首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
线粒体自噬(mitochondrial autophagy, or mitophagy)指的是细胞通过自吞噬作用,降解与清除受损线粒体或者多余线粒体,其对整个线粒体网络的功能完整性和细胞存活具有重要作用。线粒体自噬过程受多种途径调控,PINK1/Parkin通路是其中的一条,其异常与多种疾病的发生密切相关,如心血管疾病、肿瘤和帕金森病等。在去极化线粒体中,磷酸酶及张力蛋白同源物(PTEN)诱导的激酶1(PTEN-induced kinase 1,PINK1)作为受损线粒体的分子传感器,触发线粒体自噬的起始信号,并将Parkin募集至线粒体;Parkin作为线粒体自噬信号的“增强子”,通过对线粒体蛋白质进一步泛素化介导自噬信号的扩大;去泛素化酶和PTEN-long蛋白参与调控该过程,并对维持线粒体稳态具有重要作用。本文主要对PINK1与Parkin蛋白质的分子结构和其介导线粒体自噬发生的分子机制,以及参与调控该途径的关键蛋白质进行综述,为进一步研究以线粒体自噬缺陷为特征的疾病治疗提供理论基础。  相似文献   

2.
Mutations in PTEN-induced putative kinase 1 (PINK1) cause recessive form of Parkinson’s disease (PD). PINK1 acts upstream of parkin, regulating mitochondrial integrity and functions. Here, we show that PINK1 in combination with parkin results in the perinuclear mitochondrial aggregation followed by their elimination. This elimination is reduced in cells expressing PINK1 mutants with wild-type parkin. Although wild-type PINK1 localizes in aggregated mitochondria, PINK1 mutants localization remains diffuse and mitochondrial elimination is not observed. This phenomenon is not observed in autophagy-deficient cells. These results suggest that mitophagy controlled by the PINK1/parkin pathway might be associated with PD pathogenesis.

Structured summary

MINT-7557195: PINK1 (uniprotkb:Q9BXM7) physically interacts (MI:0915) with LC3 (uniprotkb:Q9GZQ8) by anti tag coimmunoprecipitation (MI:0007)MINT-7557109: LC3 (uniprotkb:Q9GZQ8) and PINK1 (uniprotkb:Q9BXM7) colocalize (MI:0403) by fluorescence microscopy (MI:0416)MINT-7557121: tom20 (uniprotkb:Q15388) and PINK1 (uniprotkb:Q9BXM7) colocalize (MI:0403) by fluorescence microscopy (MI:0416)MINT-7557138: parkin (uniprotkb:O60260), PINK1 (uniprotkb:Q9BXM7) and tom20 (uniprotkb:Q15388) colocalize (MI:0403) by fluorescence microscopy (MI:0416)MINT-7557173: LC3 (uniprotkb:Q9GZQ8) physically interacts (MI:0915) with PINK1 (uniprotkb:Q9BXM7) by anti bait coimmunoprecipitation (MI:0006)  相似文献   

3.
Parkinson disease (PD) is a complex neurodegenerative disease characterized by the loss of dopaminergic neurons in the substantia nigra. Multiple genes have been associated with PD, including Parkin and PINK1. Recent studies have established that the Parkin and PINK1 proteins function in a common mitochondrial quality control pathway, whereby disruption of the mitochondrial membrane potential leads to PINK1 stabilization at the mitochondrial outer surface. PINK1 accumulation leads to Parkin recruitment from the cytosol, which in turn promotes the degradation of the damaged mitochondria by autophagy (mitophagy). Most studies characterizing PINK1/Parkin mitophagy have relied on high concentrations of chemical uncouplers to trigger mitochondrial depolarization, a stimulus that has been difficult to adapt to neuronal systems and one unlikely to faithfully model the mitochondrial damage that occurs in PD. Here, we report that the short mitochondrial isoform of ARF (smARF), previously identified as an alternate translation product of the tumor suppressor p19ARF, depolarizes mitochondria and promotes mitophagy in a Parkin/PINK1-dependent manner, both in cell lines and in neurons. The work positions smARF upstream of PINK1 and Parkin and demonstrates that mitophagy can be triggered by intrinsic signaling cascades.  相似文献   

4.
Mutations in Parkin and PINK1 cause early-onset familial Parkinson''s disease. Parkin is a RING-In-Between-RING E3 ligase that transfers ubiquitin from an E2 enzyme to a substrate in two steps: (i) thioester intermediate formation on Parkin and (ii) acyl transfer to a substrate lysine. The process is triggered by PINK1, which phosphorylates ubiquitin on damaged mitochondria, which in turn recruits and activates Parkin. This leads to the ubiquitination of outer mitochondrial membrane proteins and clearance of the organelle. While the targets of Parkin on mitochondria are known, the factors determining substrate selectivity remain unclear. To investigate this, we examined how Parkin catalyses ubiquitin transfer to substrates. We found that His433 in the RING2 domain contributes to the catalysis of acyl transfer. In cells, the mutation of His433 impairs mitophagy. In vitro ubiquitination assays with isolated mitochondria show that Mfn2 is a kinetically preferred substrate. Using proximity-ligation assays, we show that Mfn2 specifically co-localizes with PINK1 and phospho-ubiquitin (pUb) in U2OS cells upon mitochondrial depolarization. We propose a model whereby ubiquitination of Mfn2 is efficient by virtue of its localization near PINK1, which leads to the recruitment and activation of Parkin via pUb at these sites.  相似文献   

5.
Mutations found in PTEN-induced putative kinase 1 (PINK1), a putative mitochondrial serine/threonine kinase of unknown function, have been linked to autosomal recessive Parkinson's disease. It is suggested that mutations can cause a loss of PINK1 kinase activity and eventually lead to mitochondrial dysfunction. In this report, we examined the subcellular localization of PINK1 and the dynamic kinetics of PINK1 processing and degradation. We also identified cytosolic chaperone heat-shock protein 90 (Hsp90) as an interacting protein of PINK1 by PINK1 co-immunoprecipitation. Immunofluorescence of PINK1 protein and mitochondrial isolation show that the precursor form of PINK1 translocates to the mitochondria and is processed into two cleaved forms of PINK1, which in turn localize more to the cytosolic than mitochondrial fraction. The cleavage does not occur and the uncleaved precursor stays associated with the mitochondria when the mitochondrial membrane potential is disrupted. Metabolic labeling analyses show that the PINK1 processing is rapid and the levels of cleaved forms are tightly regulated. Furthermore, cleaved forms of PINK1 are stabilized by Hsp90 interaction as the loss of Hsp90 activity decreases PINK1 level after mitochondrial processing. Lastly, we also find that cleaved forms of PINK1 are degraded by the proteasome, which is uncommon for mitochondrial proteins. Our findings support a dual subcellular localization, implying that PINK1 can reside in the mitochondria and the cytosol. This raises intriguing functional roles that bridge these two cellular compartments.  相似文献   

6.
PINK1 is a mitochondrial kinase proposed to have a role in the pathogenesis of Parkinson''s disease through the regulation of mitophagy. Here, we show that the PINK1 main cleavage product, PINK152, after being generated inside mitochondria, can exit these organelles and localize to the cytosol, where it is not only destined for degradation by the proteasome but binds to Parkin. The interaction of cytosolic PINK1 with Parkin represses Parkin translocation to the mitochondria and subsequent mitophagy. Our work therefore highlights the existence of two cellular pools of PINK1 that have different effects on Parkin translocation and mitophagy.  相似文献   

7.
帕金森病(PD)是以黑质致密部多巴胺神经元选择性减少和胞浆内路易小体的形成为特征的神经退行性疾病。研究发现,PTEN诱导激酶1(PINK1)基因突变导致家族性早发型帕金森病的发生。在转基因果蝇中,PINK1功能丢失导致间接飞行肌缺陷,线粒体结构、功能障碍,多巴胺神经元丢失。本研究在PINK1突变PD转基因果蝇中,进行发动蛋白相关蛋白1(Drp1)过表达和敲低,探索Drp1对PD转基因果蝇的保护作用及其可能机制。本研究选用MHC-Gal4/UAS系统的PD转基因果蝇模型,特异性启动PINK1B9基因于果蝇肌肉组织中表达;运用Drp1基因过表达和RNA干扰干预PINK1B9转基因果蝇,研究其对PD转基因果蝇的作用。结果显示,不论过表达Drp1还是Drp1敲低均可挽救PINK1突变转基因果蝇,降低翅膀异常率,改善飞行能力,恢复间接飞行肌排列,调节线粒体形态,提高ATP生成量,上调NDUFS3蛋白表达水平。本文结果提示,Drp1的调控挽救PINK1突变转基因果蝇与线粒体呼吸链有关。  相似文献   

8.
Parkin is an E3 ligase that contains a ubiquitin-like (UBL) domain in the N terminus and an R1-in-between-ring-RING2 motif in the C terminus. We showed that the UBL domain specifically interacts with the R1 domain and negatively regulates Parkin E3 ligase activity, Parkin-dependent mitophagy, and Parkin translocation to the mitochondria. The binding between the UBL domain and the R1 domain was suppressed by carbonyl cyanide m-chlorophenyl hydrazone treatment or by expression of PTEN-induced putative kinase 1 (PINK1), an upstream kinase that phosphorylates Parkin at the Ser-65 residue of the UBL domain. Moreover, we demonstrated that phosphorylation of the UBL domain at Ser-65 prevents its binding to the R1 domain and promotes Parkin activities. We further showed that mitochondrial translocation of Parkin, which depends on phosphorylation at Ser-65, and interaction between the R1 domain and a mitochondrial outer membrane protein, VDAC1, are suppressed by binding of the UBL domain to the R1 domain. Interestingly, Parkin with missense mutations associated with Parkinson disease (PD) in the UBL domain, such as K27N, R33Q, and A46P, did not translocate to the mitochondria and induce E3 ligase activity by m-chlorophenyl hydrazone treatment, which correlated with the interaction between the R1 domain and the UBL domain with those PD mutations. These findings provide a molecular mechanism of how Parkin recruitment to the mitochondria and Parkin activation as an E3 ubiquitin ligase are regulated by PINK1 and explain the previously unknown mechanism of how Parkin mutations in the UBL domain cause PD pathogenesis.  相似文献   

9.
The failure to trigger mitophagy is implicated in the pathogenesis of familial Parkinson disease that is caused by PINK1 or Parkin mutations. According to the prevailing PINK1-Parkin signaling model, mitophagy is promoted by the mitochondrial translocation of Parkin, an essential PINK1-dependent step that occurs via a previously unknown mechanism. Here we determined that critical concentrations of NO was sufficient to induce the mitochondrial translocation of Parkin even in PINK1 deficiency, with apparent increased interaction of full-length PINK1 accumulated during mitophagy, with neuronal nitric oxide synthase (nNOS). Specifically, optimum levels of NO enabled PINK1-null dopaminergic neuronal cells to regain the mitochondrial translocation of Parkin, which appeared to be significantly suppressed by nNOS-null mutation. Moreover, nNOS-null mutation resulted in the same mitochondrial electron transport chain (ETC) enzyme deficits as PINK1-null mutation. The involvement of mitochondrial nNOS activation in mitophagy was further confirmed by the greatly increased interactions of full-length PINK1 with nNOS, accompanied by mitochondrial accumulation of phospho-nNOS (Ser1412) during mitophagy. Of great interest is that the L347P PINK1 mutant failed to bind to nNOS. The loss of nNOS phosphorylation and Parkin accumulation on PINK1-deficient mitochondria could be reversed in a PINK1-dependent manner. Finally, non-toxic levels of NO treatment aided in the recovery of PINK1-null dopaminergic neuronal cells from mitochondrial ETC enzyme deficits. In summary, we demonstrated the full-length PINK1-dependent recruitment of nNOS, its activation in the induction of Parkin translocation, and the feasibility of NO-based pharmacotherapy for defective mitophagy and ETC enzyme deficits in Parkinson disease.  相似文献   

10.
目的:研究红景天苷(Salidroside,Sal)对在MPP+诱导SH-SY5Y细胞线粒体形态和功能的影响及其机制。方法:采用3-(4,5-二甲基噻唑-2)-2,5-二苯基四氮唑溴盐(3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide,MTT)检测细胞活性,Mito Tracker Red CMXRos进行线粒体染色,四甲基罗丹明乙酯(Tetramethylrhodamine ethyl ester,TMRE)检测线粒体膜电位,Western blot检测PINK1和Parkin蛋白表达水平。结果:单纯Sal处理24 h对细胞活性、线粒体形态和MMP无影响(P0.05)。MPP+(500μM)处理SH-SY5Y细胞24 h后,与正常组比较,细胞活性、MMP水平均降低,线粒体长度减短(P0.01),并发生碎片化。Sal(25μM)预处理24 h可以显著抑制MPP+诱导的细胞活性降低(P0.01),并维持线粒体长度和增加MMP水平(P0.01)。而且,Sal(25μM)预处理24 h可以显著恢复MPP+诱导的PINK1和Parkin蛋白表达水平下降(P0.01)。结论:体外实验证实Sal可以保护MPP+诱导的SH-SY5Y细胞活性降低、线粒体形态和功能异常,而PINK1-Parkin通路可能是其机制之一,为进一步临床开发Sal治疗PD的新药提供实验依据。  相似文献   

11.
Mutations in the PINK1 and PARK2/PARKIN genes are associated with hereditary early onset Parkinson disease (PD), and in cell lines the corresponding gene products play a critical role in mitophagic clearance of damaged mitochondria. In neurons, however, where the extraordinary cellular shapes pose particular challenges for maintaining healthy mitochondria, the pathways of mitophagy are less well understood. Both the location at which mitophagy occurs and the involvement of PINK1 and PARK2 have been controversial. Here we review our recent study where we found that selective damage to a subset of axonal mitochondria causes them to be engulfed within autophagosomes and cleared locally within the axon without the need for transport back to the soma. We also found this process to be completely dependent on neuronal PINK1 and PARK2.  相似文献   

12.
帕金森病是一种常见的神经退行性疾病,发病机制尚不清楚,线粒体功能障碍是可能的原因之一。帕金森病相关蛋白PINK1和Parkin均被证明影响线粒体功能和形态,并参与线粒体质量监控。2011年11月《细胞》杂志 (Cell)147期 发表了题为《PINK1和Parkin导致Miro磷酸化降解和线粒体运动阻滞》的文章,发现PINK1 / Parkin 通路可以作用于定位在线粒体外膜的线粒体移动相关蛋白Miro,PINK1直接磷酸化Miro,Parkin参与Miro降解,使受损线粒体脱离微管,从而阻滞线粒体运动。作者猜测这一过程能够隔离受损线粒体,避免了受损线粒体在细胞中的扩散。该研究深入探讨了PINK1和Parkin相互作用机制,揭示了线粒体质量控制系统如何直接调控线粒体运输,提出了受损线粒体的不正常运输可能是PD的致病原因。  相似文献   

13.
Mutations in PINK1 cause early-onset recessive Parkinson’s disease. This gene encodes a protein kinase implicated in mitochondrial quality control via ubiquitin phosphorylation and activation of the E3 ubiquitin ligase Parkin. Here, we review and analyze functional features emerging from recent crystallographic, nuclear magnetic resonance (NMR) and mass spectrometry studies of PINK1. We compare the apo and ubiquitin-bound PINK1 structures and reveal an allosteric switch, regulated by autophosphorylation, which modulates substrate recognition. We critically assess the conformational changes taking place in ubiquitin and the Parkin ubiquitin-like domain in relation to its binding to PINK1. Finally, we discuss the implications of these biophysical findings in our understanding of the role of PINK1 in mitochondrial function, and analyze the potential for structure-based drug design.  相似文献   

14.
Mitochondrial dysfunction has long been associated with Parkinson's disease (PD). Parkin and PINK1, two genes associated with familial PD, have been implicated in the degradation of depolarized mitochondria via autophagy (mitophagy). Here, we describe the involvement of parkin and PINK1 in a vesicular pathway regulating mitochondrial quality control. This pathway is distinct from canonical mitophagy and is triggered by the generation of oxidative stress from within mitochondria. Wild‐type but not PD‐linked mutant parkin supports the biogenesis of a population of mitochondria‐derived vesicles (MDVs), which bud off mitochondria and contain a specific repertoire of cargo proteins. These MDVs require PINK1 expression and ultimately target to lysosomes for degradation. We hypothesize that loss of this parkin‐ and PINK1‐dependent trafficking mechanism impairs the ability of mitochondria to selectively degrade oxidized and damaged proteins leading, over time, to the mitochondrial dysfunction noted in PD.  相似文献   

15.
Damaged mitochondria are eliminated through autophagy machinery. A cytosolic E3 ubiquitin ligase Parkin, a gene product mutated in familial Parkinsonism, is essential for this pathway. Recent progress has revealed that phosphorylation of both Parkin and ubiquitin at Ser65 by PINK1 are crucial for activation and recruitment of Parkin to the damaged mitochondria. However, the mechanism by which phosphorylated ubiquitin associates with and activates phosphorylated Parkin E3 ligase activity remains largely unknown. Here, we analyze interactions between phosphorylated forms of both Parkin and ubiquitin at a spatial resolution of the amino acid residue by site-specific photo-crosslinking. We reveal that the in-between-RING (IBR) domain along with RING1 domain of Parkin preferentially binds to ubiquitin in a phosphorylation-dependent manner. Furthermore, another approach, the Fluoppi (fluorescent-based technology detecting protein-protein interaction) assay, also showed that pathogenic mutations in these domains blocked interactions with phosphomimetic ubiquitin in mammalian cells. Molecular modeling based on the site-specific photo-crosslinking interaction map combined with mass spectrometry strongly suggests that a novel binding mechanism between Parkin and ubiquitin leads to a Parkin conformational change with subsequent activation of Parkin E3 ligase activity.  相似文献   

16.
The potential cellular function of the 53-kDa cytosolic form of PINK1 (PINK1-53) is often overlooked because of its rapid degradation by the proteasome upon its production. Although a number of recent studies have suggested various roles for PINK1-53, how this labile PINK1 species attains an adequate expression level to fulfil these roles remains unclear. Here we demonstrated that PINK1-53 is stabilized in the presence of enhanced Lys-63-linked ubiquitination and identified TRAF6-related NF-κB activation as a novel pathway involved in this. We further showed that a mimetic of PINK1-53 promotes mitophagy but, curiously, in apparently healthy mitochondria. We speculate that this “non-selective” form of mitophagy may potentially help to counteract the build-up of reactive oxygen species in cells undergoing oxidative stress and, as such, represent a cytoprotective response.  相似文献   

17.
Mutations in several genes, including PINK1 and Parkin, are known to cause autosomal recessive cases of Parkinson disease in humans. These genes operate in the same pathway and play a crucial role in mitochondrial dynamics and maintenance. PINK1 is required to recruit Parkin to mitochondria and initiate mitophagy upon mitochondrial depolarization. In this study, we show that PINK1-dependent Parkin mitochondrial recruitment in response to global mitochondrial damage by carbonyl cyanide m-chlorophenylhydrazine (CCCP) requires active glucose metabolism. Parkin accumulation on mitochondria and subsequent Parkin-dependent mitophagy is abrogated in glucose-free medium or in the presence of 2-deoxy-d-glucose upon CCCP treatment. The defects in Parkin recruitment correlate with intracellular ATP levels and can be attributed to suppression of PINK1 up-regulation in response to mitochondria depolarization. Low levels of ATP appear to prevent PINK1 translation instead of affecting PINK1 mRNA expression or reducing its stability. Consistent with a requirement of ATP for elevated PINK1 levels and Parkin mitochondrial recruitment, local or individual mitochondrial damage via photoirradiation does not affect Parkin recruitment to damaged mitochondria as long as a pool of functional mitochondria is present in the photoirradiated cells even in glucose-free or 2-deoxy-d-glucose-treated conditions. Thus, our data identify ATP as a key regulator for Parkin mitochondrial translocation and sustaining elevated PINK1 levels during mitophagy. PINK1 functions as an AND gate and a metabolic sensor coupling biogenetics of cells and stress signals to mitochondria dynamics.  相似文献   

18.
Defective mitochondria exert deleterious effects on host cells. To manage this risk, mitochondria display several lines of quality control mechanisms: mitochondria-specific chaperones and proteases protect against misfolded proteins at the molecular level, and fission/fusion and mitophagy segregate and eliminate damage at the organelle level. An increase in unfolded proteins in mitochondria activates a mitochondrial unfolded protein response (UPRmt) to increase chaperone production, while the mitochondrial kinase PINK1 and the E3 ubiquitin ligase PARK2/Parkin, whose mutations cause familial Parkinson disease, remove depolarized mitochondria through mitophagy. It is unclear, however, if there is a connection between those different levels of quality control (QC). Here, we show that the expression of unfolded proteins in the matrix causes the accumulation of PINK1 on energetically healthy mitochondria, resulting in mitochondrial translocation of PARK2, mitophagy and subsequent reduction of unfolded protein load. Also, PINK1 accumulation is greatly enhanced by the knockdown of the LONP1 protease. We suggest that the accumulation of unfolded proteins in mitochondria is a physiological trigger of mitophagy.  相似文献   

19.
《Molecular cell》2022,82(1):44-59.e6
  1. Download : Download high-res image (330KB)
  2. Download : Download full-size image
  相似文献   

20.
《Autophagy》2013,9(11):1801-1817
Loss-of-function mutations in PARK2/PARKIN and PINK1 cause early-onset autosomal recessive Parkinson disease (PD). The cytosolic E3 ubiquitin-protein ligase PARK2 cooperates with the mitochondrial kinase PINK1 to maintain mitochondrial quality. A loss of mitochondrial transmembrane potential (ΔΨ) leads to the PINK1-dependent recruitment of PARK2 to the outer mitochondrial membrane (OMM), followed by the ubiquitination and proteasome-dependent degradation of OMM proteins, and by the autophagy-dependent clearance of mitochondrial remnants. We showed here that blockade of mitochondrial protein import triggers the recruitment of PARK2, by PINK1, to the TOMM machinery. PD-causing PARK2 mutations weakened or disrupted the molecular interaction between PARK2 and specific TOMM subunits: the surface receptor, TOMM70A, and the channel protein, TOMM40. The downregulation of TOMM40 or its associated core subunit, TOMM22, was sufficient to trigger OMM protein clearance in the absence of PINK1 or PARK2. However, PARK2 was required to promote the degradation of whole organelles by autophagy. Furthermore, the overproduction of TOMM22 or TOMM40 reversed mitochondrial clearance promoted by PINK1 and PARK2 after ΔΨ loss. These results indicated that the TOMM machinery is a key molecular switch in the mitochondrial clearance program controlled by the PINK1-PARK2 pathway. Loss of functional coupling between mitochondrial protein import and the neuroprotective degradation of dysfunctional mitochondria may therefore be a primary pathogenic mechanism in autosomal recessive PD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号