首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The prognostic significance of hypoxia markers, hypoxia-inducible factor-1α (HIF-1α), hypoxia-inducible factor-2α (HIF-2α), and carbonic anhydrase IX (CAIX), was investigated in estrogen receptor (ER)-positive breast cancer patients. Immunohistochemistry determined the expression of makers in two independent ductal ER-positive cohorts (Training set, n=373 and Validation set, n=285) and was related to clinicopathological parameters and disease-free survival (DFS). In the training cohort, nuclear HIF-1α (1) was independently associated with poorer DFS in luminal A tumors [hazard ratio (HR) = 0.53 95% confidence interval (CI): 0.30–0.94, p=0.030]. In the validation cohort, both HIF-1α (1) and CAIX were independently associated with decreased DFS in the entire cohort (HR = 1.85 95% CI: 1.10–3.11, p=0.019; HR = 1.74 95% CI: 1.08–2.82, p=0.023), in luminal A disease (HR = 1.98 95% CI: 1.02–3.83, p=0.042), and in luminal B disease (HR = 2.75 95% CI: 1.66–4.55, p<0.001), respectively. Taken together, elevated cytoplasmic HIF-1α (1) expression was an independent prognostic factor in luminal A disease, whereas CAIX was an independent prognostic factor in luminal B disease. Further work in large tissue cohorts is required.  相似文献   

2.
3.
Jumonji domain-containing proteins (JMJD) catalyze the oxidative demethylation of a methylated lysine residue of histones by using O2, α-ketoglutarate, vitamin C, and Fe(II). Several JMJDs are induced by hypoxic stress to compensate their presumed reduction in catalytic activity under hypoxia. In this study, we showed that an H3K27me3 specific histone demethylase, JMJD3 was induced by hypoxia-inducible factor (HIF)-1α/β under hypoxia and that treatment with Clioquinol, a HIF-1α activator, increased JMJD3 expression even under normoxia. Chromatin immunoprecipitation (ChIP) analyses showed that both HIF-1α and its dimerization partner HIF-1β/Arnt occupied the first intron region of the mouse JMJD3 gene, whereas the HIF-1α/β heterodimer bound to the upstream region of the human JMJD3, indicating that human and mouse JMJD3 have hypoxia-responsive regulatory regions in different locations. This study shows that both mouse and human JMJD3 are induced by HIF-1.  相似文献   

4.
Eukaryotic cells are known to have an inducible or adaptive response that enhances radioresistance after a low priming dose of radiation. This radioadaptive response seems to present a novel cellular defense mechanism. However, its molecular processing and signaling mechanisms are largely unknown. Here, we studied the role of protein kinase C (PKC) and mitogen-activated protein kinase (MAPK) in the expression of radioadaptive response in cultured mouse cells. Protein immunoblot analysis using isoform-specific antibodies showed an immediate activation of PKC-alpha upon X-irradiation as indicated by a translocation from cytosol to membrane. A low priming dose caused a prolonged translocation, while a nonadaptive high dose dramatically downregulated the total PKC level. Low-dose X-rays also activated the p38 MAPK. The activation of p38 MAPK and resistance to chromosome aberration formation were blocked by SB203580, an inhibitor of p38 MAPK, and Calphostin C, an inhibitor of PKC. Furthermore, it was demonstrated that p38 MAPK was physically associated with delta1 isoform of phospholipase C (PLC-delta1), which hydrolyzed phosphatidylinositol bisphosphate into diacylglycerol, an activator of PKC, and that SB203580 also blocked the activation of PKC-alpha. These results indicate the presence of a novel mechanism for coordinated regulation of adaptive response to low-dose X-rays by a nexus of PKC-alpha/p38 MAPK/PLC-delta1 circuitry feedback signaling pathway with its breakage operated by downregulation of labile PKC-alpha at high doses or excess stimuli.  相似文献   

5.
Hypoxia plays important roles in cancer progression by inducing angiogenesis, metastasis, and drug resistance. However, the effects of hypoxia on long noncoding RNA (lncRNA) expression have not been clarified. Herein, we evaluated alterations in lncRNA expression in lung cancer cells under hypoxic conditions using lncRNA microarray analyses. Among 40,173 lncRNAs, 211 and 113 lncRNAs were up- and downregulated, respectively, in both A549 and NCI-H460 cells. Uroplakin 1A (UPK1A) and UPK1A-antisense RNA 1 (AS1), which showed the highest upregulation under hypoxic conditions, were selected to investigate the effects of UPK1A-AS1 on the expression of UPK1A and the mechanisms of hypoxia-inducible expression. Following transfection of cells with small interfering RNA (siRNA) targeting hypoxia-inducible factor 1α (HIF-1α), the hypoxia-induced expression of UPK1A and UPK1A-AS1 was significantly reduced, indicating that HIF-1α played important roles in the hypoxia-induced expression of these targets. After transfection of cells with UPK1A siRNA, UPK1A and UPK1A-AS1 levels were reduced. Moreover, transfection of cells with UPK1A-AS1 siRNA downregulated both UPK1A-AS1 and UPK1A. RNase protection assays demonstrated that UPK1A and UPK1A-AS1 formed a duplex; thus, transfection with UPK1A-AS1 siRNA decreased the RNA stability of UPK1A. Overall, these results indicated that UPK1A and UPK1A-AS1 expression increased under hypoxic conditions in a HIF-1α-dependent manner and that formation of a UPK1A/UPK1A-AS1 duplex affected RNA stability, enabling each molecule to regulate the expression of the other.  相似文献   

6.
7.
The nuclear protein phosphatase cdc25A has been postulated to be a protooncogene. The total nuclear phosphotyrosyl protein phosphatase (PTP) activity and the expression of cdc25A were compared in normal and cancerous colon epithelial tissue. Nuclei derived from normal mucosal epithelium and tumors were analyzed for phosphotyrosyl protein phosphatase activity using the malachite green assay and a synthetic phosphotyrosyl peptide based on the sequence of cdc2, a known cdc25A phosphotyrosyl protein substrate. Tumorigenesis resulted in elevated nuclear PTP activity (343.0 ± 37.0% of normal epithelial PTP activity) in 52% (29 of 56) of colon tumors. In all cases elevated nuclear PTP activity correlated with an increase in the expression of cdc25A. The changes in PTP activity observed were not due to any increase in the rate of growth of the colonic mucosa as no corresponding changes occurred with PTP activity under conditions of rapid mucosal growth.  相似文献   

8.
缺氧应激对肝癌细胞代谢信号通路的调节作用   总被引:4,自引:0,他引:4  
通过实验阐明在缺氧条件下糖酵解相关基因表达的变化规律及对肿瘤细胞和正常细胞增殖的影响,并探索活性氧(ROS)介导肝癌细胞代谢途径及对相关基因表达和酶活性的调节作用.以SMMC-7721人肝癌细胞和L02正常肝细胞作为研究对象,分别在单纯缺氧及加葡萄糖缺氧条件下,观察细胞生长,并检测糖代谢关键酶:丙酮酸激酶(pyruvate-kinase,PK)、己糖激酶(hexokinase,HK)、琥珀酸脱氢酶(succinic dehydrogenase,SDH)、异柠檬酸脱氢酶(isocitric dehydrogenase,IDH)mRNA表达水平和乳酸脱氢酶(lactate dehydrogenase,LDH)活性.还检测了pkb基因及缺氧诱导因子hif-1的表达.实验结果说明:a.肿瘤细胞较正常细胞具有更强的缺氧耐受性;b.缺氧条件下,糖酵解途径的增强是保证肿瘤细胞能快速增殖的机制之一;c.ROS通过HIF-1介导了糖代谢通路相关酶的基因表达,参与肝癌细胞缺氧信号通路调节,用抗氧化剂干预可以降低肿瘤细胞的缺氧耐受能力.  相似文献   

9.
10.
We report a selective, differential stimulus-dependent enrichment of the actin-associated protein α-actinin and of isoforms of the signaling enzyme protein kinase C (PKC) in the neutrophil cytoskeleton. Chemotactic peptide, activators of PKC, and cell adhesion all induce a significant increase in the amount of cytoskeletal α-actinin and actin. Increased association of PKCβI and βII with the cytoskeletal fraction of stimulated cells was also observed, with phorbol ester being more effective than chemotactic peptide. A fraction of phosphatase 2A was constitutively associated with the cytoskeleton independent of cell activation. None of the stimuli promoted association of vinculin or myosin II with the cytoskeleton. Phosphatase inhibitors okadaic acid and calyculin A prevented increases in cytoskeletal actin, α-actinin, and PKCβII induced by phorbol ester, suggesting the requirement for phosphatase activity in these events. Increases in cytoskeletal α-actinin and PKCβII showed differing sensitivity to agents that prevent actin polymerization (cytochalasin D, latrunculin A). Latrunculin A (1 μM) completely blocked PMA-induced increases in cytoskeletal α-actinin but reduced cytoskeletal recruitment of PKCβII only by 16%. Higher concentrations of latrunculin A (4 μM), which almost abolished the cytoskeletal actin pool, reduced cytoskeletal PKCβII by 43%. In conclusion, a selective enrichment of cytoskeletal and signaling proteins in the cytoskeleton of human neutrophils is induced by specific stimuli.  相似文献   

11.
Curcumin, traditionally used as food and medicinal purposes, has recently been reported to have protective efficacy against hypoxia. Hypoxia is one of the important reactive factors in tumor metastasis, which is a key problem in clinical thyroid cancer therapy. In present study, we investigate the anti-metastatic effect of curcumin on the K1 papillary thyroid cancer cells as well as its potential mechanisms. The results show that curcumin effectively inhibits hypoxia-induced reactive oxygen species (ROS) upregulation and significantly decreases the mRNA and protein expression levels of hypoxia-inducible factor-1α (HIF-1α) in K1 cells. Curcumin also decreases the DNA binding ability of HIF-1α to hypoxia response element (HRE). Furthermore, curcumin enhances E-cadherin expression, inhibits metalloproteinase-9 (MMP-9) enzyme activity, and weakens K1 cells migration under hypoxic conditions. In summary, these results indicate that curcumin possesses a potent anti-metastatic effect and might be an effective tumoristatic agent for the treatment of aggressive papillary thyroid cancers.  相似文献   

12.
In the present study, we examined the effect of vasopressin on the induction of the low-molecular-weight heat shock proteins heat shock protein 27 (HSP27) and αB-crystallin in an aortic smooth muscle cell line, A10 cells. Vasopressin induced a time-dependent accumulation of HSP27 and αB-crystallin. The stimulatory effects of vasopressin were dose-dependent over the range 0.1 nmol/L to 0.1 μmol/L. The EC50values for vasopressin were 2 (HSP27) and 4 nmol/L (αB-crystallin). Vasopressin induced increases in the levels of the mRNAs for HSP27 and αB-crystallin. 12-O-Tetradecanoylphorbol 13-acetate (TPA), a protein kinase C (PKC)-activating phorbol ester, induced an accumulation of HSP27 (EC50, 20 nmol/L) and αB-crystallin (EC50, 2 nmol/L). In contrast, 4α-phorbol 12,13-didecanoate, a non-PKC-activating phorbol ester, had no such effect. Staurosporine and calphostin C, inhibitors of PKC, significantly reduced the vasopressin-induced accumulation of HSP27 and αB-crystallin as well as that induced by TPA. BAPTA/AM and TMB-8, inhibitors of intracellular Ca2+mobilization, significantly reduced the vasopressin-induced accumulation of HSP27 and αB-crystallin. These results strongly suggest that vasopressin stimulates the induction of HSP27 and αB-crystallin via PKC activation in vascular smooth muscle cells and that this effect of vasopressin is dependent on intracellular Ca2+mobilization.  相似文献   

13.
IL-32α is known as a proinflammatory cytokine. However, several evidences implying its action in cells have been recently reported. In this study, we present for the first time that IL-32α plays an intracellular mediatory role in IL-6 production using constitutive expression systems for IL-32α in THP-1 cells. We show that phorbol 12-myristate 13-acetate (PMA)-induced increase in IL-6 production by IL-32α-expressing cells was higher than that by empty vector-expressing cells and that this increase occurred in a time- and dose-dependent manner. Treatment with MAPK inhibitors did not diminish this effect of IL-32α, and NF-κB signaling activity was similar in the two cell lines. Because the augmenting effect of IL-32α was dependent on the PKC activator PMA, we tested various PKC inhibitors. The pan-PKC inhibitor Gö6850 and the PKCϵ inhibitor Ro-31-8220 abrogated the augmenting effect of IL-32α on IL-6 production, whereas the classical PKC inhibitor Gö6976 and the PKCδ inhibitor rottlerin did not. In addition, IL-32α was co-immunoprecipitated with PMA-activated PKCϵ, and this interaction was totally inhibited by the PKCϵ inhibitor Ro-31-8220. PMA-induced enhancement of STAT3 phosphorylation was observed only in IL-32α-expressing cells, and this enhancement was inhibited by Ro-31-8220, but not by Gö6976. We demonstrate that IL-32α mediated STAT3 phosphorylation by forming a trimeric complex with PKCϵ and enhanced STAT3 localization onto the IL-6 promoter and thereby increased IL-6 expression. Thus, our data indicate that the intracellular interaction of IL-32α with PKCϵ and STAT3 promotes STAT3 binding to the IL-6 promoter by enforcing STAT3 phosphorylation, which results in increased production of IL-6.  相似文献   

14.
Functions of small GTPases in integrin expression were investigated when the interaction of nonadherent human colon carcinoma 201 cells with the extracellular matrix (ECM) was examined. By transfection of the constitutively active form of a small GTPase Rac1, Rac V12, adhesion of cells to the ECM increased with concomitant cell spreading and formation of membrane ruffles. Activated Cdc42 and Cdc42 V12, but not wild-type Rac1, Cdc42, or RhoA, also induced the adhesion and spreading of Colo201 cells. This adhesion is integrin β4 dependent since an antibody for integrin β4 inhibited the RacV12-dependent cell adhesion and numbers of adhesive cells on laminin-coated plates exceeded those on collagen- and fibronectin-coated plates. By immunofluorescence, in addition to clustering of integrin molecules, expression of integrin α6β4 on the cell surface of Rac V12- and Cdc42 V12-expressing cells was selectively up-regulated without an increase in biosynthesis of α6β4 integrin. Treatment of Rac V12-expressing cells with wortmannin or LY294002, specific inhibitors of phosphoinositide 3-OH kinase, decreased the up-regulated α6β4 and cell adhesion. In light of this evidence, we propose that the regulation of integrin α6β4 expression induced by Rac1 and Cdc42 may play an important role in cell adhesion and tumorigenesis of colon carcinoma cells.  相似文献   

15.
Hyperactivation of Wnt/β-catenin signaling has been reported in hepatocellular carcinoma (HCC). However, the mechanisms underlying the hyperactivation of Wnt/β-catenin signaling are incompletely understood. In this study, Pantothenate kinase 1 (PANK1) is shown to be a negative regulator of Wnt/β-catenin signaling. Downregulation of PANK1 in HCC correlates with clinical features. Knockdown of PANK1 promotes the proliferation, growth and invasion of HCC cells, while overexpression of PANK1 inhibits the proliferation, growth, invasion and tumorigenicity of HCC cells. Mechanistically, PANK1 binds to CK1α, exerts protein kinase activity and cooperates with CK1α to phosphorylate N-terminal serine and threonine residues in β-catenin both in vitro and in vivo. Additionally, the expression levels of PANK1 and β-catenin can be used to predict the prognosis of HCC. Collectively, the results of this study highlight the crucial roles of PANK1 protein kinase activity in inhibiting Wnt/β-catenin signaling, suggesting that PANK1 is a potential therapeutic target for HCC.  相似文献   

16.
One of the big challenges in tissue engineering for treating large bone defects is to promote the angiogenesis of the tissue-engineered bone. Hypoxia inducible factor-1α (HIF-1α) plays an important role in angiogenesis-osteogenesis coupling during bone regeneration, and can activate a broad array of angiogenic factors. Dimethyloxaloylglycine (DMOG) can activate HIF-1α expression in cells at normal oxygen tension. In this study, we explored the effect of DMOG on the angiogenic activity of bone mesenchymal stem cells (BMSCs) in the tissue-engineered bone. The effect of different concentrations of DMOG on HIF-1a expression in BMSCs was detected with western blotting, and the mRNA expression and secretion of related angiogenic factors in DMOG-treated BMSCs were respectively analyzed using qRT-PCR and enzyme linked immunosorbent assay. The tissue-engineered bone constructed with β-tricalcium phosphate (β-TCP) and DMOG-treated BMSCs were implanted into the critical-sized calvarial defects to test the effectiveness of DMOG in improving the angiogenic activity of BMSCs in the tissue-engineered bone. The results showed DMOG significantly enhanced the mRNA expression and secretion of related angiogenic factors in BMSCs by activating the expression of HIF-1α. More newly formed blood vessels were observed in the group treated with β-TCP and DMOG-treated BMSCs than in other groups. And there were also more bone regeneration in the group treated with β-TCP and DMOG-treated BMSCs. Therefore, we believed DMOG could enhance the angiogenic activity of BMSCs by activating the expression of HIF-1α, thereby improve the angiogenesis of the tissue-engineered bone and its bone healing capacity.  相似文献   

17.
In this study, we examined whether local deferoxamine (DFO) administration can promote angiogenesis and bone repair in steroid-induced osteonecrosis of the femoral head (ONFH). Steroid-induced ONFH was induced in 65 mature male New Zealand white rabbits by methylprednisolone in combination with lipopolysaccharide. Six weeks later, the rabbits received no treatment (model group, N = 15), bilateral core decompression (CD group, N = 20) or CD in combination with local DFO administration (DFO group, N = 20). Six weeks after the surgery, vascularization in the femoral head was evaluated by ink artery infusion angiography and immunohistochemical staining for von Willebrand Factor (vWF). Bone repair was assessed by histologic analysis and micro-computed tomography (micro-CT). Immunohistochemical staining was performed to analyze the expression of vascular endothelial growth factor (VEGF), hypoxia-inducible factor-1α (HIF-1α), bone morphogenetic protein-2 (BMP-2), and osteocalcin (OCN). Ink artery infusion angiography and microvessel analysis by immuohistochemical staining for vWF showed more blood vessels in the DFO group than other groups. The expression of HIF-1α, VEGF, BMP-2, and OCN, indicated by immunohistochemical staining, was higher in the DFO group compared with other groups. Micro-CT scanning results indicated that the DFO group had larger volume of newly formed bone than the CD group. This work indicated that local DFO administration improved angiogenesis and bone repair of early stage ONFH in rabbit model, and it may offer an efficient, economic, and simple therapy for early stage ONFH.  相似文献   

18.
19.
Metallothioneins (MTs) are proteins devoted to the control of metal homeostasis and detoxification, and therefore, MTs have been crucial for the adaptation of the living beings to variable situations of metal bioavailability. The evolution of MTs is, however, not yet fully understood, and to provide new insights into it, we have investigated the MTs in the diverse classes of Mollusks. We have shown that most molluskan MTs are bimodular proteins that combine six domains—α, β1, β2, β3, γ, and δ—in a lineage-specific manner. We have functionally characterized the Neritimorpha β3β1 and the Patellogastropoda γβ1 MTs, demonstrating the metal-binding capacity of the new γ domain. Our results have revealed a modular organization of mollusk MT, whose evolution has been impacted by duplication, loss, and de novo emergence of domains. MTs represent a paradigmatic example of modular evolution probably driven by the structural and functional requirements of metal binding.  相似文献   

20.
低氧诱导因子-1(hypoxia-inducible factor-1, HIF-1)是组织细胞对缺氧感应和调控的一类关键转录因子,在机体中广泛表达.作为细胞低氧应答反应中的重要调节因子,HIF-1能够调节100多种涉及低氧应激下细胞适应和存活的靶基因. HIF-1是由氧依赖的α亚基和细胞内稳定表达的β亚基构成的异源二聚体.其中α亚基对氧浓度变化敏感,是HIF-1的功能性亚基,它的表达活性决定了HIF-1的生物学活性.近期研究发现,HIF-1α的一系列翻译后修饰可改变其稳定性,进而调控其转录激活活性,从而参与肿瘤、低氧性肺动脉高压以及心血管疾病等的发生与发展.本文主要就HIF-1α的一列系翻译后修饰,如羟基化、泛素化、磷酸化、乙酰化、SUMO化修饰作一综述.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号