细胞分泌的物质可将吸器体完全包围起来。上述结果表明,种衣剂17号不仅可直接作用于条锈菌,而且也可通过影响寄主而间接地影响病菌。  相似文献   

3.
The thallus formed by the marine pyrenomycete fungus Verrucaria tavaresiae and the phaeophycean alga Petroderma maculiforme was studied to elucidate the organization of the symbionts, determine the type of cellular contacts between them, and evaluate the status of the symbiosis as a lichen. Hand-sectioned and resin-embedded samples were examined with light and transmission electron microscopy. Within the uppermost portion of the cellular fungal tissue, separate algal filaments were arranged anticlinally. Protrusions of the fungal cell wall penetrated into adjacent algal walls but did not enter the cell lumen. A striking feature of these penetrations was the frequent separation of algal cell wall layers and insertion of fungal wall material between them. Algal filaments grew downward intrusively between fungal cells, often penetrating deeply into the fungal cell wall. Despite the exceptional nature of the phycobiont involved, the Verrucaria tavaresiae-Petroderma maculiforme symbiosis unequivocally fits the prevailing concept of a lichen. The distinctive interpenetrations observed between symbionts may be related to the integration of their different growth forms within a coherent tissue regularly subject to mechanical stresses. Periclinal cell divisions within and just below the algal layer may serve to replenish surface tissues lost to abrasion and herbivory.  相似文献   

4.
Through the process known as programmed cell death (PCD), nucelli of Pinus densiflora serve as the transmitting tissue for growth of the pollen tube. We sought to clarify the processes of degradation of nucellar cell components and their transport to the pollen tube during PCD in response to pollen tube penetration of such nucelli. Stimulated by pollination, synthesis of large amounts of starch grains occurred in cells in a wide region of the nucellus, but as the pollen tube penetrated the nucellus, starch grains were degraded in amyloplasts of nucellar cells. In cells undergoing PCD, electron-dense vacuoles with high membrane contrast appeared, assumed a variety of autophagic structures, expanded, and ultimately collapsed and disappeared. Vesicles and electron-dense amorphous materials were released inside the thickened walls of cells undergoing PCD, and those vesicles and materials reaching the pollen tube after passing through the extracellular matrix were taken into the tube by endocytosis. These results show that in PCD of nucellar cells, intracellular materials are degraded in amyloplasts and vacuoles, and some of the degraded material is supplied to the pollen tube by vesicular transport to support tube growth.  相似文献   

5.
BACKGROUND AND AIMS: Information on the influence of wounding on lignin synthesis and distribution in differentiating xylem tissue is still scarce. The present paper provides information on cell modifications with regard to wall ultrastructure and lignin distribution on cellular and subcellular levels in poplar after wounding. METHODS: Xylem of Populus spp. close to a wound was collected and processed for light microscopy, transmission electron microscopy and cellular UV microspectrophotometry. Cell wall modification with respect to lignin distribution was examined at different stages of wound tissue development. Scanning UV microspectrophotometry and point measurements were used to determine the lignin distribution. KEY RESULTS: Xylem fibres within a transition zone between differentiated xylem laid down prior to wounding and the tissues formed after wounding developed distinctively thickened secondary cell walls. Those modified walls and cell corners showed, on average, a higher lignin content and an inhomogeneous lignin distribution within the individual wall layers. CONCLUSIONS: The work presented shows that wounding of the xylem may induce a modified wall architecture and lignin distribution in tissues differentiating at the time of wounding. An increasing lignin content and distinctively thickened walls can contribute to improved resistance as part of the compartmentalization process.  相似文献   

6.
A culture of Acer pseudoplatanus L. grown in the presence ofan equilibrium level of 2,4-dichlorophenoxyacetic acid (2,4-D)of 1?5 ? 10–7 M (state IV culture) showed, in comparisonwith one of a similar specific growth rate but in which theequilibrium level of 2,4-D was 2?3 ? 10–6 M (state Iculture), an enhanced degree of cell aggregation, enhanced meancell volume, and the presence of cells giving a generalizedlignin reaction with extracellular lignin-positive material.The state IV culture showed a proportion (10–15 per cent)of cells having ultrastructural features not observed in thestate I culture. Some of the cells, located at the surface ofthe cellular aggregates, were small, rounded, highly cytoplasmic,and rich in rough endoplasmic reticulum. Further within theaggregates there occurred some cells showing abnormal or incompletecytokinesis and having irregularly thickened walls. Locatedcentrally in the aggregates were cells showing massive accumulationsof electron-dense material and with cell walls showing bandsof thickening alternating with thinner wall regions traversedby plasmodesmata. The latter cells are interpreted as cellsshowing intense polyphenol metabolism and imperfect xylogenicdifferentiation.  相似文献   

7.
Thallus organization is examined inAspicilia californicaRosentreter, a fruticose lichen known from several localities in central and southern California. The sprawling, terete thallus branches possess a dense central medulla of thick-walled, longitudinally oriented fungal cells. This central tissue emerges at branch apices to form a darkly pigmented fungal tip. Thallus development involves the apical extension of the tip to produce a fungal tissue over which a cylindrical algal layer and cortex will eventually be formed. Apical branches are initiated by furcation entirely within the fungal tip. Lateral branches, emerging from the lichenized thallus, arise as a divergent bundle of elongate fungal cells originating in the medulla. The photobiont appears to play no direct role in initiation of apical or lateral branches. It is concluded that thallus development inA. californicaoccurs with a relatively low degree of synchrony between mycobiont and photobiont growth, similar to the pattern observed in crustose lichens with prothallic growth. A rather similar type of thallus organization is observed inA. hispida, although in that species mycobiont growth and branch initiation appear to be somewhat more closely associated with algal cell proliferation. A squamuloseAspiciliafrom central Spain produces rhizomorphs that may sometimes become invested with an algal layer and cortex, resembling the thallus axes ofA. californica.  相似文献   

8.
The ultrastructure of the wall of Candida albicans strain 6406 was examined in polyeneresistant organisms obtained by continued incubation after the cessation of growth. The walls of organisms harvested either during the exponential phase of growth or after 24 h starvation, when examined in situ, showed the typical layered appearance. After 72 h starvation, when the resistance to amphotericin B methyl ester (AME) was 60 times greater than that of exponentially growing organisms, both the periplasmic material and the distinct electron-dense layers were absent from the wall. At this stage there was no increase in the thickness of the wall. After 144 h starvation the thickness of the wall had increased from 143 +/-22 nm (exponential phase organisms) to 211+/-58 nm. If after 144 h starvation the organisms were incubated for 1 h in fresh nutrient medium they regained their sensitivity to AME and the wall regained the periplasmic material and its characteristic multilayered appearance. During the first 24 h starvation there was a considerable fall in the soluble glucan fraction, but on continued incubation there was little change in the relative proportions of the major carbohydrate constituents of the cell. Thin sections of purified walls isolated from organisms harvested either during exponential growth or after 144 h starvation were identical in appearance and characterized by the absence of the electrondense layers observed in sections of intact cells and by a reduction in thickness to 100+/-20nm.  相似文献   

9.
《Annals of botany》1996,77(3):243-250
Morphogenesis of the specialized thread-forming (TF) cells in theStrelitzia reginaeanther was investigated; particular attention was given to the cell walls and the degree of vacuolation. The mass of both cell wall and cytoplasm increased until just before dehiscence. However, cell growth and degradation were largely synchronous processes in the TF cells: before any wall thickening could be observed, degradation of primary cell wall material was already initiated. This degradation continued, with the result that the mature thread cells were eventually fully separated from their surrounding cells.Four stages of development, mainly relating to the degree of cell separation, were established. At stage 1, TF cells began to separate from the subepidermis, while at stage 2 some initial cell wall thickening was taking place. The walls of the TF cell were, at stage 3, thickened considerably (about 1 μm), especially along the radial axes. The texture of these walls was loose due to the presence of large intermicrofibrillar regions, and the previously vacuolated cells were filled with cytoplasm. Longitudinal sections revealed conical gaps in the thick cell wall over the plasmodesmata. Just before dehiscence (late stage 3), the TF cells separated from each other and the subepidermis to such an extent that only plasmodesmata and fibrillar wall remnants kept the files of TF cells in place. The released uniseriate threads were classified as stage 4. (Occasionally the threads were multicellular but only where the transverse walls had not separated from each other.) The threads had thinner cell walls than the TF cells at stage 3 and were vacuolated.  相似文献   

10.
应用石蜡切片和扫描电镜方法对一号冰川退缩地生长的15种丛藓科植物茎的结构及表面微形态特征进行观察,结果表明:该地区的15种丛藓科植物的茎分为具中轴和无中轴两类,其细胞壁均有不同程度的加厚。而具中轴的丛藓科植物的茎又分为表皮、皮部、中轴三部分,茎表皮细胞短,1层,细胞壁大多向外突出,表面粗糙,表面纹饰多为颗粒状;皮部所占面积最大,大部分有内、外皮部的分化,大多数种的细胞壁由外向内逐渐变薄,细胞由小到大整齐排列;中轴所占的面积也不同,其细胞壁多具角隅加厚;而没有中轴分化的种类,其各自细胞壁加厚的程度基本一致。  相似文献   

11.
The plant cell wall is a dynamic structure whose constant modification is necessary for plant cells to grow and divide. In the cell walls of chickpea (Cicer arietinum) there are at least four β‐galactosidases, whose presence and location in embryonic axes during the first 48 h of seed imbibition are discussed in this paper. We examined their roles as cell wall‐modifying enzymes in germinative and/or post‐germinative events. At the start of germination, only βV‐Gal, and to a lesser extent βIV‐Gal, appear in the axes before rupture of the testa, suggesting they are related to germination sensu stricto. Once the testa has broken, the four β‐galactosidases are involved in growth and differentiation of the axes. Immunolocation of the different proteins in axes, which in part confirms previous results in seedlings and plants, allows assignment of post‐germinative roles to βI‐Gal and βIII‐Gal as cell wall modifiers in vascular tissue elements. βIV‐Gal and βV‐Gal participate in the initial events of germination in which cell walls are involved: βV‐Gal in cell proliferation, detachment of root cap cells and initial vascular tissue differentiation; both of them in xylem maturation; and βIV‐Gal in thickening of the primary cell wall. Together with other cell wall‐modifying enzymes, such as expansins and XTH, chickpea galactosidases might function in a sequential order in turnover of the primary cell wall, allowing the elongation of embryonic axes during seed germination.  相似文献   

12.
《Aquatic Botany》1987,28(2):171-177
In Turbinaria conoides (J. Agardh) Kützing, the hapteron, thallus and receptacle meristoderm cells are columnar, polarized and have thick longitudinal walls. In the thallus apical cavity, however, these cells are elongate and possess cap-like structures and thin, longitudinal walls. The meristoderm cells, except for those present at the apical cavities and ostiole regions, are overarched by 1–5 extracellular layers that are deposited in an orderly manner.The histochemistry of the meristoderm suggests that its cell walls contain alginic acid, cellulose and sulphated polysaccharides. The extracellular layers and the materials in the cap-like structures contain a mixture of alginic acid and sulphated polysaccharides, and little cellulose. The possible role of meristoderm cells lining the apical cavity of the thallus and that of extracellular layers is discussed.  相似文献   

13.
The budding process of the yeast form of Mucor rouxii was examined by electron microscopy of thin sections with particular reference to wall ontogeny. In most instances the bud wall is seen as a continuation of the inner layers of the parent cell wall. As the bud emerges it ruptures the outer layers of the parent wall. The bud wall is much thinner than the parent wall and remains so while the bud grows into a sphere of about one half the diameter of the parent cell. Then a septum begins to form centripetally, at the neck, by invagination of the plasmalemma. Before the neck canal is completely occuluded, electron-dense wall material is deposited into the septum space. Two separate septum walls are deposited, one on the parent side and one on the bud side of the invaginating plasmalemma. Septum wall formation extends to the surrounding neck walls. In this manner, the parent and bud cytoplasms become fully separated and each is surrounded by a continuous wall. The two cells remain attached to each other by the original neck wall; eventually, the bud abscisses leaving a birth scar on the bud cell and a more pronounced bud scar on the parent cell. In general, the mechanism of budding in this zygomycetous fungus resembles that of an ordinary ascomycetous yeast such as Saccharomyces cerevisiae.  相似文献   

14.
Gibberellin-induced formation of tension wood in angiosperm trees   总被引:1,自引:0,他引:1  
Funada R  Miura T  Shimizu Y  Kinase T  Nakaba S  Kubo T  Sano Y 《Planta》2008,227(6):1409-1414
After gibberellin had been applied to the vertical stems of four species of angiosperm trees for approximately 2 months, we observed eccentric radial growth that was due to the enhanced growth rings on the sides of stems to which gibberellin had been applied. Moreover, the application of gibberellin resulted in the formation of wood fibers in which the thickness of inner layers of cell walls was enhanced. These thickened inner layers of cell walls were unlignified or only slightly lignified. In addition, cellulose microfibrils on the innermost surface of these thickened inner layers of cell walls were oriented parallel or nearly parallel to the longitudinal axis of the fibers. Such thickened inner layers of cell walls had features similar to those of gelatinous layers in the wood fibers of tension wood, which are referred to as gelatinous fibers. Our anatomical and histochemical investigations indicate that the application of gibberellin can induce the formation of tension wood on vertical stems of angiosperm trees in the absence of gravitational stimulus.  相似文献   

15.
以马铃薯晚疫病水平抗性品种LBr-12和感病品种费乌瑞它为材料,采用普通光学和电子显微镜技术,系统研究了马铃薯与晚疫病菌(致病疫霉)互作的组织细胞学反应特征。观察结果显示:(1)接种后,水平抗性材料LBr-12出现过敏反应,病菌被限制在侵染点的几个细胞中,菌丝产生较少的分支和吸器。(2)感病品种费乌瑞它被侵染细胞呈蔓延趋势,菌丝产生较多的分支和吸器。(3)电镜观察发现,抗病品种上病菌的胞间菌丝、吸器母细胞、吸器在细胞和亚细胞水平均发生了一系列异常变化,包括原生质的电子致密度加深、液泡增多变大、菌丝细胞壁不规则增厚、细胞器排列紊乱及解体、吸器母细胞及吸器形态异常、病菌最终畸形坏死,同时发现抗病品种受病菌侵染时可迅速产生结构防卫反应,形成的细胞壁沉积物使胞壁极度增厚或细胞膜上产生乳突状结构。  相似文献   

16.
The mature female conceptacle of Sargassum horneri (Turner) C. Agardh has an ostiole filled with a gelatinous plug. The oogonium in the conceptacle has cell walls that can be differentiated into a dense outer and a less dense inner microfibrillar layer. Just prior to egg release, stalk material is produced inside the outer layer and the inner layer disappears. At this stage the gelatinous plug is extruded and mucilage is released through the ostiole. The released eggs are retained on the receptacle by the stalk and are surrounded by a large amount of the mucilage. Three-celled germlings form a primary wall with a polylamellated structure of microfibril layers. In multicellular germlings that have differentiated into thallus and rhizoids, the peripheral thallus cells have an outer cell wall consisting of a microfibril layer under the primary wall, while the cell wall of the rhizoid tip has an amorphous structure. The germlings are released from the stalk and become attached to the substratum by an adhesive substance secreted from rhizoidal cells.  相似文献   

17.
The infection process of Phomopsis helianthi and the specific degradation of infected tissue were studied in detail using light and transmission electron microscopy. In comparison with other vascular pathogens, the infection and degradation process was in some aspects different. The favourite tissue for the pathogen to grow in was the phloem. Parenchymatic cells in and around vascular bundles were extremely sensitive to infection long before hyphae arrived, probably due to a toxin. In the parenchymatic cells the first changes were visible at the chloroplasts where electron-dense material accumulated in the thylakoid space. The chloroplast stroma changed contrast and later the whole cytoplasm also appeared electron dense. In the vascular bundles, first the phloem was destroyed and then hyphae invaded the adjacent mesophyll, the cambium, and finally the vessel elements. In particular, the compact mesophyll of the midvein was severely affected. Vessel elements were lined with electron-dense material and some were filled with flocculent material. Severe wall destruction indicated the action of a complete set of cell wall-degrading enzymes before hyphae entered the tissue; it always started at the innermost wall layer. Wall degradation in vascular tissue and adjacent parenchyma with intercellular spaces was different. Before the degradation of the protoplasts started, the cell walls were completely metabolized and only the secondary walls of the vessels resisted for longer. There were no host–cell reactions visible that could be interpreted as a defence reaction.  相似文献   

18.
Fine-structure observations with two different fixation procedures showed that phialide necks possessed a thickened electron-transparent wall layer. Phialoconidia developed from a wall layer which originated 1–1.5 μm within phialide necks. After conidium initials blew out of phialide tips and organelles entered, conidia were delimited by transverse septa which did not appear to be plugged by Woronin body-like plugs. Instead, septa appeared to become functionally complete by continued centripetal growth. Conidium-delimiting septa moved distally out of phialide necks as subsequent conidium initials formed. During this distal movement, septa increased in thickness and lamellae appeared on the conidium side; mature conidia had bipolarly lamellate cell walls. Conidial walls had a thin, ridged electron-dense outer wall layer and a thicker electron-transparent inner wall layer which increased in thickness centripetally after septum delimitation. Conidia were usually uninucleate and possessed conspicuous storage vacuoles with lipid and protein contents. Conidia also possessed numerous presumably lipid droplets. Multivesicular bodies were observed near conidium-delimiting septa and conidium walls which were increasing in thickness.  相似文献   

19.
The morphology of cells and cell walls was studied in the Bacillus brevis G.-B. R form during its growth and gramicidin S accumulation in it. The membrane apparatus became more complicated and certain other morphological changes were detected in the cells with aging. The cell wall was rather complex even in young cells and consisted of three electron-dense layers where the external and internal layers had an ordered structure. Only the external layer underwent some modifications in the course of growth and these coincided in time with the beginning of intensive gramicidine S biosynthesis. However, the three-layer structure of the cell wall and the ordered organization of the external and internal layers remained unchanged. A preparation of cell walls and preparations of their external and internal layers were isolated from cells synthesizing gramicidine S in the amount of 20 micrograms/ml of the cultural broth. An acid protein having the molecular mass of 100 kD was shown to be the major component of the external layer according to the data of electrophoresis in PAAG with SDS. The middle layer was sensitive to lysozyme, did not have a ordered structure on electron micrographs, and consisted mainly of peptidoglycan.  相似文献   

20.
Purified cell walls were prepared from both the conchocelis and thallus phases of Porphyra tenera (Kjellm.). The nitrogen content of cell walls from the conchocelis was significantly greater than that for the thallus cell walls, being 3.35 ± 0.26% and 2.39± 0.03%, respectively. Amino acid analysis revealed important differences. The conchocelis cell wall hydrolyzates were richer in aspartic acid, glutamic acid, methionine, and basic amino acids. The thallus cell wall hydrolyzates, however, contained much more glycine and alanine than did those of the conchocelis. Hydroxyproline was not detected in cell walls of either phase. The neutral sugar content of cell wall hydrolyzates from the thallus was more than double that from the conchocelis being 83.6% and 34.5%, respectively. The former contained predominantly mannose which accounted for 72.2% of the neutral sugars while the latter was principally galactose (49.9%) and glucose (36.4%). Methylation analysis confirmed the presence of cellulose microfibrils in the conchocelis in contrast to xylan microfibrils in the thallus. The results establish that the conchocelis and thallus phases of P. tenera differ markedly in the structure and composition of the cell walls.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号