首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The mechanisms by which synchronized embryonic development to the blastocyst stage, preparation of the uterus for the receptive state, and reciprocal embryo-uterine interactions for implantation are coordinated are still unclear. We show in this study that preimplantation embryo development became asynchronous in mice that are deficient in brain-type (CB1) and/or spleen-type (CB2) cannabinoid receptor genes. Furthermore, whereas the levels of uterine anandamide (endocannabinoid) and blastocyst CB1 are coordinately down-regulated with the onset of uterine receptivity and blastocyst activation prior to implantation, these levels remained high in the nonreceptive uterus and in dormant blastocysts during delayed implantation and in pregnant, leukemia inhibitory factor (LIF)-deficient mice with implantation failure. These results suggest that a tight regulation of endocannabinoid signaling is important for synchronizing embryo development with uterine receptivity for implantation. Indeed this is consistent with our finding that while an experimentally induced, sustained level of an exogenously administered, natural cannabinoid inhibited implantation in wild-type mice, it failed to do so in CB1(-/-)/CB2(-/-) double mutant mice. The present study is clinically important because of the widely debated medicinal use of cannabinoids and their reported adverse effects on pregnancy.  相似文献   

2.
There are reports of adverse effects of cannabinoids on pregnancy outcome including retarded embryo development and pregnancy failure. Thus, discoveries of endogenous cannabinoid-like lipid mediators and cannabinoid receptors raise questions about their pathophysiological roles during normal pregnancy. We previously reported that anandamide, an endogenously produced arachidonate derivative (endocannabinoid), is synthesized in the female reproductive tracts, and it acts on cannabinoid receptors expressed on the cell surface of the embryo to regulate the preimplantation embryo development and implantation in mice. This review presents genetic, molecular, physiological and pharmacological evidence that the levels of uterine anandamide and blastocyst CB1 cannabinoid receptors are coordinately regulated to synchronize preimplantation development and uterine receptivity for implantation in mice.  相似文献   

3.
ObjectivesTo elaborately decipher the mouse and human bladders at single‐cell levels.Materials and MethodsWe collected more than 50,000 cells from multiple datasets and created, up to date, the largest integrated bladder datasets. Pseudotime trajectory of urothelium and interstitial cells, as well as dynamic cell‐cell interactions, was investigated. Biological activity scores and different roles of signaling pathways between certain cell clusters were also identified.ResultsThe glucose score was significantly high in most urothelial cells, while the score of H3 acetylation was roughly equally distributed across all cell types. Several genes via a pseudotime pattern in mouse (Car3, Dkk2, Tnc, etc.) and human (FBLN1, S100A10, etc.) were discovered. S100A6, TMSB4X, and typical uroplakin genes seemed as shared pseudotime genes for urothelial cells in both human and mouse datasets. In combinational mouse (n = 16,688) and human (n = 22,080) bladders, we verified 1,330 and 1,449 interactive ligand‐receptor pairs, respectively. The distinct incoming and outgoing signaling was significantly associated with specific cell types. Collagen was the strongest signal from fibroblasts to urothelial basal cells in mouse, while laminin pathway for urothelial basal cells to smooth muscle cells (SMCs) in human. Fibronectin 1 pathway was intensely sent by myofibroblasts, received by urothelial cells, and almost exclusively mediated by SMCs in mouse bladder. Interestingly, the cell cluster of SMCs 2 was the dominant sender and mediator for Notch signaling in the human bladder, while SMCs 1 was not. The expression of integrin superfamily (the most common communicative pairs) was depicted, and their co‐expression patterns were located in certain cell types (eg, Itgb1 and Itgb4 in mouse and human basal cells).ConclusionsThis study provides a complete interpretation of the normal bladder at single‐cell levels, offering an in‐depth resource and foundation for future research.  相似文献   

4.
Uterine receptivity is defined as a limited time period during which the uterus enters into an appropriately differentiated state that is ready for the initiation of implantation by competent blastocysts. Although various cellular aspects and molecular pathways involved in uterine receptivity have been identified by gene expression studies and genetically engineered mouse models, a comprehensive understanding of the window of uterine receptivity is still missing. This review focuses on the recent progress in this area, with particular focus on the molecular basis of stromal‐epithelial dialogue and crosstalk between the blastocyst and the uterus during implantation. A better understanding of the underlying mechanisms governing the window of uterine receptivity is hoped to generate new strategies to correct implantation failure and to improve pregnancy rates in women. Mol. Reprod. Dev. 80: 8–21, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

5.
Molecular signaling in uterine receptivity for implantation   总被引:14,自引:0,他引:14  
Successful implantation is the result of an intimate 'cross-talk' between the blastocyst and uterus in a temporal and cell-specific manner. Thus, both the uterine and embryonic events must be examined to better understand this process. Although various aspects and molecules associated with these events have been explored, a comprehensive understanding of the implantation process is still very limited. In this review, we have highlighted the importance of the blastocyst's activity state and the receptive state of the uterus in determining the 'window' of implantation. In this context, we provide a testable scheme that signifies the important roles of various key molecules in embryo-uterine interactions during implantation.  相似文献   

6.
Infertility and spontaneous pregnancy losses are an enduring problem to women's health. The establishment of pregnancy depends on successful implantation, where a complex series of interactions occurs between the heterogeneous cell types of the uterus and blastocyst. Although a number of genes are implicated in embryo-uterine interactions during implantation, genetic evidence suggests that only a small number of them are critical to this process. To obtain a global view and identify novel pathways of implantation, we used a dual screening strategy to analyze the expression of nearly 10,000 mouse genes by microarray analysis. Comparison of implantation and interimplantation sites by a conservative statistical approach revealed 36 up-regulated genes and 27 down-regulated genes at the implantation site. We also compared the uterine gene expression profile of progesterone-treated, delayed implanting mice to that of mice in which delayed implantation was terminated by estrogen. The results show up-regulation of 128 genes and down-regulation of 101 genes after termination of the delayed implantation. A combined analysis of these experiments showed specific up-regulation of 27 genes both at the implantation site and during uterine activation, representing a broad diversity of molecular functions. In contrast, the majority of genes that were decreased in the combined analysis were related to host immunity or the immune response, suggesting the importance of these genes in regulating the uterine environment for the implanting blastocyst. Collectively, we identified genes with recognized roles in implantation, genes with potential roles in this process, and genes whose functions have yet to be defined in this event. The identification of unique genetic markers for the onset of implantation signifies that genome-wide analysis coupled with functional assays is a promising approach to resolve the molecular pathways required for successful implantation.  相似文献   

7.
Uncovering the functions of genes in a complex biological process is fundamental for systems biology. However, currently there is no simple and reliable experimental tool available to conduct loss‐of‐function experiments for multiple genes in every possible combination in a single experiment, which is vital for parsing the interactive role of multiple genes in a given phenotype. In this study, we develop miR‐AB, a new microRNA‐based shRNA (shRNAmir) backbone for simplified, cost‐effective, and error‐proof production of shRNAmirs. After verification of its potent RNAi efficiency in vitro and in vivo, miR‐AB was integrated into a viral toolkit containing multiple eukaryotic promoters to enable its application in diverse cell types. We further engineer eight fluorescent proteins emitting wavelengths across the entire visible spectrum into this toolkit and use it to set up a multicolor‐barcoded multiplex RNAi assay where multiple genes are strongly and reliably silenced both individually and combinatorially at a single‐cell level.  相似文献   

8.
9.
10.
A dual-label ratio method was used in conjunction with two-dimensional polyacrylamide gel electrophoresis to measure the relative changes in rates of production of individual secreted proteins by mouse uteri at the start of the process of decidualization. A characteristic pattern of differential changes in the rate of synthesis and secretion of the proteins was found to be associated with development of a positive Pontamine Blue reaction at the site of embryo implantation. These changes were compared with those associated with development of experimentally induced deciduomata and although the patterns were similar, presumably reflecting common processes in transformation of the endometrium, there was preferential enhancement of a subset of small (Mr 14,000-20,000) acidic proteins in the authentic implantation sites. It is suggested that this embryo-dependent modification of constitutive changes associated with decidualization reflects a form of embryo-maternal signal-response mechanism that may be important for the process of implantation in mice.  相似文献   

11.
The earliest recognizable sign of patterning of the mouse embryo along the anteroposterior (A-P) axis is the migration of the distal visceral endoderm (DVE) toward the future anterior side. Here we report an asymmetry in the mouse embryo at an unexpectedly early stage. The gene for Lefty1, a Nodal antagonist that influences the direction of DVE migration, was found to be asymmetrically expressed in the primitive endoderm of the implanting blastocyst. Lefty1 expression begins randomly in the inner cell mass (ICM) of the blastocyst but is regionalized to one side of the tilted ICM shortly after implantation. Asymmetric expression of Lefty1 can be established by in vitro culture, indicating that it does not require interaction with the uterus. The asymmetric Lefty1 expression is induced by Nodal signaling, although Nodal and genes for its effectors are expressed symmetrically. This asymmetry in molecular patterning of the mouse embryo pushes back the origin of the A-P body axis to the peri-implantation stage.  相似文献   

12.
13.
Autologous fat transplantation is a widely used procedure for surgical reconstruction of tissues. The resorption rate of this transplantation remains high and unpredictable, reinforcing the need of adjuvant treatments that increase the long‐term stability of grafts. Adipose‐derived stem cells (ASC) introduced as single cells in fat has been shown clinically to reduce the resorption of fat grafts. On the other hand, the formulation of ASC into cell spheroids results in the enhancement of their regenerative potential. In this study, we developed a novel method to produce highly homogeneous ASC spheroids and characterized their features and efficacy on fat transplantation. Spheroids conserved ASC markers and multipotency. A regenerative gene expression profile was maintained, and genes linked to autophagy were upregulated whereas proliferation was decreased. Their secreted proteome was enriched in comparison with single‐cell ASC suspension. Addition of spheroids to fat graft in an animal model of transplantation resulted in a better graft long‐term stability when compared to single ASC suspension. In conclusion, we provide a novel method to manufacture homogenous ASC spheroids. These ASC spheroids are superior to ASC in single‐cell suspension to improve the stability of fat transplants, reinforcing their potential in reconstructive surgery.  相似文献   

14.
15.
Dear Editor, The retina is a light-sensitive highly-organized tissue,which is vulnerable to aging and age-related retinal diseases.Specifically,progressive retinal degeneration leads to visual function deterioration and vision impairment in the elderly(Lin et al.,2016).In diseases such as age-related macular degeneration(AMD),retinitis pigmentosa(RP)and diabetic retinopathy(DR),pathological process lacking effective treatments profoundly and negatively impact on the quality of life in the elderly(Lin et al.,2016;Chen et al.,2019).Thus,an in-depth molecular assessment of the mechanisms driv-ing retinal aging is of urgent scientific and medical importance.  相似文献   

16.
Leptin is a 16-kDa multifunctional protein. Recent reports indicate that leptin is an important molecule during implantation and placentation, implicated in embryonic-maternal cross-talk and cytotrophoblast invasiveness, however, the role of leptin playing in the process of normal blastocyst implantation has not been well characterized. In the present study, the possible mechanisms of leptin playing in mouse blastocyst implantation were investigated. Leptin and receptor isoforms mRNAs were detected in whole mouse uteri during estrous cycle and peri-implantation periods. Immunofluorescent analysis further confirmed Ob-R protein was present in mouse uterus. The differential amounts of leptin and Ob-R isoforms suggested a role for leptin in such endometrial issues as blastocyst implantation. In vitro culture model for studying embryo implantation, leptin promoted mouse blastocyst adhesion and blastocyst outgrowth on fibronectin. Blastocysts treated with 300 ng/ml leptin had the greatest adhesion rate of 76.58+/-6.41% (P=0.046), and blastocysts treated with 30 ng/ml leptin had the greatest outgrowth rate of 78.64+/-8.48% (P=0.005). In isolated endometrial epithelial cells, leptin upregulated amounts of alpha v and beta 3 integrin, and promoted cell adhesion to such extracellular matrix proteins as fibronectin, laminin and type IV collagen, showing a dose- and time-dependent cell-adhesive capacity. Collectively, the information from the present study may partly account for leptin-induced mouse blatocyst implantation.  相似文献   

17.
18.
We present direct‐LIVE‐PAINT, an easy‐to‐implement approach for the nanoscopic imaging of protein structures in live cells using labeled binding peptides. We demonstrate the feasibility of direct‐LIVE‐PAINT with an actin‐binding peptide fused to EGFP, the location of which can be accurately determined as it transiently binds to actin filaments. We show that direct‐LIVE‐PAINT can be used to image actin structures below the diffraction‐limit of light and have used it to observe the dynamic nature of actin in live cells. We envisage a similar approach could be applied to imaging other proteins within live mammalian cells.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号