首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
植物凝集素研究进展   总被引:18,自引:1,他引:17  
植物凝集素广泛分布于植物界,它可以根据不同性质进行分类,按进化及结构相关性可以分为七个家族;豆科凝集素,单子叶植物甘露糖结构凝集素,含橡胶素结构域的几丁质结合凝集素,2型核糖体失活蛋白,葫芦科韧皮部凝集素,木菠萝素相关凝集素和苋科凝集素,在长期的进化过程中,它们形成几种不同的结合模体来识别一些外源多糖,在植物中未发现合适的内源性多糖受体。植物凝集素在生物学研究,农业和医学上有广泛的应用。  相似文献   

2.
Suspensions of Crithidia luciliae have been treated with 30 lectins: protozoans are agglutinated only by lectins inhibited with oses of structures I an II according to M?kel?, and by lectins the site of fixation of which are unknown. The use of 5 lectins conjugated to fluorescein corroborate that lectins in congruity with group I and II, contrarily to those of group III, fasten upon the membrane and the flagella of Crithidia luciliae.  相似文献   

3.
Lectins are a heterogeneous group of proteins found in plants, animals and microorganisms, which possess at least one non-catalytic domain that binds reversibly to specific mono- or oligosaccharides. The range of lectins and respective biological activities is unsurprising given the immense diversity and complexity of glycan structures and the multiple modes of interaction with proteins. Recombinant DNA technology has been traditionally used for cloning and characterizing newly discovered lectins. It has also been employed as a means of producing pure and sequence-defined lectins for different biotechnological applications. This review focuses on the production of recombinant lectins in heterologous organisms, and highlighting the Escherichia coli and Pichia pastoris expression systems, which are the most employed. The choice of expression host depends on the lectin. Non-glycosylated recombinant lectins are produced in E. coli and post-translational modified recombinant lectins are produced in eukaryotic organisms, namely P. pastoris and non-microbial hosts such as mammalian cells. Emphasis is given to the applications of the recombinant lectins especially (a) in cancer diagnosis and/or therapeutics, (b) as anti-microbial, anti-viral, and anti-insect molecules or (c) in microarrays for glycome profiling. Most reported applications are from recombinant plant lectins. These applications benefit from the tailor-made design associated with recombinant production and will aid in unraveling the complex biological mechanisms of glycan-interactions, bringing recombinant lectins to the forefront of glycobiology. In conclusion, recombinant lectins are developing into valuable biosynthetic tools for biomedical research.  相似文献   

4.
A solubility-insolubility transition assay was used to screen the bark and stems of seven leguminous trees and plants for self-aggregatable lectins. Novel lectins were found in two trees, Robinia pseudoacacia and Wisteria floribunda, but not in the leguminous plants. The Robinia lectin was isolated from coexisting lectin by combined affinity chromatographies on various sugar adsorbents. The purified lectins proved to be differently glycosylated glycoproteins. One lectin exhibited the remarkable characteristics of self-aggregatable lectins: localization in the bark of legume trees, self-aggregation dissociated by N-acetylglucosamine/mannose, and coexistence with N-acetylgalactosamine/galactose-specific lectins, which are potential endogenous receptors. Self-aggregatable lectins are a functional lectin group that can link enhanced photosynthesis to dissociation of glycoproteins.  相似文献   

5.
The lectins from the seedsof Dolichos lablab var.lignosus (field bean) andDolichos lablab var.typicus (lablab bean) have been isolated in a homogeneous form by affinity chromatography on D-mannose linked Sepharose. Both the lectins are glycoproteins and have a molecular weight of 60,000 andS 20,w value of 5.2 and seem to be made up of 4 similar subunits (apparent molecular weight 15,000). The carbohydrate content ofthe lectins is mostly fucose (2–5 mol per mol of protein), mannose (5–8 mol per mol of protein) and N-acetyl glucosamine (1–2 mol per mol of protein). The amino acid composition of both the lectins was similar and methionine and half cystine could not be detected, Both the lectins have similar tryptic peptide map. Alanine and serine were the only N and C-terminal amino acids for both lectins. The lectins were found to contain low amounts of bound metals such as manganese, magnesium and calcium. The near ultra-violet circular dichroism spectra of the lectins are similar to that of Sainfoin. Circular dichroism data indicate that tyrosine and tryptophan residues are involved in sugar binding. The lectins are nonspecific for human blood groups and they agglutinate a variety of other erythrocytes. Among a number of sugars, D-glucose and D-mannose inhibited the haemag-glutinating activity ofthe lectins. The lectins were antigenically similar  相似文献   

6.
Five N-acetyl-galactosamine-specific lectins were isolated from the bark of the legume tree Sophora japonica. These lectins are immunologically and structurally very similar, but not identical, to the Sophora seed and leaf lectins. The carbohydrate specificities and hemagglutinin activities of these lectins are indistinguishable at pH 8.5 but their activities differ markedly at pH values below 8. All five lectins are tetrameric glycoproteins made up of different combinations of subunits of about 30,000, 30,100, 33,000 Mr containing 3% to 5% covalently attached sugar. These lectins are the overwhelmingly dominant proteins in bark, but they do not appear to be present in other tissues. Amino terminal sequence analysis indicates that at least two distinct lectin genes are expressed in bark.  相似文献   

7.
The seeds of winged bean, Psophocarpus tetragonolobus(L.)DC, contain two distinct groups of lectins characterized by different erythrocyte hemagglutinating specificities and isoelectric points. Three acidic lectins (I, II, and III) (pI approximately 5.5) were purified to apparent homogeneity by chromatography on Ultrogel AcA44 and SP-Sephadex C-25. These lectins are glycoproteins with relative molecular mass of 54,000. The total carbohydrate content of the acidic lectins was 7% and was comprised of mannose, N-acetylglucosamine, fucose, and xylose in amounts corresponding to 9.2, 4.8, 1.6, and 7.0 mol/54,000 g, respectively. Electrophoresis in dodecyl sulfate, in the presence and absence of 2-mercaptoethanol, gave a single subunit of apparent relative molecular mass 30-32,000, somewhat higher than expected from the native relative molecular mass. On isoelectric focusing in 8 M urea the subunits of the acidic lectins did not show any significant charge heterogeneity as found for the winged bean basic lectins. The acidic lectins have very similar amino acid compositions. They contain essentially no half-cystine, 1-2 methionine residues, and are rich in acidic and hydroxy amino acids. The amino-terminal sequences of lectins II and III were identical while the amino-terminal sequence of lectin I contained five differences in the first 25 residues; the acidic lectins showed extensive sequence homology with the winged bean basic lectins, the other one-chain subunit lectins and the beta subunit of the two-chain subunit legume lectins. The acidic lectins agglutinated trypsinized human (type A, B, AB, and O) erythrocytes but not trypsinized rabbit erythrocytes. They were inhibited by various D-galactose derivatives and D-galactose-containing disaccharides and trisaccharides. N-Acetylgalactosamine was the best inhibitor, and the specificity appears to be directed to beta-D-galactosides. However, compared with winged bean basic lectins and soybean lectin, the winged bean acidic lectins show a low affinity for the inhibitory sugars.  相似文献   

8.
Estrous cycle-related histochemical changes in the vaginal epithelium of sexually mature female mice were studied with 30 fluorescein isothiocyanate (FITC)-labeled lectins. On the basis of the staining pattern the lectins were divided into five groups: I, seventeen lectins that reacted with mucinous surface layer of proestrus. This group comprised two subgroups: Ia, seven lectins that reacted exclusively with the mucinous layer, and Ib, ten lectins that reacted with mucinous cells and the underlying squamous epithelium of proestrus; II, two lectins that reacted with squamous epithelium of proestrus only but were unreactive with mucinous cells; III, three lectins that reacted in a phase-specific manner with squamous epithelium; IV, six lectins that showed increased luminal surface reactivity in diestrus and/or metestrus; and V, eleven lectins that were unreactive with vaginal epithelium. These data indicate that the cyclic changes in the morphology of the vaginal epithelium are accompanied by distinct lectin reactivity patterns.  相似文献   

9.
Animal lectins: a historical introduction and overview   总被引:20,自引:0,他引:20  
Some proteins we now regard as animal lectins were discovered before plant lectins, though many were not recognised as carbohydrate-binding proteins for many years after first being reported. As recently as 1988, most animal lectins were thought to belong to one of two primary structural families, the C-type and S-type (presently known as galectins) lectins. However, it is now clear that animal lectin activity is found in association with an astonishing diversity of primary structures. At least 12 structural families are known to exist, while many other lectins have structures apparently unique amongst carbohydrate-binding proteins, although some of those "orphans" belong to recognised protein families that are otherwise not associated with sugar recognition. Furthermore, many animal lectins also bind structures other than carbohydrates via protein-protein, protein-lipid or protein-nucleic acid interactions. While animal lectins undoubtedly fulfil a variety of functions, many could be considered in general terms to be recognition molecules within the immune system. More specifically, lectins have been implicated in direct first-line defence against pathogens, cell trafficking, immune regulation and prevention of autoimmunity.  相似文献   

10.
11.
N Ali  A Salahuddin 《FEBS letters》1989,246(1-2):163-165
Membrane lectins were isolated from sheep, goat, and buffalo liver by chromatography on an asialofetuin (ASF)-Sepharose 4B column. The lectins moved as a single protein band in SDS-PAGE with molecular masses of 42, 54 and 50 kDa, respectively, for sheep, goat and buffalo lectins. The molecular masses remained unchanged in 0.2 M 2-mercaptoethanol. As judged from the inhibition of binding of the lectin to ASF gel, the three lectins were beta-galactoside-specific. Sheep, goat and buffalo lectins were found to be sialoglycoproteins containing 18.6, 27 and 38.8 mol/mol lectin of neutral hexose, respectively; the corresponding values for the sialic acid content being 5.3, 8.7 and 11.8 mol/mol lectin. Thus goat and buffalo lectins are physico-chemically different from many mammalian hepatic lectins described so far.  相似文献   

12.
豆科凝集素研究进展   总被引:3,自引:0,他引:3  
豆科凝集素是植物凝集素中最丰富,也是研究最多的一类凝集素。在生理条件下豆科凝集素大多是以二聚体或四聚体的形式存在,这种低聚物的形式给予豆科凝集素较强的糖专一性和大分子结构的稳定性。豆科凝集素除作为植物储存物质的作用外,还具有识别糖蛋白、糖肽及生物膜中碳水化合物和作为植物与微生物的共生介质等生理功能。现对豆科凝集素的结构、功能及其在生物学、农业和医学方面的应用进行了综述。  相似文献   

13.
Current data on the diversity of plant lectins and their functional importance for plants, caused primarily by their capacity to link carbohydrate ligands specifically and convertibly, are reviewed. For instance, the role of plant lectins in the recognition of alien organisms and in the adaptation of plants to various stress-induced effects is discussed. In addition to centres of specific affinity to carbohydrates, plant lectins are characterized by the presence of sites responsible for hydrophobic interactions with non-carbohydrate molecules. These sites link to plant hormones, proteins, and other metabolites, thus participating in the regulation of metabolic processes controlling growth, development, and differentiation in plants. The structure and biological properties of ribosome-inactivating proteins having and not having lectin activity are discussed, as well as their role in plant protection from pests and pathogens. Current data on the assumed functions of the independent groups of plant lectins with specific endogenic role are given. These include chitin-specific lectins synthesized in phloem, which are capable of forming protein-protein and RNA-protein complexes and translocating via vessels, which thus play their specific intra- or intercellular interactions, processes of growth, development, and protection of plants. Other groups of plant lectins, induced by jasmonate, such as Nictaba (Nicotiana tabaccum agglutinin), and cereal lectins related to jacalin, which are localised in the cytoplasm and nucleus, probably play regulatory role in the formation of stress response in plants. The structure and currently discussed functions of wheat germ agglutinin, a typical representative of cereal lectins, are analysed in detail.  相似文献   

14.
Plant lectins as defense proteins against phytophagous insects   总被引:2,自引:0,他引:2  
One of the most important direct defense responses in plants against the attack by phytophagous insects is the production of insecticidal peptides or proteins. One particular class of entomotoxic proteins present in many plant species is the group of carbohydrate-binding proteins or lectins. During the last decade a lot of progress was made in the study of a few lectins that are expressed in response to herbivory by phytophagous insects and the insecticidal properties of plant lectins in general. This review gives an overview of lectins with high potential for the use in pest control strategies based on their activity towards pest insects. In addition, potential target sites for lectins inside the insect and the mode of action are discussed. In addition, the effect of plant lectins on non-target organisms such as beneficial insects as well as on human/animal consumers is discussed. It can be concluded that some insecticidal lectins are useful tools that can contribute to the development of integrated pest management strategies with minimal effect(s) on non-target organisms.  相似文献   

15.
Lectins are proteins that agglutinate cells and exhibit an antibody like, sugar-binding specificity. Professor Toshiaki Osawa has discovered, purified and characterized many plant lectins that display diverse biological activities. Using lectins as biochemical tools, he developed methods to determine the biochemical structures of glycoprotein glycans that react with lectins; separated and characterized glycoproteins and cell populations; analysed the mechanisms by which lectins activate cells; and characterized several cytokines produced by immune cells stimulated by lectins. The studies on lectins, the field he took strong leadership, developed into an essential hub of the biology of multicellular organisms.  相似文献   

16.
从生物大分子结构特征解析植物凝集素的多样性   总被引:2,自引:0,他引:2  
利用计算机模拟分析了植物凝集素结构与功能的特征。结果显示:(1)植物凝集素在结合糖之前其结构变化是一致的;(2)植物凝集素存在结构上的多样性,且可能与其生物功能的多样性有关;(3)在结合糖的过程中,植物凝集素表面局部结构的构象会有所变化,这种变化有利于其识别不同的糖而结合不同的外来糖缀合物,发挥其防御功能。对于同一家族的植物凝集素,虽然序列同源性较高,但在功能上却表现出强烈的多样性。分析表明:对于生物大分子而言,欲完成同一功能,不一定结构相同;结构相同,不一定功能一样。  相似文献   

17.
Lectins: production and practical applications   总被引:3,自引:0,他引:3  
  相似文献   

18.
A survey of the occurrence of lectins in seeds from more than 100 grass species showed that all species belonging to the Triticeae tribe and the genera Brachypodium and Oryza contain lectins. All these lectins have the same sugar-binding specificity and are related to wheat-germ agglutinin, but to different degrees. Lectins from Triticeae species are immunologically indistinguishable from wheat lectin, whereas Brachypodium and rice lectins are only immunologically related to the wheat lectin. Attempts to detect lectin-deficient lines or varieties in wild and cultivated species of the three lectin-containing groups were unsuccessful. The possible use of lectins as a chemotaxonomic tool is discussed.  相似文献   

19.
Lectins were isolated from roots and leaves of ramsons and compared to the previously described bulb lectins. Biochemical analyses indicated that the root lectins AUAIr and AUAIIr are identical to the bulb lectins AUAI and AUAII, whereas the leaf lectin AUAL has no counterpart in the bulbs. cDNA cloning confirmed that the leaf lectin differs from the bulb lectins. Northern blot analysis further indicated that the leaf lectin is tissue-specifically expressed. Sequence comparisons revealed that the ramsons leaf lectin differs considerably from the leaf lectins of garlic, leek, onion and shallot.  相似文献   

20.
Root tips of wheat, rye, barley and rice seedlings contain lectins which are identical to the respective embryo lectins with respect to their molecular weight, sugar-specificity and serological properties. Using in vivo labelling techniques, it could be demonstrated that lectin is synthesized de novo in these tissues. The presence of lectin mRNA in seedlings was confirmed by in-vitro synthesis of lectin in root-tip extracts. Lectin synthesis occurs both in primary and first adventitious roots and is confined to the apical part (2mm) of the root. As seedling development proceeds, lectin synthesis in root tips gradually decreases. Adventitious roots of adult (five to six months old) wheat, rye and barley, but not rice, plants also contain lectins which are indistinguisable from the embryo lectins by the above-mentioned criteria. These lectins are synthesized in vivo in isolated root tips (5 mm) with labelled cysteine and in vitro in cell-free extracts prepared from root tips. Synthesis of lectin in roots of adult plants is also confined to the apical (2 mm) tip of the roots. At the molecular level, root lectin synthesis is very similar to that in embryos. All root lectins are synthesized as 23 000-Mr precursors which are post-translationally converted into the mature 18 000-Mr polypeptides. The observation that seedling roots and adventitious roots of six-month-old plants actively synthesize lectins strongly indicates that lectin genes are expressed in these tissues. In addition, since the root lectins are indistinguishable from the embryo lectins, we postulate that the same lectin genes are expressed.Abbreviations ABA abscisic acid - SDS-PAGE sodium dodecyl sulphate-polyacrylamide gel electrophoresis - WGA wheat-germ agglutinin  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号