共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
The dynamics of the learning equation, which describes the evolution of the synaptic weights, is derived in the situation
where the network contains recurrent connections. The derivation is carried out for the Poisson neuron model. The spiking-rates
of the recurrently connected neurons and their cross-correlations are determined self- consistently as a function of the external
synaptic inputs. The solution of the learning equation is illustrated by the analysis of the particular case in which there
is no external synaptic input. The general learning equation and the fixed-point structure of its solutions is discussed. 相似文献
3.
4.
The rise of resistances against antibiotics in bacteria is a major threat for public health and demands the development of novel antibacterial therapies. Infections with Pseudomonas aeruginosa are a severe problem for hospitalized patients and for patients suffering from cystic fibrosis. These bacteria can form biofilms and thereby increase their resistance towards antibiotics. The bacterial lectin LecB was shown to be necessary for biofilm formation and the inhibition with its carbohydrate ligands resulted in reduced amounts of biofilm. The natural ligands for LecB are glycosides of d-mannose and l-fucose, the latter displaying an unusual strong affinity. Interestingly, although mannosides are much weaker ligands for LecB, they do form an additional hydrogen bond with the protein in the crystal structure. To analyze the individual contributions of the methyl group in fucosides and the hydroxymethyl group in mannosides to the binding, we designed and synthesized derivatives of these saccharides. We report glycomimetic inhibitors that dissect the individual interactions of their saccharide precursors with LecB and give insight into the biophysics of binding by LecB. Furthermore, theoretical calculations supported by experimental thermodynamic data suggest a perturbed hydrogen bonding network for mannose derivatives as molecular basis for the selectivity of LecB for fucosides. Knowledge gained on the mode of interaction of LecB with its ligands at ambient conditions will be useful for future drug design. 相似文献
5.
Modulation of Synaptic Plasticity by Exercise Training as a Basis for Ischemic Stroke Rehabilitation
In recent years, rehabilitation of ischemic stroke draws more and more attention in the world, and has been linked to changes of synaptic plasticity. Exercise training improves motor function of ischemia as well as cognition which is associated with formation of learning and memory. The molecular basis of learning and memory might be synaptic plasticity. Research has therefore been conducted in an attempt to relate effects of exercise training to neuroprotection and neurogenesis adjacent to the ischemic injury brain. The present paper reviews the current literature addressing this question and discusses the possible mechanisms involved in modulation of synaptic plasticity by exercise training. This review shows the pathological process of synaptic dysfunction in ischemic roughly and then discusses the effects of exercise training on scaffold proteins and regulatory protein expression. The expression of scaffold proteins generally increased after training, but the effects on regulatory proteins were mixed. Moreover, the compositions of postsynaptic receptors were changed and the strength of synaptic transmission was enhanced after training. Finally, the recovery of cognition is critically associated with synaptic remodeling in an injured brain, and the remodeling occurs through a number of local regulations including mRNA translation, remodeling of cytoskeleton, and receptor trafficking into and out of the synapse. We do provide a comprehensive knowledge of synaptic plasticity enhancement obtained by exercise training in this review. 相似文献
6.
Rik Kooke Frank Johannes René Wardenaar Frank Becker Mathilde Etcheverry Vincent Colot Dick Vreugdenhil Joost J.B. Keurentjes 《The Plant cell》2015,27(2):337-348
Epigenetics is receiving growing attention in the plant science community. Epigenetic modifications are thought to play a particularly important role in fluctuating environments. It is hypothesized that epigenetics contributes to plant phenotypic plasticity because epigenetic modifications, in contrast to DNA sequence variation, are more likely to be reversible. The population of decrease in DNA methylation 1-2 (ddm1-2)-derived epigenetic recombinant inbred lines (epiRILs) in Arabidopsis thaliana is well suited for studying this hypothesis, as DNA methylation differences are maximized and DNA sequence variation is minimized. Here, we report on the extensive heritable epigenetic variation in plant growth and morphology in neutral and saline conditions detected among the epiRILs. Plant performance, in terms of branching and leaf area, was both reduced and enhanced by different quantitative trait loci (QTLs) in the ddm1-2 inherited epigenotypes. The variation in plasticity associated significantly with certain genomic regions in which the ddm1-2 inherited epigenotypes caused an increased sensitivity to environmental changes, probably due to impaired genetic regulation in the epiRILs. Many of the QTLs for morphology and plasticity overlapped, suggesting major pleiotropic effects. These findings indicate that epigenetics contributes substantially to variation in plant growth, morphology, and plasticity, especially under stress conditions. 相似文献
7.
Jonathan G. Heddle Faye M. Barnard Lois M. Wentzell Anthony Maxwell 《Nucleosides, nucleotides & nucleic acids》2013,32(8):1249-1264
Abstract DNA gyrase supercoils DNA in bacteria. The fact that it is essential in all bacteria and absent from eukaryotes makes it an ideal drug target. We discuss the action of coumarin and quinolone drugs on gyrase. In the case of coumarins, the drugs are known to be competitive inhibitors of the gyrase ATPase reaction. From a combination of structural and biochemical studies, the molecular details of the gyrase-coumarin complex are well established. In the case of quinolones, the drugs are thought to act by stabilising a cleavage complex between gyrase and DNA that arrests polymerases in vivo. The exact nature of the gyrase-quinolone-DNA complex is not known; we propose a model for this complex based on structural and biochemical data. 相似文献
8.
9.
Hebbian forms of synaptic plasticity are required for the orderly development of sensory circuits in the brain and are powerful modulators of learning and memory in adulthood. During development, emergence of Hebbian plasticity leads to formation of functional circuits. By modeling the dynamics of neurotransmitter release during early postnatal cortical development we show that a developmentally regulated switch in vesicle exocytosis mode triggers associative (i.e. Hebbian) plasticity. Early in development spontaneous vesicle exocytosis (SVE), often considered as ''synaptic noise'', is important for homogenization of synaptic weights and maintenance of synaptic weights in the appropriate dynamic range. Our results demonstrate that SVE has a permissive, whereas subsequent evoked vesicle exocytosis (EVE) has an instructive role in the expression of Hebbian plasticity. A timed onset for Hebbian plasticity can be achieved by switching from SVE to EVE and the balance between SVE and EVE can control the effective rate of Hebbian plasticity. We further show that this developmental switch in neurotransmitter release mode enables maturation of spike-timing dependent plasticity. A mis-timed or inadequate SVE to EVE switch may lead to malformation of brain networks thereby contributing to the etiology of neurodevelopmental disorders. 相似文献
10.
11.
REV1 is an evolutionarily conserved translesion synthesis (TLS) DNA polymerase and an assembly factor key for the recruitment of other TLS polymerases to DNA damage sites. REV1-mediated recognition of ubiquitin in the proliferative cell nuclear antigen is thought to be the trigger for TLS activation. Here we report the solution NMR structure of a 108-residue fragment of human REV1 encompassing the two putative ubiquitin-binding motifs UBM1 and UBM2 in complex with ubiquitin. While in mammals UBM1 and UBM2 are both required for optimal association of REV1 with replication factories after DNA damage, we show that only REV1 UBM2 binds ubiquitin. Structure-guided mutagenesis in Saccharomyces cerevisiae further highlights the importance of UBM2 for REV1-mediated mutagenesis and DNA damage tolerance. 相似文献
12.
Grb14, a member of the Grb7-10-14 family of cytoplasmic adaptor proteins, is a tissue-specific negative regulator of insulin signaling. Grb7-10-14 contain several signaling modules, including a Ras-associating (RA) domain, a pleckstrin-homology (PH) domain, a family-specific BPS (between PH and SH2) region, and a C-terminal Src-homology-2 (SH2) domain. We showed previously that the RA and PH domains, along with the BPS region and SH2 domain, are necessary for downregulation of insulin signaling. Here, we report the crystal structure at 2.4-Å resolution of the Grb14 RA and PH domains in complex with GTP-loaded H-Ras (G12V). The structure reveals that the Grb14 RA and PH domains form an integrated structural unit capable of binding simultaneously to small GTPases and phosphoinositide lipids. The overall mode of binding of the Grb14 RA domain to activated H-Ras is similar to that of the RA domains of RalGDS and Raf1 but with important distinctions. The integrated RA-PH structural unit in Grb7-10-14 is also found in a second adaptor family that includes Rap1-interacting adaptor molecule (RIAM) and lamellipodin, proteins involved in actin-cytoskeleton rearrangement. The structure of Grb14 RA-PH in complex with H-Ras represents the first detailed molecular characterization of tandem RA-PH domains bound to a small GTPase and provides insights into the molecular basis for specificity. 相似文献
13.
Keegan?E. Hines 《Biophysical journal》2015,108(9):2103-2113
Bayesian inference is a powerful statistical paradigm that has gained popularity in many fields of science, but adoption has been somewhat slower in biophysics. Here, I provide an accessible tutorial on the use of Bayesian methods by focusing on example applications that will be familiar to biophysicists. I first discuss the goals of Bayesian inference and show simple examples of posterior inference using conjugate priors. I then describe Markov chain Monte Carlo sampling and, in particular, discuss Gibbs sampling and Metropolis random walk algorithms with reference to detailed examples. These Bayesian methods (with the aid of Markov chain Monte Carlo sampling) provide a generalizable way of rigorously addressing parameter inference and identifiability for arbitrarily complicated models. 相似文献
14.
Sitobion avenae (F.) can survive on various plants in the Poaceae, which may select for highly plastic genotypes. But phenotypic plasticity was often thought to be non-genetic, and of little evolutionary significance historically, and many problems related to adaptive plasticity, its genetic basis and natural selection for plasticity have not been well documented. To address these questions, clones of S. avenae were collected from three plants, and their phenotypic plasticity under alternative environments was evaluated. Our results demonstrated that nearly all tested life-history traits showed significant plastic changes for certain S. avenae clones with the total developmental time of nymphs and fecundity tending to have relatively higher plasticity for most clones. Overall, the level of plasticity for S. avenae clones’ life-history traits was unexpectedly low. The factor ‘clone’ alone explained 27.7–62.3% of the total variance for trait plasticities. The heritability of plasticity was shown to be significant in nearly all the cases. Many significant genetic correlations were found between trait plasticities with a majority of them being positive. Therefore, it is evident that life-history trait plasticity involved was genetically based. There was a high degree of variation in selection coefficients for life-history trait plasticity of different S. avenae clones. Phenotypic plasticity for barley clones, but not for oat or wheat clones, was frequently found to be under significant selection. The directional selection of alternative environments appeared to act to decrease the plasticity of S. avenae clones in most cases. G-matrix comparisons showed significant differences between S. avenae clones, as well as quite a few negative covariances (i.e., trade-offs) between trait plasticities. Genetic basis and evolutionary significance of life-history trait plasticity were discussed. 相似文献
15.
Guillermo Abascal-Palacios Christina Schindler Adriana L. Rojas Juan S. Bonifacino Aitor Hierro 《Structure (London, England : 1993)》2013,21(9):1698-1706
- Download : Download high-res image (312KB)
- Download : Download full-size image
16.
Phyllotactic Patterns: A Biophysical Mechanism for their Origin 总被引:7,自引:1,他引:7
The patterns seen in plant shoots and flowers, phyllotaxis,originate in an annular region. They are typically propagatedinward from this ring-like area. We show here that an initialundulating periodic pattern (a whorl of hump-likeorgans) can arise in a flat unstructured annulus. The patternarises not from pre-localized pushes from below, but ratheras a spontaneous physical response of the expanding surfaceto lateral constraint. Physical properties of a uniform formativelayer (tunica) and a uniform substratum (corpus) provide thewavelength of the undulation and hence the number of organs.Establishment of the parameters for this buckling, as well asthe follow-through of organ development, is biological. We propose,however, that at the moment of periodic pattern initiation theplant tissue simply manifests the spontaneous but complex propertiesof a two-layered inanimate sheet. Phyllotaxis; tunica; corpus; patterning; shoot apex; morphogenesis; biophysics; buckling 相似文献
17.
18.
The results of expressing a constitutive form of a prominent synaptic kinase in transgenic mice suggest how there can be a sliding threshold for synapse modification, an important element in some learning theories. 相似文献
19.
20.
The focus of the cell biology field is now shifting from characterizing cellular activities to organelle and molecular behaviors. This process accompanies the development of new biophysical visualization techniques that offer high spatial and temporal resolutions with ultra-sensitivity and low cell toxicity. They allow the biology research community to observe dynamic behaviors from scales of single molecules, organelles, cells to organoids, and even live animal tissues. In this review, we summarize these biophysical techniques into two major classes: the mechanical nanotools like dynamic force spectroscopy (DFS) and the optical nanotools like single-molecule and super-resolution microscopy. We also discuss their applications in elucidating molecular dynamics and functionally mapping of interactions between inter-cellular networks and intra-cellular components, which is key to understanding cellular processes such as adhesion, trafficking, inheritance, and division. 相似文献