首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Effects of population with different origin, biotype, seed size, temperature and depth of burial on the emergence of germinated seeds were investigated to assess the possibilities for successful management of triazine resistant populations of Solanum nigrum. Emergence fraction increased with temperature and decreased with increasing depth of placement. Emergence fraction appeared to be highest at intermediate seed weights. Resistant seeds showed a higher emergence fraction than susceptible seeds while emergence rate of resistant seeds was slightly lower. Emergence rate increased with increasing temperatures and decreasing depths. The possibilities for management of resistant S. nigrum with a stale seedbed preparation are discussed.  相似文献   

2.
The effect of various pre-treatments and their interaction with temperature on cumulative percentage and the rate of germination were evaluated for Digitaria nuda. Stored and fresh seeds were pre-treated with either 0.02 M KNO3, soaked in water for 24 h (priming), sterilized with 0.5% NaOCl or heat treated at 60 °C. Seeds were germinated at constant temperatures of 25 and 30 °C and fluctuating temperature regimes of 25/10 and 30/15 °C. The effect of pre-chilling on germination of stored and fresh seed was evaluated at 30/15 °C, and seed emergence in two soil types at different burial depths (0, 0.5, 1, 2, 3, 4, 5 and 6 cm) was also determined. The pre-treatment of stored seed with KNO3 resulted in the highest germination percentage (100%), whereas the pre-treatment of fresh seed with water for 24 h gave the best germination (99%), at constant temperatures of 25 and 30 °C. Pre-chilling of seed increased germination by more than 30%. Emergence from clay loam soil was greater compared with the emergence from sandy loam soil. Total seedling emergence decreased exponentially with increasing burial depths with only 5% of seed germinating from a burial depth of 6 cm. Results from this study showed that germination requirements are species specific and knowledge of factors influencing germination and emergence of grass weed seed can assist in predicting flushes in emergence allowing producers to implement control practices more effectively.  相似文献   

3.
Germination studies are important for collecting information on field seedling recruitment, plant conservation and restoration. This study investigated the role of light, temperature, nitrogen, water stress and burial depth in controlling germination of Stipa bungeana seeds. S. bungeana seeds are photo-inhibited; light significantly decreased seed germination regardless of temperature and water conditions. Seeds germinated at 10–30° C, and the highest germination was 72 % and 88 % at 20° C in light and dark, respectively. Thermal model analysis showed that presence of light significantly increased average thermal requirement [θ T (50)] from 105°Cd to 186°Cd at sub-optimal temperature, implying that light delays seed germination. Hydrotime model analysis showed that presence of light caused a shift in the median base water potential [Ψ b(50)] from ?0.68 to ?0.26 MPa, which partly explains why light decreased both percentage and speed of germination, even at optimal conditions. As burial depth increased, seedling emergence initially increased and then decreased; the highest seedling emergence recruitment was 43 %, for seeds buried at a depth of 1 cm. Field observations showed that seedling emergence occurred primarily from July to September, and scarcely occurred from April to June. These results suggest that the light inhibitory effect is an adaptive mechanism that prevents S. bungeana seeds from germinating on the soil surface. To attain highest seedling establishment, seeds of S. bungeana should be sown at a soil depth of 1 cm prior to the rainy season, using seeds stored for 1 year.  相似文献   

4.
The effects of gibberellic acid (GA3), potassium nitrate (KNO3), prechilling, temperature, salt stress and osmotic potential on seed germination and sowing depth on seedling emergence and burial depth on seed viability of hoary cress (Cardaria draba (L.) Desv.), were studied in a series of laboratory, glasshouse and outdoor experiments. The optimal temperature for hoary cress seed germination was 20°C, both in light/dark and darkness regimes. Seed germination of hoary cress at 400 ppm concentration of GA3 in a light/dark regime was maximal. Potassium nitrate concentrations increased the percentage of germination in comparison with the control treatment. Increasing the duration of dry prechilling to 30 and 45 days promoted the seed germination of hoary cress. Germination of hoary cress markedly decreased as salt and drought stress increased. Seed germination of hoary cress occurred at a range of pH from 3 to 11. Seedling emergence significantly decreased as planting depth increased. Total seed viability decreased with increasing burial depth. The maximum increase in mortality occurred in seeds that were buried at 5‐cm depth.  相似文献   

5.
Abstract

Seed germination, seedling emergence and seed persistence in the soil were investigated for Dianthus morisianus (Caryophyllaceae), a psammophilous endemic species of Sardinia. Stored and freshly collected seeds were incubated in a range of constant temperatures (5–25°C) and an alternating temperature regime (25/10°C). The effect of seed burial depth on seedling emergence was investigated under controlled environmental conditions. Seed persistence in the soil was verified by in situ experimental seed burials. Seeds of this species were non-dormant, and all seed lots germinated both in the light and darkness, mainly at low temperatures (≤20°C), with a maximum at 15°C (≥95%). Optimal seedling emergence was obtained when seeds were buried at a depth of 1–2 cm, and a declining emergence with increasing depth was observed. D. morisianus was also unable to form a persistent soil seed bank. The fate of the seeds that, after dispersal, do not emerge from the soil in the spring is, therefore, presumably to die before the next favourable growing season.  相似文献   

6.
Effects of soil type, time, depth of seed burial and rainfall pattern were investigated on the longevity of glyphosate resistant annual ryegrass (Lolium rigidum Gaudin) in the northern summer rainfall dominant grain region of Australia in a 16 month experiment conducted under polyhouse conditions. Lolium rigidum seeds placed in nylon bags were buried in pots at 5 and 10 cm depth in either Laureldale (clay) or Kirby (sandy loam) soil receiving simulated rainfall representing a Tamworth (summer) and Hamilton (winter) rainfall environment of Australia. The bags were exhumed every four months and tested for percent viable, germinable, dormant and dead seeds. In the short term (several months), factors such as soil type, rainfall and depth of burial affected the fate and condition of L. rigidum seeds and emergence pattern of seedlings. However, irrespective of treatment, all seeds lost their viability after 16 months of burial. Hence, in the longer term, L. rigidum behaviour in this summer dominant rainfall environment with different soils is likely to be similar to that where the weed occurs more commonly in the southern Mediterranean regions of Australia. Maximum emergence in the polyhouse occurred during mid autumn similar to that in the field. The results from this experiment will allow for the development of management strategies which may enhance the depletion of the soil seedbank of viable L. rigidum seeds in the shortest possible time.  相似文献   

7.
Lepidium vesicarium is a weed species with a wide distribution in the rangelands and dry‐land farming in East Azarbaijan, Iran. The experiments were undertaken to assay the effects of light, temperature, pH, osmotic potential, NaCl concentration and burial depth on seed germination and emergence of L. vesicarium. Germination was maintained at high levels (> 80%) over a wide day/night temperature range (10/5 to 30/20°C), but a severe reduction in the germination rate of L. vesicarium was found below 20/10°C. Germination of L. vesicarium was influenced by different light/dark regimes, as the germination rate was highest at 16 h light for the all treatments (0, 8, 12, 16 and 24 h light). Germination was 92–95% over a wide range of pH (2‐10). Germination was >50% at a water potential of ?0.7 MPa and salinity of 21 dS/m, indicating that drought and salt conditions have a minimal impact on seed germination. With increasing burial depth from 0 to 2 cm, the number of days required for 50% emergence increased and no germination was observed at burial depths deeper than 3 cm. This suggests that L. vesicarium would become troublesome in the rangelands and for growers in reduced‐tillage cropping systems. The ability to emerge from shallow depths, coupled with tolerance of a wide pH range, drought and salinity at germination, should be taken into account when managing this weed species.  相似文献   

8.
Laboratory and greenhouse studies were conducted to determine the effects of key environmental factors on germination and seedling emergence of the invasive weed Ambrosia artemisiifolia L. (common ragweed) collected from Mudanjiang (temperate climate), Nanjing (temperate–subtropical) and Nanchang (subtropical) in China. Germination of seeds occurred at temperatures ranging from 5 to 40°C, under both a 12‐h photoperiod and continuous darkness. Germination success exceeded 48% in solutions with pH values between 4 and 12, with maximum rates occurring in distilled water at pH 5.57. Germination was greatly reduced in solutions with osmotic potentials below ?0.8 MPa. Accordingly, the final germination ratio exceeded 69% at <200 mmol/L NaCl, but only reached 8% at 400 mmol/L NaCl. Emergence was greater than 75% at burial seed depths of 1–4 cm; no seedlings emerged from a soil depth of 8 cm. Seeds collected from Mudanjiang, Nanjing and Nanchang had very similar germination traits, with the main differences occurring in relation to temperature. The great germination success of common ragweed over highly variable conditions throughout its Chinese distribution range explains its successful large‐scale invasion.  相似文献   

9.
Controlled environment experiments were performed to determinethe effects of temperature and water potential on germination,radicle elongation and emergence of mungbean (Vigna radiata(L.) Wilczek cv. IPB-M79-17-79). The effects of a range of constant temperatures (15–45°C) and water potentials (0 to –2.2 MPa) on germinationand radicle elongation rates were studied using an osmoticumtechnique, in which seeds were held against a semi-permeablemembrane sac containing a polyethylene glycol solution. Linearrelationships were established between median germination time(Gt50) and water potential at different temperatures, and betweenreciprocal Gt50 (germination rate) and temperature at differentwater potentials. Germination occurred at potentials as lowas –2.2 MPa at favourable temperatures (30–40 °C),but was fastest at 40 °C when water was not limiting, withan estimated base temperature (Tb) of about 10 °C. Subsequentradicle elongation, however, was restricted to a slightly narrowertemperature range and was fastest at 35 °C. The conceptof thermal time was used to develop an equation to model thecombined effects of water potential and temperature on germination.Predictions made using this model were compared with the actualgermination obtained in a related series of experiments in columnsof soil. Some differences observed suggested the additionalimportance of the seed/soil/water contact zone in influencingseed germination in soil. Seedling emergence appeared to reflectfurther the radicle elongation results by occurring within anarrower range of temperatures and water potentials than germination.Emergence had an estimated Tb of 12.6 °C and was fastestat 35 °C. A soil matric potential of not less than about–0.5 MPa at sowing was required to obtain 50% or moreseedling emergence. Key words: Germination, temperature, water potential  相似文献   

10.
沙埋对六种沙生植物种子萌发和幼苗出土的影响   总被引:19,自引:1,他引:19  
研究了沙埋对科尔沁沙地6种优势植物的种子萌发和幼苗出土的影响.进行0.2、4、6、8、10和12cm等7个深度沙埋处理.结果表明,在不同沙埋处理时,沙蓬萌发差异显著。而差不嘎蒿2锄埋深与其他埋深的发芽差异显著,其他4种植物0cm埋深与其他埋深的发芽差异显著;沙埋对所有植物幼苗出土均有显著影响,埋深增加,出苗率减小;繁殖体大的物种与繁殖体小的物种相比,能从更深沙层中出苗,幼苗出土最大深度排序为苦参>东北木蓼≥沙蓬>山竹子>雾冰藜>差不嘎蒿.  相似文献   

11.
Sediment deposition is a common phenomenon in the estuary area. Pot control experiments were conducted to evaluate the interaction effects of sediment burial depth and salt stress on the seed germination and early seedling growth of Suaeda salsa (L.) Pall., an pioneer species of tidal wetland near the Yellow River Delta. The results showed that the percentage of seedling emergence, seedling emergence rate, seedling height, branch number, shoot biomass and root biomass were all significantly affected by salt stress and sediment burial depth. While the interaction of salt and burial depth significantly influenced the branch number, leaf biomass, shoot biomass and total plant biomass. Only 5 cm burial depth without salt stress should 6.25 ± 3.61% seedlings emergence. With the increasing of sediment burial depth and salt stress, percentage of seedling emergence, seedling emergence rate and plant height decreased significantly. However, under the salt treatment of 0 and 1%, the branch number increased dramatically with the increasing of sediment burial depth from 0 to 3 cm. The ratio of leaf to total biomass increased with increasing of burial depth, on the contrary, the ratio of root to total biomass decreased. 0–1 cm sediment burial depth was proved the suitable depths for seed germination of S. salsa in the coastal wetland of the Yellow River Delta. Our findings contribute to a better understanding of how to improve the seedling establishment of S. salsa under the dynamic changes of sediment deposition and salinity in the coastal wetland of the Yellow River Delta.  相似文献   

12.
Astrodaucus orientalis is a weed species in cropping systems and rangelands in Iran. The effects of temperature, light, NaCl concentration, water potential, seed burial depth and crop residue cover were assessed on seed germination and seedling emergence of two populations of A. orientalis from Ardabil (Meshginshahr population) and East Azarbayjan (Tabriz population) provinces of Iran. The A. orientalis populations indicated different responses to environmental factors and burial depth. In the Tabriz population the greatest germination (88.5%) was observed in 20/12°C day/night temperature but in the Meshginshahr population (83.2%) it was obtained in 24/16°C day/night temperature. Over a broad range of light period (10–24 hr light) germination was 74–83%, but it decreased (less than 37%) under 24 hr dark in both A. orientalis populations. With respect to water potential, the C50 parameters were −0.62 and − 0.49 MPa for Tabriz and Meshginshahr populations, respectively. The D50 parameters (the burial depth that caused 50% decrease in emergence) for Tabriz and Meshginshahr populations were 2.42 and 3.13 cm, respectively. Generally, the results showed that emergence of both populations of A. orientalis was delayed as depth of burial increased up to 4 cm and in cropping systems a shallow tillage that locates the seeds to >4 cm of depth in soil could be used in order to suppress seedling emergence. Our findings also could be useful in integrated management of A. orientalis in winter annual crops and rangelands.  相似文献   

13.
The pine shoot beetle, Tomicus piniperda (L.), is an exotic pest of pines, Pinus spp., that was first found in the United States in 1992. A federal quarantine currently regulates movement of pine Christmas trees and pine nursery stock from infested to uninfested counties. The current national Pine Shoot Beetle Compliance Management Program requires T. piniperda-infested brood material to be disposed of by burning, chipping, or burial. The burial option requires that the infested pine material be buried at a depth of at least 30 cm. We tested this requirement by burying logs with similar levels of infestation at 0, 15, 30, 45, 61 and 76 cm and then monitoring for T. piniperda emergence. Logs were buried at two times during larval development (early and late) and in two soil types (sandy loam and loam). Emergence patterns from the two soil types were similar. Overall, 1,747 T. piniperda adults were collected from the 24 exposed control logs, but only 34 adults from the 120 buried logs, including 24 adults from logs buried at 15 cm, eight adults from 30 cm, one adult from 45 cm, and one adult from 61 cm. In comparing mean emergence density from buried logs with that of exposed logs, 98.6% mortality occurred at 15 cm, 99.5% at 30 cm, and > 99.9% at > or = 45 cm. Mean date of T. piniperda emergence to the soil surface was affected by burial depth and burial date, but not soil type.  相似文献   

14.
The perennial stoloniferous herbaceous vine Mikania micrantha H.B.K. is among the most noxious exotic invaders in China and the world. Disturbance can fragment stolons of M. micrantha and disperse these fragments over long distances or bury them in soils at different depths. To test their regeneration capacity, single-node stolon fragments with stolon internode lengths of 0, 3, 6 and 12 cm were buried in soil at 0, 2, 5 and 8 cm depths, respectively. The fragments were growing for nine weeks, and their emergence status, growth and morphological traits were measured. The results indicated that increasing burial depth significantly decreased survival rate and increased the emergence time of the M. micrantha plants. At an 8-cm burial depth, very few fragments (2.19%) emerged and survived. Burial did not affect the total biomass and root to shoot ratio of the surviving M. micrantha plants that emerged from the 0- and 2-cm burial depths. Increasing internode length significantly increased survival rate and growth measures, but there was no interaction effect with burial depth for any traits measured. These results suggest that M. micrantha can regenerate from buried stolon fragments, and thus, disturbance may contribute to the spread of this exotic invader. Any human activities producing stolon fragments or facilitating dispersal should be avoided.  相似文献   

15.
Q.Y. Li  W.Z. Zhao  H.Y. Fang 《Plant Ecology》2006,185(2):191-198
A greenhouse experiment was conducted to test the effects of sand burial depth and seed mass on seedling emergence and growth of Nitraria sphaerocarpa. Seeds of Nitraria sphaerocarpa were sorted into three size-classes (large, medium, small) and artificially buried at 0, 1, 2, 3, 4, 5 and 6 cm depths in plastic pots filled with unsterilized sand. In the seven treatments, the percent emergence, seedling mass and seedling height, significantly affected by both burial depth and seed size, were highest at the optimal burial depth of 2 cm burial depth, and decreased with increasing burial depth in each seed size-class. Although seedling mass was usually greatest for large seeds and least for small seeds at each burial depth, little difference was observed in seedling height at shallow burial depths of 0–3 cm. In each seed size-class, with increasing burial depth, both root-mass ratio and aboveground stem-mass ratio decreased, while belowground stem-mass ratio increased. In each burial depth, with decreasing seed size, belowground stem-mass ratio increased, while root-mass ratio decreased.  相似文献   

16.
Rhamnus alaternus and R. ludovici-salvatoris, two Mediterranean shrubs with different geographic distributions, have shown important differences in seedling recruitment capacity. The objectives of this work were to determine the ability of these species to germinate seeds under different temperature ranges, as well as the capacity of seedlings to emerge from different burial depths, in order to better understand their regeneration processes. Two different experiments were performed. In the first one, seed germination was studied in Petri dishes and in the dark at different temperature regimes: a) 5–15°C, b) 10–20°C and c) 15–25°C (12h/12h). In the second experiment, seedling emergence capacity from different burial depths (0.5, 2 and 5 cm) was tested. R. ludovici-salvatoris showed a significantly higher final germination rates, a lower dormancy period, and average time response at 10–20°C than at other temperature ranges, although differences were much greater when seeds were subjected to the 5–15°C temperature regime. By contrast, R. alaternus did not show significant differences between treatments (5–15°C and 10–20°C) in germination behavior. Seedling emergence of both species was lower and slower when seeds were buried at 5 cm. However, R. ludovici-salvatoris always showed a lower seedling emergence capacity than R. alaternus at any burial depth. The low ability of R. ludovici-salvatoris to germinate seeds and emerge between 5–15°C, even from shallow depths, is discussed in relation to its low regeneration capacity and declining geographic distribution.  相似文献   

17.
《Journal of Asia》2014,17(3):311-317
Emergence of adult citrus gall wasp (CGW) Bruchophagus fellis (Girault) (Hymenoptera: Eurytomidae) in citrus orchards in far western New South Wales, Australia, was monitored with sticky traps for three seasons (2010 to 2012 inclusive). Emergence started from early October to early November, peaked from late October to mid-November, and was mostly finished by mid–late November. Emergence timing was mainly influenced by year and site, with the largest differences observed between years. Most emergence (90%) took place during an average period of only 19 days each season (range of 11–28 days across all trap types, sites and seasons). The role of temperature in emergence timing was investigated using a degree-day (DD) model. DD accumulated since 1 April using a lower threshold temperature of 15°C and an upper threshold temperature of 35°C or 40°C gave the best predictions of median emergence dates in the three years. The required DDs to achieve 5, 50, and 95% emergence were 336, 403 and 447 DD, respectively. The maximum difference between predicted and observed median dates for 2010–2012 was only four days. CGW adult emergence in future years can be predicted using these DD parameters and a combination of observed and average historical temperature data for the target site. Effective prediction of emergence peaks will allow the timing of pesticide applications to be optimised whilst providing protection for establishing parasitoids which emerge from the galls 2–3 weeks after citrus gall wasp.  相似文献   

18.
Ischaemum rugosum Salisb. (Saramolla grass) is a noxious weed of rice that is difficult to control by chemical or mechanical means once established. A study was conducted to determine the effect of light, temperature, salt, drought, flooding, rice residue mulch, burial depth, and pre-emergence herbicides on seed germination and emergence of I. rugosum. Germination was stimulated by light and inhibited under complete darkness. Optimum temperature for germination was 30/20°C (97.5% germination). Germination reduced from 31 to 3.5% when the osmotic potential of the growing medium decreased from -0.1 to -0.6 MPa and no germination occurred at -0.8 MPa. Germination was 18 and 0.5% at 50 and 100 mM NaCl concentrations, respectively, but was completely inhibited at 150 mM or higher. Residue application at 1–6 t ha-1 reduced weed emergence by 35–88% and shoot biomass by 55–95%. The efficacy of pre-emergence herbicides increased with increasing application rates and decreased with increasing rice residue mulching. The efficacy of herbicides was in the order of oxadiazon> pendimethalin> pretilachlor. At 6 t ha-1, all herbicides, regardless of rates, did not differ from the control treatment. I. rugosum seeds buried at 2 cm or deeper did not emerge; however, they emerged by 4.5 and 0.5% at 0.5 and 1 cm depths, respectively, compared to the 39% germination for soil surface seeding. Flooding at 4 DAS or earlier reduced seedling emergence and shoot biomass while flooding at 8 DAS reduced only seedling emergence. The depth and timing of flooding independently reduced root biomass. Flooding at 4 and 6 cm depths reduced the root biomass. Relative to flooding on the day of sowing, flooding at 8 DAS increased root biomass by 89%. Similarly, flooding on the day of sowing and at 2 DAS reduced the root–shoot biomass ratio. Under the no-flood treatment, increasing rates of pretilachlor from 0.075 to 0.3 kg ai ha-1 reduced weed emergence by 61–79%. At the flooding depth of 2–4 cm, pretilachlor reduced weed emergence and shoot and root biomass, but the differences across rates were non-significant. Information generated in this study will be helpful in developing integrated weed management strategies for managing this weed.  相似文献   

19.

Aims

Seed germination and seedling emergence are vulnerable to water stress in arid environments. When precipitation is low and unpredictable during the early growing season, seeds near the sand surface often suffer from hydration/dehydration during germination. We investigated the responses of seedling emergence and survival of a sand dune grass with high sand stabilization value to amount and frequency of precipitation and depth of burial in sand.

Methods

Effects of amount and frequency of precipitation, burial and hydration/dehydration on seedling emergence of Leymus secalinus, were examined using standard procedures.

Results

Seedling emergence was affected by amount and frequency of monthly precipitation and depth of burial, and it decreased as precipitation frequency decreased with same amount of precipitation. Highest emergence percentage was obtained with 100 or 150 mm precipitation at 1–4 cm depth. Hydration/dehydration treatments decreased germination and increased dormancy percentage. Young seedlings with root lengths of 0–1 mm desiccated up to 30 days revived after rehydration.

Conclusions

Seedling emergence of L. secalinus is adapted to 150 mm monthly precipitation with frequency of 10–30 times per month, 1–4 cm burial depth and dehydration interval of 1–2 days. Alteration of amount and/or frequency of precipitation caused by climate change could markedly affect seedling emergence and population regeneration of this species.  相似文献   

20.
Soil moisture and temperature, sowing depth and penetration resistance affect the time and percentage of seedling emergence, which are crucial for the simulation of drought‐limited crop production. The aim of this research was to measure the effect of soil water potential on germination and emergence, shoot and root elongation rates (SER and RER) of two different seed/crop types. Sugar beet and durum wheat seeds were sown into two soils (clay and loam), submitted to five matric potentials (?0.01, ?0.1, ?0.2, ?0.4 and ?0.8 MPa) and incubated at constant temperature (25°C) and humidity. Cumulative count analysis was used to estimate parameters of the distribution of germination or emergence times for each box of beet or wheat seeds and to derive estimates for base potentials (ψb), hydrothermal times (H) and numbers of viable units. In a second experiment, NaCl solution was used to mimic the soil matric potentials to estimate potential RER and SER. Germination of sugar beet was slightly more sensitive to matric potential than durum wheat (ψb of ?1.13 and ?1.23 MPa, respectively). H(g) was longer for sugar beet than for durum wheat (67 vs 47 MPa °Cd). For emergence ψb was similar for both seed types and soils but hydrothermal times (H(e)) were 40 MPa °Cd higher for sugar beet than for wheat. Emergence was about 20 MPa °Cd earlier in loam than in clay. SER measured in soils were similar for both crops and for durum wheat it agreed with those determined in NaCl solution. RER and SER fell with decreasing osmotic potential to approximately 20% of their maximum values (1.03 mm h?1 and 0.57 mm h?1, respectively). Seedling viability decreased with decreasing matric potential and more in clay than in loam soil and more for sugar beet than durum wheat. Seed and soil aggregate size are discussed with respect to the effects of water diffusion and soil–seed contact on germination and emergence modelling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号