首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Polymorphonuclear neutrophil granulocytes (PMNs) seem to participate in the pathogenesis of renal ischemic reperfusion injury. The kidneys from male Sprague Dawley rats were immersion-fixed after 45 min of renal artery clamping followed by reperfusion for 0, 5, 20, and 120 min, respectively. The tissue distribution of PMNs in the kidneys was studied histochemically using naphthol AS-D chloroacetate esterase as a specific marker for these cells. Neutrophil counts per unit sectional area were obtained for renal cortex, outer and inner medulla. In the cortex separate intraglomerular and peritubular counts, and in the outer medulla separate outer and inner stripe counts were made. After 120 min of reperfusion the total renal PMN counts were 488 ±62 (n = 4) compared with 54 ±4 (n = 4) per cm2 in nonischemic controls. Within 120 min of reperfusion PMN counts increased by a factor of 8 in the cortex, of 12 in the outer medulla and of 14 in the inner medulla, compared with controls. The ratio of intraglomerular against peritubular PMN counts was approximately 2 in controls, but 0.5 after a 120-min reperfusion interval. The outer stripe of the outer medulla contained only a small number of PMNs whereas PMN counts of 923 ±197 (n = 4) per cm2 were found in the inner stripe after 120 min reperfusion. Interestingly, there was a marked increase in PMNs in the inner stripe during the first 5 min of reperfusion but no extravasation of PMNs was observed. Taken together, these data provide the first evidence that PMNs accumulate particularly within peritubular capillaries in the cortex and within the inner stripe of the outer medulla. This distribution pattern is consistent with the hypothesis that PMN-augmented cell injury occurs in the early phase of postischemic acute renal failure. In addition the steady increase in PMNs during reperfusion may further contribute to impaired renal function.  相似文献   

2.
Na+,K+-ATPase was localized at the ultrastructural level in rat and rabbit kidney medulla. The cytochemical method for the K+-dependent phosphatase component of the enzyme, using p-nitrophenylphosphate (NPP) as substrate, was employed to demonstrate the distribution of Na+, K+- ATPase in tissue-chopped sections from kidneys perfusion-fixed with 1% paraformaldehyde-0.25% glutaraldehyde. In other outer medulla of rat kidney, ascending thick limbs (MATL) were sites of intense K+-dependent NPPase (K+-NPPase) activity, whereas descending thick limbs and collecting tubules were barely reactive. Although descending thin limbs (DTL) of short loop nephrons were unstained, DTL from long loop nephrons in outer medulla were sites of moderate K+-NPPase activity. In rat inner medulla, DTL and ascending thin limbs (ATL) were unreactive for K+-NPPase. In rabbit medulla, only MATL were sites of significant K+-NPPase activity. The specificity of the cytochemical localization of Na+,K+-ATPase at reactive sites in rat and rabbit kidney medulla was demonstrated by K+-dependence of reaction product deposition, localization of reaction product (precipitated phosphate hydrolyzed from NPP) to the cytoplasmic side of basolateral plasma membranes, insensitivity of the reaction to inhibitors of nonspecific alkaline phosphatase, and, in the glycoside-sensitive rabbit kidney, substantial inhibition of staining by ouabain. The observed pattern of distribution of the sodium transport enzyme in kidney medulla is particularly relevant to current models for urine concentration. The presence of substantial Na+,K+-ATPase in MATL is consistent with the putative role of this segment as the driving force for the countercurrent multiplication system in the outer medulla. The absence of significant activity in inner medullary ATL and DTL, however, implies that interstitial solute accumulation in this region probably occurs by passive processes. The localization of significant Na+,K+-ATPase in outer medullary DTL of long loop nephrons in the rat suggests that solute addition in this segment may occur in part by an active salt secretory mechanism that could ultimately contribute to the generation of inner medullary interstitial hypertonicity and urine concentration.  相似文献   

3.
Tissue distribution of neutrophils in postischemic acute renal failure.   总被引:3,自引:0,他引:3  
Polymorphonuclear neutrophil granulocytes (PMNs) seem to participate in the pathogenesis of renal ischemic reperfusion injury. The kidneys from male Sprague Dawley rats were immersion-fixed after 45 min of renal artery clamping followed by reperfusion for 0, 5, 20, and 120 min, respectively. The tissue distribution of PMNs in the kidneys was studied histochemically using naphthol AS-D chloroacetate esterase as a specific marker for these cells. Neutrophil counts per unit sectional area were obtained for renal cortex, outer and inner medulla. In the cortex separate intraglomerular and peritubular counts, and in the outer medulla separate outer and inner stripe counts were made. After 120 min of reperfusion the total renal PMN counts were 488 +/- 62 (n = 4) compared with 54 +/- 4 (n = 4) per cm2 in nonischemic controls. Within 120 min of reperfusion PMN counts increased by a factor of 8 in the cortex, of 12 in the outer medulla and of 14 in the inner medulla, compared with controls. The ratio of intraglomerular against peritubular PMN counts was approximately 2 in controls, but 0.5 after a 120-min reperfusion interval. The outer stripe of the outer medulla contained only a small number of PMNs whereas PMN counts of 923 +/- 197 (n = 4) per cm2 were found in the inner stripe after 120 min reperfusion. Interestingly, there was a marked increase in PMNs in the inner stripe during the first 5 min of reperfusion but no extravasation of PMNs was observed.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
A histological examination of the effect of a purified diet containing 20% alpha protein (an alkali-treated soyprotein) on the development of nephrocalcinosis induced by intraperitoneal injections of 0.5 neutral (pH 7.4) sodium phosphate was carried out in female weanling rats. Animals that were fed a standard commercial laboratory diet and given daily injections of phosphate for six or ten days developed a form of nephrocalcinosis that consisted mainly of intraluminal (intratubular) calcification at the junction of the outer and inner stripes of the outer medulla and in the inner stripe of the outer medulla. By contrast, rats that were fed the alpha protein diet and given injections of phosphate for six or ten days developed a form of nephrocalcinosis that was characterized primarily by a type of tubular basement membrane calcification at the junction of the inner stripe of the outer medulla and the inner medulla. The differences in nephrocalcinosis between the two dietary groups and the fact that an alpha protein diet by itself can cause renal calcification, leads to the suggestion that some component(s) or factor(s) in the alpha protein diet strongly influence(s) the development of nephrocalcinosis induced by injected neutral sodium phosphate.  相似文献   

5.
The changes in proliferative activity of tubular epithelial cells of the rat kidney following a single injection of folic acid (250 mg/kg body weight) have been studied. Autoradiography with tritiated thymidine revealed a large increase in numbers of labelled cells, beginning at about 18 hr, in each of the three kidney zones examined. In the cortex the maximum increase in labelling index (16 times normal) was found at 36 hr whereas that of the outer medulla (34 times normal) occurred at 24 hr; there was no clearly defined peak in the inner medulla, values of up to 36 times normal being found between 24 and 96 hr. These changes were followed several hours later by similar changes in mitotic index in the corresponding zones. All the indices, except the mitotic index of the inner medulla, had returned to normal by 6 days. Comparison of the curves of labelling index and mitotic index in each zone indicated that the number of cells induced to synthesize DNA was approximately similar to the number of cells which subsequently underwent mitosis. A large increase was also found in the specific activity of DNA extracted from homogenates of whole kidneys from folic acid-injected rats, again using tritiated thymidine as label. The increase began at about 18 hr, reached a maximum of 16 times normal at 32 hr and returned to normal by 6 days. These changes were similar to those of labelling index in the cortical zone.  相似文献   

6.
Mitoses is stimulated in the kidneys of adult rats fed a potassium-deficient diet. A statistically significant increase in mitotic figures appears first in the collecting ducts of the inner strip of the outer medulla after two days on the K+ deficient diet (P less than 0.05). After six days, mitosis also increases in the collecting ducts in the outer stripe and in the inner medulla (P less than 0.01). After eight days there is a significant rise in mitotic activity in the cells of the proximal convoluted tubule (P less than 0.01). There is a questionable increase in mitosis found only on the fifth day in the distal convoluted tubule. In all other cell types there is no statistically significant increase in cell division over the normal low levels that are observed in the cells of the controls rats.  相似文献   

7.
The cytochrome P-450's of the microsomal mixed function oxidase systems from the rabbit renal cortex, outer medulla, inner medulla, and the liver were compared. Sodium dodecyl sulfate-(SDS) gel electrophoresis and electron paramagnetic resonance (EPR) studies detected cytochrome P-450 proteins in the liver, renal cortex, and outer medulla but not the inner medulla of normal animals. Two cytochrome P-450 peptides, which had molecular weights of 54,500 and 58,900 and which comigrated with known hepatic cytochrome P-450's on SDS gels, were identified in the cortex and outer medulla. Treatment of animals with 3-methylcholanthrene (MC) enhanced the 54,500 and 58,900 peptides in the liver and cortex but produced little change in outer medulla. MC treatment induced faint cytochrome P-450 bands in the inner medulla. The EPR studies detected low spin heme iron absorption lines at g = 2.42, 2.26, and 1.92 in liver, cortex, and outer medulla from untreated animals. The amplitude of the low spin absorption lines was increased by ethanol, a reverse type I compound, and reduced by chloroform, a type I compound, in these tissues. MC treatment increased the amplitude of the heme absorption lines in these tissues, and it induced a barely detectable heme spectrum in the inner medulla. Differences in exogenous substrate binding between hepatic and renal microsomes from MC-treated animals were detected by EPR and optical difference spectroscopy. Acetone, 1-butanol, and 2-propanol gave evidence of binding to the hepatic cytochrome P-450's but no evidence of binding to renal cortical microsomes. These results, along with previous enzymatic studies, suggest that the liver and each area of the kidney contain different substrate specificities and pathways for the metabolism of organic compounds.  相似文献   

8.
The hamster renal pelvis has been studied by means of low-power light microscopy, scanning electron microscopy and morphometric analyses. The results of this study are highly suggestive that the contact of pelvic urine with the other medulla as well as with the inner medulla may be an important aspect of final urine formation. The outer medulla constituted nearly 50% of the total pelvic surface area, with the inner stripe of the outer medulla more than twice the pelvic surface area of the outer stripe of the outer medulla. The large outer medullary pelvic surface area was accounted for by the elaboration of the upper pelvic walls into peripelvic columns, opercula ("secondary pyramids"), fornices and secondary pouches. A thin simple-squamous to low cuboidal pelvic epithelium separated pelvic urine from outer medullary parenchyma. The inner medulla which constituted about one quarter of the total pelvic surface area was covered by a cuboidal to columnar pelvic epithelium which appeared morphologically similar to the papillary collecting duct epithelium. Tubules and capillaries of the inner medulla did not appear as closely juxtaposed to the pelvic epithelium as did those of the outer medulla. Cortical tissue comprised only 11.7% of the total pelvic surface area and was covered by transitional epithelium similar to that of ureter and bladder. The previously reported impermeability of this epithelium suggests that pelvic urine contact with the cortex is unimportant in final urine formation. The rich layer of smooth muscle under the transitional epithelium probably functions to move urine into and out of the pelvis during pelvic peristalsis, which has been observed in vivo.  相似文献   

9.
We hypothesize that the inner medulla of the kangaroo rat Dipodomys merriami, a desert rodent that concentrates its urine to more than 6,000 mosmol/kgH(2)O water, provides unique examples of architectural features necessary for production of highly concentrated urine. To investigate this architecture, inner medullary nephron segments in the initial 3,000 μm below the outer medulla were assessed with digital reconstructions from physical tissue sections. Descending thin limbs of Henle (DTLs), ascending thin limbs of Henle (ATLs), and collecting ducts (CDs) were identified by immunofluorescence using antibodies that label segment-specific proteins associated with transepithelial water flux (aquaporin 1 and 2, AQP1 and AQP2) and chloride flux (the chloride channel ClC-K1); all tubules and vessels were labeled with wheat germ agglutinin. In the outer 3,000 μm of the inner medulla, AQP1-positive DTLs lie at the periphery of groups of CDs. ATLs lie inside and outside the groups of CDs. Immunohistochemistry and reconstructions of loops that form their bends in the outer 3,000 μm of the inner medulla show that, relative to loop length, the AQP1-positive segment of the kangaroo rat is significantly longer than that of the Munich-Wistar rat. The length of ClC-K1 expression in the prebend region at the terminal end of the descending side of the loop in kangaroo rat is about 50% shorter than that of the Munich-Wistar rat. Tubular fluid of the kangaroo rat DTL may approach osmotic equilibrium with interstitial fluid by water reabsorption along a relatively longer tubule length, compared with Munich-Wistar rat. A relatively shorter-length prebend segment may promote a steeper reabsorptive driving force at the loop bend. These structural features predict functionality that is potentially significant in the production of a high urine osmolality in the kangaroo rat.  相似文献   

10.
Ultrastructure of the thick ascending limb of Henle in the rat kidney   总被引:2,自引:0,他引:2  
The thick ascending limb of Henle (TAL) in the rat until recently has been considered a morphologically homogeneous structure despite physiologic and biochemical evidence to the contrary. The present study was designed to examine the ultrastructural characteristics of the TAL in the inner cortex and the outer and inner stripes of the outer medulla using qualitative and quantitative transmission electron microscopy. Kidneys of male Sprague-Dawley rats were preserved by in vivo perfusion with glutaraldehyde for light and electron microscopy. The peritubular diameter and cell height were determined by direct measurements on tubule cross sections. Morphometric analyses were performed on montages of tubule cross sections. The peritubular diameter of the TAL was similar in the three regions under investigation, but the TAL cells were taller in the inner stripe than in the inner cortex and outer stripe. Morphometry revealed significant differences between the three regions with respect to the mean tubular cross-sectional area (AT), the surface density (SV), and the surface area per mm of tubule (ST) of apical and basolateral plasma membranes, and the volume density (VV) of mitochondria. The major morphologic division appeared to be between the inner stripe segment and the remainder of the TAL. These findings document the presence of significant morphologic heterogeneity of the rat TAL.  相似文献   

11.
To clarify the involvement of phospholipase D (PLD) in the mechanism underlying genetically-induced hypertension, we investigated the activity and expression levels of PLD in tissues taken from spontaneously hypertensive rats (SHR), and their normotensive controls, Wistar-Kyoto rats (WKY). The ADP-ribosylation factor 3 (ARF3)-dependent PLD activity and protein levels of PLD1 from SHR increased significantly in the brain and liver, but not in the heart and kidney, compared to those of WKY. The activity and expression of PLD were the same between the homogenated whole kidneys of the two strains; however, there were topographical differences in the expression and activity of PLD between the kidneys of the two strains. The activity and expression level of PLD gradually increased from the cortex to the inner medulla of WKY. The enzyme activity, and amount of PLD in the inner stripe of the outer medulla and in the inner medulla, was significantly lower in SHR than in WKY. Taken together, these results suggest that the distinctly distributed patterns of PLD in the kidney may be associated with differential signal transduction pathways that are involved in hypertension in conjunction with an increase of PLD activity in the brain and liver.  相似文献   

12.
Urea transport in the kidney is mediated by a family of transporter proteins, including renal urea transporters (UT-A) and erythrocyte urea transporters (UT-B). We aimed to determine whether hydration status affects the subcellular distribution of urea transporters. Male Sprague-Dawley rats were divided into three groups: dehydrated rats (WD) given minimum water, hydrated rats (WL) given 3% sucrose in water for 3 days before death, and control rats given free access to water. We labeled kidney sections with antibodies against UT-A1 and UT-A2 (L194), UT-A3 (Q2), and UT-B using preembedding immunoperoxidase and immunogold methods. In control animals, UT-A1 and UT-A3 immunoreactivities were observed throughout the cytoplasm in inner medullary collecting duct (IMCD) cells, and weak labeling was observed on the basolateral plasma membrane. UT-A2 immunoreactivity in the descending thin limbs (DTL) was observed mainly on the apical and basolateral membranes of type I epithelium, and very faint labeling was observed in the long-loop DTL at the border between the outer and inner medulla. UT-A1 immunoreactivity intensity was markedly lower, and UT-A3 immunoreactivity was higher in IMCD of WD vs. controls. UT-A2 immunoreactivity intensities in the plasma membrane and cytoplasm of type I, II, and III epithelia of DTL were greater in WD vs. controls. In contrast, UT-A1 expression was greater and UT-A2 and UT-A3 expressions were lower in WL vs. controls. The subcellular distribution of UT-A in DTL or IMCD did not differ between control and experimental animals. UT-B was expressed in the plasma membrane of the descending vasa recta of both control and experimental animals. UT-B intensity was higher in WD and lower in WL vs. controls. These data indicate that changes in hydration status over 3 days affected urea transporter protein expression without changing its subcellular distribution.  相似文献   

13.
We examined the distribution of gamma-aminobutyric acid-like immunoreactivity (GABA-LI) in the rat kidney by light and electron microscopy. In vibratome sections, GABA-LI was present in both the renal medulla and cortex. The inner stripe of the outer medulla was most heavily and almost homogeneously labeled, whereas GABA-LI in the cortex was mainly confined only to some tubules. GABA-positive structures involved the epithelial cells of the thin and the thick ascending limbs of the loop of Henle, the connecting tubules, and the collecting ducts. In GABA-positive connecting tubules and collecting ducts the immunoreactivity was present in the cytoplasm of about half of the epithelial cells. As revealed by electron microscopy, the labeled cells in the collecting tubules were the light (principal) cells. No GABA-LI occurred in neuronal structures. These findings are consistent with the presence of a non-neuronal GABA system in the rat kidney. Furthermore, the specific distribution of GABA in the tubular epithelium suggests a functional significance of this amino acid in tubular transport processes.  相似文献   

14.
Urea production from arginine was studied in vitro in the kidney of normal rats in tubule suspensions of the four different renal zones (cortex, outer and inner stripe of outer medulla, and inner medulla), and in individual microdissected nephron segments. Tissue was incubated with L-[guanido-14C]-arginine to measure cellular arginase activity. Addition of urease to the incubate freed 14CO2 from the 14C-urea formed by arginase and released from the cells. CO2 was trapped in KOH and counted. These experiments revealed that significant amounts of urea are produced in the outer stripe and in the inner medulla. This intrarenal urea generation takes place mainly in the proximal straight tubule and in the collecting duct, with increasing activity in these two structures from superficial to deep regions of the kidney. Urea is known to play a critical role in the urinary concentrating process. The fact that some urea can be produced in the mammalian kidney, and that the two structures showing this capacity are straight portions of the renal tubular system descending along the corticopapillary axis suggest that this urea production might play a role in the formation and/or maintenance of the medullary urea concentration gradient.  相似文献   

15.
We characterized Mg(2+)-dependent ATPase activity in membranes from the renal cortex, the outer and inner stripes of the outer medulla, and papillary vesicles. In all regions, there was Mg(2+)-dependent ATPase activity that was resistant to oligomycin and vanadate and sensitive to N,N'-dicyclohexylcarbodiimide (DCCD), N-ethylmaleimide, and filipin. DCCD-Sensitive Mg(2+)-ATPase activity was highest in the inner stripe of the outer medulla and lowest in the cortex, with intermediate values in the outer stripe of the outer medulla and papilla. The Km for ATP, however, was similar among the different regions of the kidney. DCCD-Sensitive Mg(2+)-ATPase activity was critically dependent upon chloride with Km for Cl- in the range of 2-5 mM. In the presence of ATP, this ATPase was capable of H+ translocation, as assessed by acridine orange quenching. Inhibitors of ATPase activity prevented H+ translocation, which suggests that the Mg(2+)-ATPase represents, at least in part, an H(+)-ATPase. H+ transport was likewise critically dependent upon chloride, with similar Km. The effect of chloride on H+ translocation was blocked by the chloride channel inhibitor, diphenylamine-2 carboxylic acid. In the absence of chloride, H+ transport was abolished, but it could be partially restored by the creation of a favorable electric gradient by K+ and valinomycin. These studies demonstrate that the renal H(+)-ATPase exhibits different activities in various regions of the kidney. The ATPase activity and H+ translocation are critically dependent upon the presence of chloride, which suggests that chloride influences H+ translocation by dissipating the H+ gradient and acting at the catalytic site of the ATPase.  相似文献   

16.
To clarify the relationships between DNA damage and Cu-MT and between DNA damage and Cu in kidneys of rats injected with Au, we examined the histochemical localization of DNA damage, metallothionein (MT), and the accumulated Cu in the kidneys of rats injected with Au, Cu, or Cu-MT. The immunoreactivity of MT was observed predominantly in the outer stripe of the outer medulla and the inner cortex of the Au-injected rat, and the signals of terminal deoxynucleotidyl transferase (TdT)-mediated dUTP-biotin nick end labeling (TUNEL) were observed in the cortex. Cu detected by Timm's method was mainly distributed in the cortex of the Au-injected rat. These results indicated that DNA damage could be caused by free Cu in the cortex but not by the Cu bound to MT in the outer stripe of the outer medulla. This consideration was supported by the data from rats injected with Cu and Cu-MT. Furthermore, we determined the Cu contents in three fractions (cytosol, organelle, and precipitate-containing nuclei) of the kidneys. Interestingly, most of the Cu content in the kidney of the rat injected with Au or Cu-MT was detected in the cytosol, whereas most of the Cu content in the kidney of the rat injected with Cu was detected in the nuclei-containing precipitate. These findings suggest that the DNA damage in the kidneys of rats injected with Au may be associated with Cu-binding proteins but not with Cu-MT.  相似文献   

17.
18.
Thymocyte subpopulations during early fetal development in sheep   总被引:3,自引:0,他引:3  
Phenotypic analysis of thymocytes during fetal development may identify subpopulations which are either absent or difficult to detect in postnatal thymus. A panel of monoclonal antibodies specific for sheep lymphocyte antigens (SBU-T1, -T4, -T8, -T6) was used to identify thymocyte subpopulations in postnatal and fetal sheep. Thymuses were analyzed by two-color immunofluorescence and flow cytometry or by immunohistology. Two-color immunofluorescent staining of postnatal sheep thymus with anti-SBU-T4 and anti-SBU-T8 revealed four relatively distinct subpopulations with particular localizations: a) SBU-T4-T8-, predominantly outer cortex (12%); b) SBU-T4+T8+, inner cortex (74%); c) SBU-T4+T8-, medulla (10%), and d) SBU-T4-T8+, medulla (4%). One- and two-color immunofluorescent analysis of cells from early fetal thymuses demonstrated the appearance of SBU-T8+ cells well before SBU-T4+ cells. Immunohistologic staining of fetal sheep thymus at various stages of gestation (term = 150 days) revealed that lymphoid cells and MHC class II-positive dendritic cells first appeared at 35 days, at which stage the thymic epithelium was weakly positive for class I MHC antigens but negative for class II MHC antigens. The earliest lymphocyte antigens detectable on fetal sheep thymocytes were SBU-LCA and SBU-T1. By 40 days, the antigens SBU-T6, SBU-T4, and SBU-T8 were detectable on a small number of thymocytes; SBU-T8 preceded SBU-T4, and the number of SBU-T8+ thymocytes always exceeded the number of SBU-T4+ thymocytes throughout early gestation. At 50 days, a thymic medulla appeared and thereafter grew rapidly in size. Immunoperoxidase staining of serial sections of the fetal neck revealed cortical-type thymocytes outside the thymus from 40 days onward, before the appearance of a thymic medulla. However, by 60 days, only medullary-type thymocytes were observed either extrathymically or within the interlobular septa of the thymus, indicating that only thymocytes with a medullary phenotype leave the thymus from this stage of gestation.  相似文献   

19.
1 The determination of Na, Ca, Mg, and K concentrations was performed in four different regions of the dog kidney (cortex, outer medulla, inner medulla, and papilla) during antidiuresis and during an osmotic diuresis. 2 The results show a medullary concentration gradient for calcium. This gradient is much higher than that found for sodium. 3 An inverse concentration gradient from cortex to inner medulla for Mg and K is found. 4 An osmotic diuresis (hypertonic mannitol) decreases the corticomedullary gradient of Na, but does not alter significantly the intrarenal distribution of Ca, Mg and K. 5 These results consistent with an intracellular localization of Mg and K in the renal tissue. It is suggested that the medullary concentration gradient for Ca may be due either to a countercurrent multiplier system similar to that for Na, or to a higher tissular fixation of Ca in the inner medulla and papilla than in the outer medulla and cortex.  相似文献   

20.
A multitude of evidence suggests that iodinated contrast material causes nephrotoxicity; however, there have been no previous studies that use arterial spin labeling (ASL) blood flow functional magnetic resonance imaging (fMRI) to investigate the alterations in effective renal plasma flow between normointensive and hypertensive rats following injection of contrast media. We hypothesized that FAIR-SSFSE arterial spin labeling MRI may enable noninvasive and quantitative assessment of regional renal blood flow abnormalities and correlate with disease severity as assessed by histological methods. Renal blood flow (RBF) values of the cortex and medulla of rat kidneys were obtained from ASL images postprocessed at ADW4.3 workstation 0.3, 24, 48, and 72 h before and after injection of iodinated contrast media (6 ml/kg). The H&E method for morphometric measurements was used to confirm the MRI findings. The RBF values of the outer medulla were lower than those of the cortex and the inner medulla as reported previously. Iodinated contrast media treatment resulted in decreases in RBF in the outer medulla and cortex in spontaneously hypertensive rats (SHR), but only in the outer medulla in normotensive rats. The iodinated contrast agent significantly decreased the RBF value in the outer medulla and the cortex in SHR compared with normotensive rats after injection of the iodinated contrast media. Histological observations of kidney morphology were also consistent with ASL perfusion changes. These results demonstrate that the RBF value can reflect changes of renal perfusion in the cortex and medulla. ASL-MRI is a feasible and accurate method for evaluating nephrotoxic drugs-induced kidney damage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号