首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The narrow genetic background of wheat is the primary factor that has restricted the improvement of crop yield in recent years. The kernel number per spike is the most important factor of the many potential characteristics that determine wheat yield. Agropyron cristatum (L.) Gaertn., a wild relative of wheat, has the characteristics of superior numbers of florets and kernels per spike, which are controlled by chromosome 6P. In this study, the wheat-A. cristatum disomic addition and substitution lines were used as bridge materials to produce wheat-A. cristatum 6P translocation lines induced by gametocidal chromosomes and irradiation. The results of genomic in situ hybridization showed that the frequency of translocation induced by gametocidal chromosomes was 5.08%, which was higher than the frequency of irradiated hybrids (2.78%) and irradiated pollen (2.12%). The fluorescence in situ hybridization results of the translocation lines showed that A. cristatum chromosome 6P could be translocated to wheat ABD genome, and the recombination frequency was A genome > B genome > D genome. The alien A. cristatum chromosome 6P was translocated to wheat homoeologous groups 1, 2, 3, 5 and 6. We obtained abundant translocation lines that possessed whole-arm, terminal, segmental and intercalary translocations. Three 6PS-specific and four 6PL-specific markers will be useful to rapidly identify and trace the translocated fragments. The different wheat-A. cristatum 6P translocation lines obtained in this study can provide basic materials for analyzing the alien genes carried by chromosome 6P. The translocation line WAT33-1-3 and introgression lines WAI37-2 and WAI41-1, which had significant characteristics of multikernel (high numbers of kernels per spike), could be utilized as novel germplasms for high-yield wheat breeding.  相似文献   

2.

Main conclusion

This study explored 6P chromosomal translocations in wheat, and determined the effects of 6P intercalary chromosome segments on kernel number per wheat spike. Exploiting and utilising gene(s) from wild relative species has become an essential strategy for wheat crop improvement. In the translocation line Pubing2978, the intercalary 6P chromosome segment from Agropyron cristatum (L.) Gaertn. (2n = 4x = 28, PPPP) carried valuable multi-kernel gene(s) and was selected from the offspring of the common wheat plant Fukuho and the irradiated wheat-A. cristatum 6P disomic substitution line 4844-8. Genomic in situ hybridisation (GISH), dual-colour fluorescence in situ hybridisation (FISH), and molecular markers were used to detect the small segmental 6P chromosome in the wheat background and its translocation breakpoint. Cytological studies demonstrated that Pubing2978 was a T1AS-6PL-1AS·1AL intercalary translocation with 42 chromosomes. The breakpoint was located near the centromeric region on the wheat chromosome 1AS and was flanked by the markers SSR12 and SSR283 based on an F2 linkage map. The genotypic data, combined with the phenotypic information, implied that A. cristatum 6P chromosomal segment plays an important role in regulating the kernel number per spike (KPS). By comparison, the mean value of KPS in plants with translocations was approximately 10 higher than that in plants without translocations in three segregated populations. Moreover, the improvement in KPS was likely achieved by increasing both the spikelet number per spike (SNS) and the kernel number per spikelet. These excellent agronomic traits laid the foundation for further investigation of valuable genes and make the Pubing2978 line a promising germplasm for wheat breeding.
  相似文献   

3.
Creation of wheat-alien disomic addition lines and localization of desirable genes on alien chromosomes are important for utilization of these genes in genetic improvement of common wheat. In this study, wheat-Agropyron cristatum derivative line 5113 was characterized by genomic in situ hybridization (GISH) and specific-locus amplified fragment sequencing (SLAF-seq), and was demonstrated to be a novel wheat-A. cristatum disomic 6P addition line. Compared with its parent Fukuhokomugi (Fukuho), 5113 displayed multiple elite agronomic traits, including higher uppermost internode/plant height ratio, larger flag leaf, longer spike length, elevated grain number per spike and spikelet number per spike, more kernel number in the middle spikelet, more fertile tiller number per plant, and enhanced resistance to powdery mildew and leaf rust. Genes conferring these elite traits were localized on the A. cristatum 6P chromosome by using SLAF-seq markers and biparental populations (F1, BC1F1 and BC1F2 populations) produced from the crosses between Fukuho and 5113. Taken together, chromosomal localization of these desirable genes will facilitate transferring of high-yield and high-resistance genes from A. cristatum into common wheat, and serve as the foundation for the utilization of 5113 in wheat breeding.  相似文献   

4.
Wheat-Haynaldia villosa (L.) Schur, hybrid lines were tested as potential sources of resistance to colonization by the wheat curl mite, the vector of wheat streak mosaic virus. Two lines, Add 6V-1 and Sub 6V-1, were found to be mite-resistant. Fluorescence in situ hybridization using total genomic DNA, from H. villosa in the presence of unlabelled wheat DNA, confirmed that Add 6V-1 is a disomic wheat-H. villosa chromosome addition line. Sub 6V-1 turned out to be a homoeologous wheat-H. villosa chromosome translocation line rather than a substitution. The translocation in Sub 6V-1 occurred between a wheat chromosome and a chromosome from H. villosa through Robertsonian fusion of misdivided centromeres. Only the short arm of the group 6 chromosome of H. villosa was involved in the genetic control of mite resistance, a conclusion based on the genomic in situ hybridization signal and specific DNA fragments obtained by polymerase chain reaction.LRC Contribution No. 3879542  相似文献   

5.
小麦新种质4844中外源P染色质的GISH与SSR分析   总被引:6,自引:1,他引:6  
采用基因组原位杂交(GISH)检测和染色体组成分析方法,对大穗多花小麦新种质4844后代的15个株系进行遗传分析。结果发现,4844-12是1个稳定的异附加系,4844-2和4844-8是稳定的异代换系;对异代换系进行SSR分析表明,代换系中小麦的6D染色体被1对P染色体代换,说明这对冰草染色体与小麦6D染色体有部分同源关系,由此确定4844中的冰草染色体为6P;同时筛选出冰草6P染色体的4个SSR标记。  相似文献   

6.

Key message

Fluorescence in situ hybridization with probes for 45 cDNAs and five tandem repeats revealed homoeologous relationships of Agropyron cristatum with wheat. The results will contribute to alien gene introgression in wheat improvement.

Abstract

Crested wheatgrass (Agropyron cristatum L. Gaertn.) is a wild relative of wheat and a promising source of novel genes for wheat improvement. To date, identification of A. cristatum chromosomes has not been possible, and its molecular karyotype has not been available. Furthermore, homoeologous relationship between the genomes of A. cristatum and wheat has not been determined. To develop chromosome-specific landmarks, A. cristatum genomic DNA was sequenced, and new tandem repeats were discovered. Their distribution on mitotic chromosomes was studied by fluorescence in situ hybridization (FISH), which revealed specific patterns for five repeats in addition to 5S and 45S ribosomal DNA and rye subtelomeric repeats pSc119.2 and pSc200. FISH with one tandem repeat together with 45S rDNA enabled identification of all A. cristatum chromosomes. To analyze the structure and cross-species homoeology of A. cristatum chromosomes with wheat, probes for 45 mapped wheat cDNAs covering all seven chromosome groups were localized by FISH. Thirty-four cDNAs hybridized to homoeologous chromosomes of A. cristatum, nine hybridized to homoeologous and non-homoeologous chromosomes, and two hybridized to unique positions on non-homoeologous chromosomes. FISH using single-gene probes revealed that the wheat-A. cristatum collinearity was distorted, and important structural rearrangements were observed for chromosomes 2P, 4P, 5P, 6P and 7P. Chromosomal inversions were found for pericentric region of 4P and whole chromosome arm 6PL. Furthermore, reciprocal translocations between 2PS and 4PL were detected. These results provide new insights into the genome evolution within Triticeae and will facilitate the use of crested wheatgrass in alien gene introgression into wheat.
  相似文献   

7.

Key message

A physical map of Agropyron cristatum 2P chromosome was constructed for the first time and the novel powdery mildew resistance gene(s) from chromosome 2P was(were) also mapped.

Abstract

Agropyron cristatum (L.) Gaertn. (2n = 28, PPPP), a wild relative of common wheat, is highly resistant to powdery mildew. Previous studies showed that wheat-A. cristatum 2P disomic addition line II-9-3 displayed high resistance to powdery mildew, and the resistance was attributable to A. cristatum chromosome 2P. To utilize and physically map the powdery mildew resistance gene(s), 15 wheat-A. cristatum 2P translocation lines and three A. cristatum 2P deletion lines with different chromosomal segment sizes, obtained from II-9-3 using 60Co-γ ray irradiation, were characterized using cytogenetic and molecular marker analysis. A. cristatum 2P chromosomal segments in the translocations were translocated to different wheat chromosomes, including 1A, 4A, 5A, 6A, 7A, 1B, 2B, 3B, 7B, 3D, 4D, and 6D. A physical map of the 2P chromosome was constructed with 82 STS markers, consisting of nine bins with 34 markers on 2PS and eight bins with 48 markers on 2PL. The BC1F2 populations of seven wheat-A. cristatum 2P translocation lines (2PT-3, 2PT-4, 2PT-5, 2PT-6, 2PT-8, 2PT-9, and 2PT-10) were developed by self-pollination, tested with powdery mildew and genotyped with 2P-specific STS markers. From these results, the gene(s) conferring powdery mildew resistance was(were) located on 2PL bin FL 0.66–0.86 and 19 2P-specific markers were identified in this bin. Moreover, two new powdery mildew-resistant translocation lines (2PT-4 and 2PT-5) with small 2PL chromosome segments were obtained. The newly developed wheat lines with powdery mildew resistance and the closely linked molecular markers will be valuable for wheat disease breeding in the future.
  相似文献   

8.
In previous studies, our research team successfully transferred the Ns genome from Psathyrostachys huashanica Keng into Triticum aestivum (common wheat cv. 7182) using embryo culture. In the present study, one of these lines, i.e., hybrid progeny 25-10-3, which matured about 10–14 days earlier than its wheat parent, was assessed using sequenced characterized amplified region (SCAR) analysis, EST-SSR and EST-STS molecular markers, and genomic in situ hybridization (GISH). We found that this was a stable wheat-P. huashanica disomic addition line (2n = 44 = 22 II) and the results demonstrated that it was a 6Ns disomic chromosome addition line, but it exhibited many different features compared with previously characterized lines, i.e., a longer awn, early maturation, and no twin spikelets. It was considered to be an early-maturing variety based on the early stage of inflorescence initiation in field experiments and binocular microscope observations over three consecutive years. This characteristic was distinct, especially from the single ridge stage and double ridge stage until the glume stage. In addition, it had a higher photosynthesis rate and economic values than common wheat cv. 7182, i.e., more spikelets per spike, more florets per spikelet, more kernels per spike, and a higher thousand-grain weight. These results suggest that this material may comprise a genetic pool of beneficial genes or chromosome segments, which are suitable for introgression to improve the quality of common wheat.  相似文献   

9.
The narrow genetic background restricts wheat yield and quality improvement. The wild relatives of wheat are the huge gene pools for wheat improvement and can broaden its genetic basis. Production of wheat-alien translocation lines can transfer alien genes to wheat. So it is important to develop an efficient method to induce wheat-alien chromosome translocation. Agropyron cristatum (P genome) carries many potential genes beneficial to disease resistance, stress tolerance and high yield. Chromosome 6P possesses the desirable genes exhibiting good agronomic traits, such as high grain number per spike, powdery mildew resistance and stress tolerance. In this study, the wheat- A . cristatum disomic addition was used as bridge material to produce wheat- A . cristatum translocation lines induced by 60Co-γirradiation. The results of genomic in situ hybridization showed that 216 plants contained alien chromosome translocation among 571 self-pollinated progenies. The frequency of translocation was 37.83%, much higher than previous reports. Moreover, various alien translocation types were identified. The analysis of M2 showed that 62.5% of intergeneric translocation lines grew normally without losing the translocated chromosomes. The paper reported a high efficient technical method for inducing alien translocation between wheat and Agropyron cristatum . Additionally, these translocation lines will be valuable for not only basic research on genetic balance, interaction and expression of different chromosome segments of wheat and alien species, but also wheat breeding programs to utilize superior agronomic traits and good compensation effect from alien chromosomes.  相似文献   

10.
RFLP analyses were performed on wheat-Aegilops uniaristata Vis. addition and translocation lines to confirm the identity of added N-genome chromosomes. Complete 1N, 3N, 4N, 5N and 7N chromosome additions were identified, while the complete long arm and only part of the short arm was identified for chromosome 2N. There were no wheat-like 4/5 and 4/7 translocations in the Ae. uniaristata chromosomes. Chromosome 3N carried an asymmetric pericentric inversion, and the translocation line was a product of centric fusion between the long arms of chromosomes 3B and 3N. Chromosome-specific RAPD and microsatellite markers were also identified for all the added Ae. uniaristata chromosomes available in this set of addition lines. A new genomic in situ hybridization protocol combining pre-annealing of probe and blocking DNA and prehybridization with blocking DNA was developed to differentiate the very closely related genomes of Ae. uniaristata and wheat. Hybridization sites for the repetitive DNA sequences pAs1, pSc119.2 and pTa71 were identified on the N-genome chromosomes of Ae. uniaristata using the fluorescent in situ hybridization technique. Results showed deviation from the previously published ideogram of this species. A new ideogram, which shows the hybridization sites for the above sequences, was produced in which the chromosomes are arranged according to their homoeologous group. Received: 23 April 1999 / Accepted: 6 August 1999  相似文献   

11.
Summary Three lines derived from wheat (6x) x Agropyron elongatum (10x) that are resistant to wheat streak mosaic virus (WSMV) were analyzed by chromosome pairing, banding, and in situ hybridization. Line CI15321 was identified as a disomic substitution line where wheat chromosome 1D is replaced by Ag. elongatum chromosome 1Ae-1. Line 87-94-1 is a wheat-Ag. elongatum ditelosomic addition 1Ae-1L. Line CI15322 contains an Ag. elongatum chromosome, 1Ae-2, that substitutes for chromosome 1D. The short arm of 1Ae-2 paired with the short arm of 1Ae-1 at metaphase I (MI) in 82% of the pollen mother cells (PMCs). However, the long arms of these two chromosomes did not pair with each other. In CI15322, the long arm of chromosome 4D has an Agropyron chromosome segment which was derived from the distal part of 1Ae-1L. This translocation chromosome is designated as T4DS·4DL-1L. T4DS·4DL-1Ae-1L has a 0.73 m distal part of the long arm of 4D replaced by a 1.31 m distal segment from 1Ae-1L. The major WSMV resistance gene(s) in these lines is located on the distal part of 1Ae-1L.Contribution No. 92-599-J from the Kansas Agricutural Experiment Station, Kansas State University, Manhattan, Kansas, USA  相似文献   

12.
Eleven wheat-Ae. umbellulata recombinant lines involving chromosome 1U, including an important high-molecular-weight glutenin locus, were characterized by protein and RFLP markers. Four 1U-1A recombinants, one 1U-1B recombinant, two 1U deletions with either nullisomy for chromosome 1A or 1B and a 1U ditelosomic addition line were detected, while 3 recombinant lines involved 1U and non-homoeologous wheat chromosomes. Similar recombination events were found in independent lines, and no small segmental translocations of Ae. umbellulata chromatin were detected. Correlation of the markers with physical maps of the wheat-Ae. umbellulata breakpoints obtained using in situ hybridization enabled the marker order to be established on chromosomes 1A, 1B and 1U. The short arm of chromosome 1A probably differs from both 1U and 1B by one inversion. As now being found to be universal in the Triticeae, clustering of the genetical map in the distal physical regions of the group 1 chromosomes was found. Received: 3 June 1996 / Accepted: 14 June 1996  相似文献   

13.

Key message

Hybrid plants and a high frequency of maternal haploids were obtained using an efficient wheatbarley hybridization system (with new genotype combinations) and confirmed by several cytological and molecular tools.

Abstract

An efficient hybridization system between wheat (Triticum aestivum L.) and barley (Hordeum vulgare L.) is presented on the basis of three new genotype combinations. A particularly high, 14 % frequency of plant regeneration per florets was achieved in the wheat–barley genotype combination of ‘Sichuan’ × ‘Morex’. The genome composition in 42 of the 95 plants regenerated by embryo rescue was determined using ploidy analysis, genomic in situ hybridization and the application of chromosome arm-specific molecular markers (SSR and STS). A high overall frequency (76 %) of maternal (wheat) haploids was observed in all the tests for all three cross combinations. A major implication of this observation is that this new hybridization system represents a useful tool to study the mechanism of uniparental chromosome elimination in cereals.  相似文献   

14.
The genetic constitutions of chromosome 2M of Aegilops comosa and the derived wheat-Ae. comosa translocations were analyzed by molecular cytogenetic techniques. Hybridization of 15 RFLP markers covering the entire length of the group-2 chromosomes revealed that chromosome 2M was structurally rearranged compared to the homoeologous chromosomes of wheat by either a pericentric inversion or a terminal intrachromosomal translocation. The breakpoint of the rearrangement was located in a region between the loci Xpsr131 and Xcdo405, resulting in the translocation of 47% of 2MS to 2ML. This aberrant structure of 2M allowed homoeologous recombination between 2M and its wheat counterpart only in the translocated segment on 2ML. C-banding and genomic in situ hybridization analyses confirmed that all translocation chromosomes consisted of the complete 2MS arm, a large part of 2ML, and very small distal segments derived from 2AS or 2DS, as expected from the aberrant structure of chromosome 2M. Thus, the translocation in the line 2A-2M?4/2 can be described as T2AS-2M?1L???2M?1S and the translocations in the lines Compair and 2D-2M?3/8 as T2DS-2M?1L???2M?1S. RFLP analysis determined the breakpoints in these translocation chromosomes to be within the telomeric 16% of the wheat chromosome arms. The breakpoint of the 2A/2M translocation was between Xbcd348 and Xcdo783, and that of the 2D/2M translocation was between Xcdo783 and Xpsr666. Because the translocation chromosomes retain the structural aberration found in chromosome 2M, further exploitation of the wheat-Ae. comosa translocations for cultivar improvement is questionable.  相似文献   

15.

Main conclusion

A novel broad-spectrum powdery mildew resistance gene PmPB74 was identified in wheat- Agropyron cristatum introgression line Pubing 74. Development of wheat cultivars with broad-spectrum, durable resistance to powdery mildew has been restricted by lack of superior genetic resources. In this study, a wheat-A. cristatum introgression line Pubing 74, originally selected from a wide cross between the common wheat cultivar Fukuhokomugi (Fukuho) and Agropyron cristatum (L.) Gaertn (2n = 4x = 28; genome PPPP), displayed resistance to powdery mildew at both the seedling and adult stages. The putative alien chromosomal fragment in Pubing 74 was below the detection limit of genomic in situ hybridization (GISH), but evidence for other non-GISH-detectable introgressions was provided by the presence of three STS markers specific to A. cristatum. Genetic analysis indicated that Pubing 74 carried a single dominant gene for powdery mildew resistance, temporarily designated PmPB74. Molecular mapping showed that PmPB74 was located on wheat chromosome arm 5DS, and flanked by markers Xcfd81 and HRM02 at genetic distances of 2.5 and 1.7 cM, respectively. Compared with other lines with powdery mildew resistance gene(s) on wheat chromosome arm 5DS, Pubing 74 was resistant to all 28 Blumeria graminis f. sp tritici (Bgt) isolates from different wheat-producing regions of northern China. Allelism tests indicated that PmPB74 was not allelic to PmPB3558 or Pm2. Our work showed that PmPB74 is a novel gene with broad resistance to powdery mildew, and hence will be helpful in broadening the genetic basis of powdery mildew resistance in wheat.
  相似文献   

16.
Efforts to transfer wheat curl mite (Eriophyes tulipae Keifer) resistance from Lophopyrum ponticum 10X (Podb.) Love to bread wheat (Triticum aestivum L.) have resulted in the production of a number of cytogenetic stocks, including an addition line of 6Ag, a ditelo addition line, and a wheat-Lophopyrum translocation line. Characterization of these lines with C-banding, in situ hybridization with a Lophopyrum species-specific repetitive DNA probe (pLeUCD2), and Southern blotting with pLeUCD2 and a 5S ribosomal DNA probe (pScT7) confirmed that the distal portion of the short arm of 6Ag was translocated onto the distal portion of 5BS (5BL. 5BS-6AgS). It was also determined that the ditelo addition was an acrocentric chromosome of 6AgS.  相似文献   

17.
Aegilops umbellulata Zhuk. carries genes at Glu-U1 loci that code for a pair of high-molecular-weight glutenin subunits not found in common wheat, Triticum aestivum. Wheat-Ae. umbellulata recombinant lines were produced with the aim of transferring genes coding for glutenin subunits from Ae. umbellulata into wheat with minimal flanking material. We used fluorescent genomic in situ hybridization to evaluate the extent of recombination and to map physically the translocation breakpoints on 11 wheat-Ae. umbellulata recombinant lines. In situ hybridization was able to identify alien material in wheat and showed breakpoints not only near the centromeres but also along chromosome arms. To characterize and identify chromosomes further, including deletions along the 1U chromosome, we used simultaneous multiple target in situ hybridization to localize a tandemly repeated DNA sequence (pSc119.2) and the 18S–25S and 5S rRNA genes. One line contained an Ae. umbellulata telocentric chromosome and another two had different terminal deletions, mostly with some wheat chromosome rearrangements. Although from six independent original crosses, the other eight lines included only two types of intercalary wheat-Ae. umbellulata recombination events. Five occurred at the 5S rRNA genes on the short arm of the Ae. umbellulata chromosome with a distal wheat-origin segment, and three breakpoints were proximal to the centromere in the long arm, so most of the long arm was of Ae. umbellulata origin. The results allow characterization of recombination events in the context of the karyotype. They also facilitate the design of crossing programmes to generate lines where smaller Ae. umbellulata chromosome segments are transferred to wheat with the potential to improve bread-making quality by incorporating novel glutenin subunits without undesirable linked genes.  相似文献   

18.
Fusarium head blight (FHB) resistance was identified in the alien species Leymus racemosus, and wheat-Leymus introgression lines with FHB resistance were reported previously. Detailed molecular cytogenetic analysis of alien introgressions T01, T09, and T14 and the mapping of Fhb3, a new gene for FHB resistance, are reported here. The introgression line T09 had an unknown wheat-Leymus translocation chromosome. A total of 36 RFLP markers selected from the seven homoeologous groups of wheat were used to characterize T09 and determine the homoeologous relationship of the introgressed Leymus chromosome with wheat. Only short arm markers for group 7 detected Leymus-specific fragments in T09, whereas 7AS-specific RFLP fragments were missing. C-banding and genomic in situ hybridization results indicated that T09 has a compensating Robertsonian translocation T7AL·7Lr#1S involving the long arm of wheat chromosome 7A and the short arm of Leymus chromosome 7Lr#1 substituting for chromosome arm 7AS of wheat. Introgression lines T01 (2n = 44) and T14 (2n = 44) each had two pairs of independent translocation chromosomes. T01 had T4BS·4BL-7Lr#1S + T4BL-7Lr#1S·5Lr#1S. T14 had T6BS·6BL-7Lr#1S + T6BL·5Lr#1S. These translocations were recovered in the progeny of the irradiated line Lr#1 (T5Lr#1S·7Lr#1S). The three translocation lines, T01, T09, and T14, and the disomic addition 7Lr#1 were consistently resistant to FHB in greenhouse point-inoculation experiments, whereas the disomic addition 5Lr#1 was susceptible. The data indicated that at least one novel FHB resistance gene from Leymus, designated Fhb3, resides in the distal region of the short arm of chromosome 7Lr#1, because the resistant translocation lines share a common distal segment of 7Lr#1S. Three PCR-based markers, BE586744-STS, BE404728-STS, and BE586111-STS, specific for 7Lr#1S were developed to expedite marker-assisted selection in breeding programs.  相似文献   

19.
Chen G  Zheng Q  Bao Y  Liu S  Wang H  Li X 《Journal of biosciences》2012,37(1):149-155
Novel dwarfing germplasms and dwarfing genes are valuable for the wheat breeding. A novel semi-dwarf line, 31505-1, with reduced height compared with its common wheat parent, was derived from a cross between common wheat and Thinopyrum ponticum. Cytological studies demonstrated that 31505-1 contained 42 chromosomes and formed 21 bivalents at meiotic metaphase I. Genomic in situ hybridization (GISH) analysis showed that 31505-1 had no large Th. ponticum chromosome fragments. Fluorescence in situ hybridization (FISH) results revealed the absence of a pAs1 hybridization band on 2DL chromosome of 31505-1. Two SSR markers (Xwmc41 and Xcfd168) and two STS markers (Xmag4059 and Xmag3596), which were located on 2D chromosome, amplified unique bands of Th. Ponticum in 31505-1. These revealed presence of an introgressed Th. ponticum segment in 2DL chromosome of dwarf line 31505-1, although the alien segment could not be detected by GISH.  相似文献   

20.
The emergence of a new highly virulent race of stem rust (Puccinia graminis tritici), Ug99, rapid evolution of new Ug99 derivative races overcoming resistance of widely deployed genes, and spread towards important wheat growing areas now potentially threaten world food security. Exploiting novel genes effective against Ug99 from wild relatives of wheat is one of the most promising strategies for the protection of the wheat crop. A new source of resistance to Ug99 was identified in the short arm of the Aegilops searsii chromosome 3Ss by screening wheat- Ae. searsii introgression libraries available as individual chromosome and chromosome arm additions to the wheat genome. For transferring this resistance gene into common wheat, we produced three double-monosomic chromosome populations (3A/3Ss, 3B/3Ss and 3D/3Ss) and then applied integrated stem rust screening, molecular maker analysis, and cytogenetic analysis to identify resistant wheat-Ae. searsii Robertsonian translocation. Three Robertsonian translocations (T3AL·3SsS, T3BL·3SsS and T3DL·3SsS) and one recombinant (T3DS-3SsS·3SsL) with stem rust resistance were identified and confirmed to be genetically compensating on the basis of genomic in situ hybridization, analysis of 3A, 3B, 3D and 3SsS-specific SSR/STS-PCR markers, and C-banding. In addition, nine SSR/STS-PCR markers of 3SsS-specific were developed for marker-assisted selection of the resistant gene. Efforts to reduce potential linkage drag associated with 3SsS of Ae. searsii are currently under way.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号