首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary Hyphal elongation, chitin synthesis in vivo, and invertase secretion inPhycomyces blakesleeanus were all inhibited almost instantly by the addition of 5–10 M calcium ionophore A 23187. Protein biosynthesis was inhibited in these conditions by 30–50%. The ionophore did not affect cell respiration for at least 40 min. Effect on chitin biosynthesis was not due to alterations of the chitin synthetase levels or its activity; nor to impairement in GlcNAc metabolism. In drug-treated cells the number of apical vesicles was severely reduced even at very short periods of incubation, and these low numbers remained constant for at least 60 min of incubation with the ionophore. We suggest that the ionophore collapses the cellular calcium gradient and/or interferes with the normal electrical transhyphal current. As a consequence, formation and migration of apical vesicles are inhibited. These results are further evidence of the role of vesicles in fungal tip growth and exhibit the fact that active chitin synthetase is short-lived in vivo demanding its continuous supply by chitosomes to the cell surface.Abbreviations GlcNAc N-acetylglucosamine - TCA trichloroacetic acid - UDPGIcNAc uridine diphosphate-N-acetylglucosamine - DMSO dimethylsulfoxide  相似文献   

2.
The chitin synthetase of Phycomyces blakesleeanus mycelium is a particulate enzyme sedimenting mostly at 1000xg. The activity in crude extracts or cellular fractions can be increased more than tenfold by mild trypsin treatment. Plotting the reaction velocity versus UDP-N-acetylglucosamine concentration yields a sigmoidal curve. N-acetylglucosamine, which greatly stimulates the enzyme, changes the kinetics to an almost normal hyperbolic relationship.The enzyme is nearly absent in dormant spores and is synthesized de novo in germinating spores (from 4 h germination on). Trypsin treatment of extracts from germinating spores to assay the synthesis of the proenzyme did not reveal an earlier synthesis of the zymogen, which therefore might have some activity of its own.Abbreviations Used UDP-GlcNAc Uridinediphosphate-N-acetylglucosamine - GlcNAc N-acetylglucosamine - Chitin synthetase UDP-2-acetylamino-deoxyglucosyltransferase (EC 2.4.1.16)  相似文献   

3.
Levels of basal chitin synthetase in cell-free extracts from Phycomyces blakesleeanus were reduced by breakage of cells in the presence of EDTA or EGTA. Addition of Ca2+ to these extracts activated chitin synthetase. Maximal activation was obtained after 2 h at a Ca2+ concentration of 2–5 mM. Activation by calcium was not reduced by any protease inhibitor tested but benzamidine, whereas the weak proteolytic activity of the extracts was inhibited by antipain. Larger levels of chitin synthetase activation were obtained by the simultaneous addition of calcium and calmodulin in most, but not all extracts. This further activation by calmodulin was prevented by TFP. ATP or cAMP did not stimulate activation by calcium or calcium-calmodulin.Abbreviations EGTA ethylene glycol-bis(B-aminoethylether)-N,NN-tetraacetic acid - GlcNAc N-acetyl-d-glucosamine - PMSF phenylmethylsulfonyl fluoride - SBTI soybean trypsin inhibitor - TFP trifluoperazine - TLCK N-p-tosyl-l-lysine choromethyl ketone - UDPGlcNAc uridine diphosphate N-acetyl-d-glucosamine  相似文献   

4.
Chitosomes from the wall-less “slime” mutant of Neurospora crassa   总被引:3,自引:0,他引:3  
Cell-free extracts from the wall-less slime mutant of Neurospora crassa and the mycelium of wild type exhibit similar chitin synthetase properties in specific activity, zymogenicity and a preferential intracellular localization of chitosomes. The yield of chitosomal chitin synthetase from sline cells was essentially the same irrespective of cell breakage procedure (osmotic lysis or ballistic disruption) —an indication that chitosomes are not fragments of larger membranes produced by harsh (ballistic) disruption procedures. The plasma membrane fraction, isolated from slime cells treated with concanavalin A, contained only a minute portion of the total chitin synthetase of the fungus. Most of the activity was in the cytoplasmic fraction; isopycnic sedimentation of this fraction on a sucrose gradient yielded a sharp band of chitosomes with a buoyant density=1.125 g/ cm3. Approximately 76% of the total chitin synthetase activity of the slime mutant was recovered in the chitosome band. Because of their low density, chitosomes could be cleanly separated from the rest of the membranous organelles of the fungus. Apparently, the lack of a cell wall in the slime mutant is not due to the absence of either chitosomes or zymogenic chitin synthetase.Abbreviations Con A concanavalin A - d buoyant density in g/cm3 - GlcNAc N-acetyl-D-glucosamine - MES 2-[N-morpholino]ethanesulfonic acid - UDP-GlcNAc uridine diphosphate N-acetyl-D-glucosamine  相似文献   

5.
The sub-cellular distribution of chitin synthetase was studied in homogenates of Saccharomyces cerevisiae protoplasts. Use of a mild disruption method minimized rupture of vacuoles and ensuing contamination of subcellular fractions by vacoular proteinases. After fractionation of whole or partially purified homogenates through an isopycnic sucrose gradient chitin synthetase activity was found to be distributed between two distinct particulate fractions with different buoyant density and particle diameter. When whole homogenates were used, about 52% of the chitin synthetase loaded was localized in a microvesicular population identified as chitosomes (diameter 40–110 nm; bouyant density (d) = 1.146 g/cm3). Another vesicular population containing 26% of the activity was identified as plasma membrane vesicles because of its large mean diameter (260 nm), its high buoyant density (d = 1.203 g/cm3) and by the presence of the vanadate-sensitive ATPase activity. Moreover, after surface labeling of protoplasts with 3H-concanavalin A, the label cosedimented with the presumed plasma membrane vesicles. There was a negligible cross-contamination of the chitosome fraction by yeast plasma membrane markers. In both the plasma membrane and the chitosome fractions, the chitin synthetase was stable and essentially zymogenic. Activation of the chitosome fraction produces microfibrils 100–250 nm in length. Our results support the idea that chitosomes do not originate by plasma membrane vesiculation but are defined sub-cellular organelles containing most of the chitin synthetase in protoplasts of Saccharomyces cerevisiae.  相似文献   

6.
Summary This study was undertaken to assess the distribution and localization of chitin synthetase in a fungal cell and to evaluate the sedimentation behavior of chitosomes (microvesicular containers of chitin synthetase). Chitosomes were isolated from cell-free extracts of yeast cells ofMucor rouxii by rate-zonal and isopycnic sedimentation in sucrose density gradients. Because of their small size and low density, chitosomes were effectively separated from other subcellular particles. Rate-zonal sedimentation was a suitable final step for isolating chitosomes as long as ribosomes had been eliminated by enzymic digestion. By isopycnic centrifugation, chitosomes could be separated directly from a crude cell-free extract; they cosedimented with a sharp symmetrical peak of chitin synthetase at a buoyant density of d=1.14–1.15g/cm3; the only significant contaminants were particles of fatty acid synthetase complex. From such sedimentations, we estimated that 80–85% of the chitin synthetase activity in the cell-free extract was associated with chitosomes; the rest was found in two smaller peaks sedimenting at d=1.19–1.20 and d=1.21–1.22 (5–10%), and in the cell wall fraction (5–10%). By consecutive rate-zonal and isopycnic sedimentations, chitosome preparations with relatively few contaminating particles were obtained. Potassium/sodium phosphate buffer (pH 6.5)+MgCl2 was the most effective isolation medium for chitosomes. Other buffers such as TRIS-MES+MgCl2 led to massive aggregation of chitosomes and a change in sedimentation properties. This tendency of chitosomes to aggregate could explain why most of the chitin synthetase activity of a fungus is sometimes found associated with other subcellular structures,e.g., plasma membrane.  相似文献   

7.
Mutants resistant to nikkomycin, an inhibitor of chitin biosynthesis, were isolated after exposure of wild-type spores of the fungus Phycomyces blakesleeanus to N-methyl-N-nitro-N-nitrosoguanidine. Genetic analysis revealed that nikkomycin resistance was due to mutations in a single gene, chsA. Mutants and wild type grew equally well in the absence of nikkomycin. In contrast to the wild type, whose spore germination and mycelial growth were inhibited by 5 M nikkomycin, chsA mutants grew reasonably well in the presence of 50 M nikkomycin. Chitin synthesis in vivo was much less affected by the drug in the mutants than in the wild type. Resistance was not due to impaired uptake or detoxification of the drug. Analysis of the kinetics of chitin synthesis in vitro showed that the mutants had a decreased Ka for the allosteric activator, N-acetylglucosamine, and gross alterations in nikkomycin inhibition kinetics. These results indicate that chsA is the structural gene for chitin synthetase, or at least for the polypeptide that bears the catalytic and allosteric sites.  相似文献   

8.
Abstract Subcellular distribution of chitin synthetase has been studied in germ tubes of Candida albicans . Two fractions with synthetase activity were separated from cell homogenates: (i) a mixed membrane fraction where the enzyme, partly in an active form, is associated with the plasma membrane (isopycnic centrifugation of mixed membrane fraction on linear sucrose gradients resolved a unique peak of activity matching with [3H]ConA-labelled membranes at a buoyant density of 1.195 g/ml); and (ii) a cytoplasmic fraction containing fully zymogenic enzyme associated with particles whose buoyant density (determined by isopycnic centrifugation on linear sucrose gradients) depended on the cell breakage conditions. The actual cytoplasmic fraction-enzyme may correspond to particles with buoyant density 1.135 g/ml (chitosomes), whereas the enzyme particles with other densities (1.085 and 1.165 g/ml) probably originated during cell disruption, as has been reported previously to occur during the preparation of yeast cell homogenates.  相似文献   

9.
Blastocladiella emersonii zoospores are not encased by a cell wall and do not detectably synthesize or contain chitin; accompanying de novo cell wall formation during zoospore encystment, chitin rapidly accumulates and is incorporated into the cell wall. Essential for understanding this abrupt change in chitin synthesis is the location of zoospore chitin synthetase. The enzyme has previously been reported to the sequestered with distinctive cytoplasmic organelles (gamma particles) characteristic for the zoospore cell type. Using similar differential and equilibrium density centrifugation procedures to those reported previously, we have observed the vast majority of zoospore homogenate chitin synthetase activity in fractions distinct from the gamma particle-enriched fractions. Over 90% of the homogenate enzyme activity could be recovered in a sucrose buoyant density region (1.14–1.18 g/ml) containing membranous elements and well separated from the region enriched for gamma particles (1.30–1.34 g/ml). When zoospores were surface-labelled with [3H]concanavalin A prior to homogenization, the buoyant density regions of radioactivity and of chitin synthetase activity exhibited nearly complete coincidence. At least the bulk of zoospore chitin synthetase appears to be located at the plasma membrane, rather than in gamma particles.  相似文献   

10.
We isolated three nikkomycin-resistant mutants of the dimorphic fungusM. rouxii which were physiologically characterized regarding their response to yeast-phase inducing conditions and their sensitivity to bacilysin. Mutant strains G21 and G23, showed a qualitatively normal, though delayed, dimorphic transition and partial cross-resistance to bacilysin. Mutant strain G27 showed an altered dimorphism, producing a high proportion (50%) of hyphal cells, and a wild-type sensitivity to bacilysin. Cell-free extracts from this mutant exhibited an activity of both basal and protease-activated chitin synthetase which was overexpressed as compared with the parental strain and mutants G21 and G23. Results are discussed in terms of the different genetic background of the mutants.Abbreviations NTG N-methyl-N-nitro-N-nitrosoguanidine - UDP-GlcNAc uridine 5-diphospho-N-acetylglucosamine - GlcNAc N-acetylglucosamine  相似文献   

11.
The sub-cellular distribution of chitin synthetase was studied in homogenates of Saccharomyces cerevisiae protoplasts. Use of a mild disruption method minimized rupture of vacuoles and ensuing contamination of subcellular fractions by vacuolar proteinases. After fractionation of whole or partially purified homogenates through an isopycnic sucrose gradient chitin synthetase activity was found to be distributed between two distinct particulate fractions with different buoyant density and particle diameter. When whole homogenates were used, about 52% of the chitin synthetase loaded was localized in a microvesicular population identified as chitosomes (diameter 40-110 nm; buoyant density (d) = 1.146 g/cm3). Another vesicular population containing 26% of the activity was identified as plasma membrane vesicles because of its large mean diameter (260 nm), its high buoyant density (d = 1.203 g/cm3) and by the presence of the vanadate-sensitive ATPase activity. Moreover, after surface labeling of protoplasts with 3H-concanavalin A, the label cosedimented with the presumed plasma membrane vesicles. There was a negligible cross-contamination of the chitosome fraction by yeast plasma membrane markers. In both the plasma membrane and the chitosome fractions, the chitin synthetase was stable and essentially zymogenic. Activation of the chitosome fraction produces microfibrils 100-250 nm in length. Our results support the idea that chitosomes do not originate by plasma membrane vesiculation but are defined sub-cellular organelles containing most of the chitin synthetase in protoplasts of Saccharomyces cerevisiae.  相似文献   

12.
Chitinase activity in germinating cells (4 h cultures) ofMucor rouxii was studied. The enzyme activity was recovered in a high speed supernatant of cell homogenates. No activity was detected in the mixed membrane fraction or in the cell walls. Maximum activity was observed at pH 7.6 and at 30–35°C using the chromogenic assay with chitin azure. The latter was digested by GS-chitinase in a manner dependent on substrate concentration and time of incubation. As with other chitinases, GS-chitinase was much more effective against nascent than against preformed chitin. The main product of nascent chitin digestion was diacetylchitobiose, although significant amounts of the trimer were also detected in the hydrolyzates. Allosamidin, an insect and fungal chitinase inhibitor, strongly inhibited hydrolysis of nascent chitin but not of chitin azure by GS-chitinase. The drug failed to inhibit the germination and the ensuing growth of the fungus. Results are discussed in terms of the possible role of GS-chitinase in germination.Abbreviations UDP-GlcNAc uridine 5-diphospho-N-acetylglucosamine - GlcNAc N-acetylglucosamine - GlcNAcP N-acetylglucosamine phosphate - PMB phosphate-magnesium buffer - C2 N, N-diacetylchitobiose - C3 N, N, N-triacetylchitotriose - RVB remazol brilliant blue - DPC descending paper chromatography - MU(Ch)3 4-methylumbelliferyl-N - N N-triacetylchitotriose  相似文献   

13.
An intracellular glycogen was purified and characterized from the acetoclastic bacteria Methanothrix str. FE, its average chain length was about 13 glucose residues. Acetyl-CoA was shown to be synthesized by the action of acetate thiokinase; in addition pyruvate synthase, phosphoenolpyruvate synthetase and enzymes of gluconeogenesis were detected in cell extracts. For glycogen synthase activity, both adenosine diphosphate glucose and uridine diphosphate glucose were used as glycosyl donors, apparent K m were, respectively, 8 M for ADPGlc and 625 M for UDPGLe, at the opposite the V m were the same for both precursors. This was in accordance with competition experiments and strongly suggested that only one glucosyl transferase was involved and that ADPGlc was the physiological glycosyl donor in Methanothrix str. FE. In addition branching enzyme activity (1-4-glucan-6-glucosyl transferase) was detected in cell extracts.Abbreviations ADPGlc adenosine diphosphate glucose - UDPGlc uridine diphosphate glucose  相似文献   

14.
M. Thom  R. A. Leigh  A. Maretzki 《Planta》1986,167(3):410-413
Vacuoles isolated from the storage roots of red beet (Beta vulgaris L.) accumulate sucrose via two different mechanisms. One mechanism transports sucrose directly, and its rate is increased by the addition of MgATP. The other mechanism utilizes uridine diphosphate glucose (UDP-glucose) to synthesize and simultaneously transport sucrose phosphate and sucrose into the vacuole. This group translocation mechanism has also been found in sugarcane vacuoles. As in sugarcane, the beet group translocator does not require fructose 6-phosphate, nor is the latter substance transported into the vacuole. The uptake of UDP[14C]glucose in inhibited by high concentrations of osmoticum.Abbreviations EDTA ethylenediaminetetraacetic acid - Hepes 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid - UDP uridine 5-diphosphate  相似文献   

15.
(1–3) glucan and chitin synthases were studied in spontaneously produced protoplasts and in the mycelium (hyphal body) of the entomopathogenic Entomophthorale species Entomophaga aulicae, Conidiobolus obscurus and Entomophthora muscae. The absence of wall in protoplasts was correlated to an absence of chitin synthase and to a very low (1–3) glucan synthase activity, whereas these two polysaccharide synthases were present and active in the walled hyphal bodies. Physicochemical properties of chitin and (1–3) glucan synthases such as localization, optimum pH and temperature, activation by disaccharides and proteases were similar to those found in other fungi unable to spontaneously produce protoplasts and could not be related to the ability for protoplastic Entomophthorale species to produce and proliferate under a protoplast form. The absence or the low chitin and glucan synthase activites in Entomophthorale protoplasts was not due to an absence of proteolytic activation of the enzyme. However, all protoplast fractions contained inhibitory substances of glucan and chitin synthase activities. These inhibitors were stable and specific of the protoplast stage. They were not glucanase nor chitinase. These results suggest that the absence of wall synthesis in Entomophthorale protoplasts is due to a continuous inhibition of (1–3) glucan and chitin synthase activities by intracellular compounds and also for glucan synthase by protoplast medium constituents such as NaCl and fetal calf serum.Abbreviations BSA bovine serum albumin - DFP diisopropylfluorophosphate - EDTA ethylenediamine tetraaoetic acid - FCS fetal calf serum - GlcNAc N-acetylglucosamine - TCA trichloroacetic acid - 2 k pellet 2,000 g wall fraction - 140 k pellet 140,000 g particulate fraction - 140 k supernatant 140,000 g soluble fraction  相似文献   

16.
Martin Kreis 《Planta》1980,148(4):412-416
The activity of soluble starch synthetase (ADP-glucose: -1,4-glucan -4-glucosyltransferase) in the non-purified extract from 16 day-old Bomi barley endosperms (Hordeum vulgare L.) was low and the reaction was non-linear when plotted against protein concentration. Starch synthetase was purified by ammonium sulfate precipitation and DEAE-cellulose chromatography and separated into four fractions. In the absence of an added carbohydrate primer two of the four fractions catalized the synthesis of a methanol-precipitable -glucan when high concentrations of sodium citrate and bovine serum albumim were added. The rate of -glucan synthesis by the unprimed reaction was higher than for the primed reaction. The four enzyme fractions were active with ADP-Glc, but not with UDP-Glc, both in the primed and in the unprimed reaction.Abbreviations ADP-Glc adenosine diphosphate glucose - DEAE-cellulose diethylaminoethyl-cellulose - DDT dithiothreitol - EDTA ethylenediaminetetraacetic acid - GSH glutathione - kat katal (1 mol s-1) - TRIS tris-(hydroxymethyl)-aminomethane - UDP-Glc uridine diphosphate glucose  相似文献   

17.
Subcellular distribution of chitin synthetase has been studied in germ tubes of Candida albicans. Two fractions with synthetase activity were separated from cell homogenates: (i) a mixed membrane fraction where the enzyme, partly in an active form, is associated with the plasma membrane (isopycnic centrifugation of mixed membrane fraction on linear sucrose gradients resolved a unique peak of activity matching with [3H]ConA-labelled membranes at a buoyant density of 1.195 g/ml); and (ii) a cytoplasmic fraction containing fully zymogenic enzyme associated with particles whose buoyant density (determined by isopycnic centrifugation on linear sucrose gradients) depended on the cell breakage conditions. The actual cytoplasmic fraction-enzyme may correspond to particles with buoyant density 1.135 g/ml (chitosomes), whereas the enzyme particles with other densities (1.085 and 1.165 g/ml) probably originated during cell disruption, as has been reported previously to occur during the preparation of yeast cell homogenates.  相似文献   

18.
Membrane fractions from bean hypocotyl or callus incorporate arabinose from UDP--L-arabinose into arabinan and xylose from UDP--D-xylose into xylan. The control of these syntheses has been studied during xylogenesis in stele and in xylogenesis induced in callus tissue. Induction of arabinan synthetase activity occurs during division and extension growth while that of xylan synthetase occurs subsequently during the period of secondary thickening of the cell wall. The xylan synthetase induction is correlated with the induction of phenylalanine ammonia-lyase and with lignin synthesis.Abbreviations PAL phenylalanine ammonia-lyase - NAA 3-naphthylacetic acid - CMD medium supplemented with 2,4-dichlorophenoxy-acetic acid and coconut milk - IM induction medium - MM maintenance medium - EDTA ethylendiamine tetracetate - TCA trichloroacetic acid - DEAE diethylaminoethyl - TLC thin layer chromatography - UDP uridine diphosphate  相似文献   

19.
Stability of chitin synthetase in cell-free extracts from mycelial fungi was markedly improved by the presence of sucrose in the homogenization media. Breakage of mycelium in sucrose-containing buffer yielded enzyme preparations from which chitosomal chitin synthetase could be purified by a procedure involving ammonium sulfate precipitation, gel filtration and centrifugation in sucrose density gradients. Purified chitosomes catalyzed the synthesis of chitin microfibrils in vitro upon incubation with substrate and activators. Chitosomal chitin synthetase from the filamentous form of M. rouxii was similar to the enzyme from yeast cells, except for the poorer stability and diminished sensitivity to GlcNAc activation of the former.  相似文献   

20.
A bacterial strain secreting potent chitinolytic activity was isolated from shrimp-pond water by enrichment culture using colloidal crab-shell chitin as the major carbon source. The isolated bacterium, designated asAeromonas sp No. 16 exhibited a rod-like morphology with a polar flagellum. Under optimal culture conditions in 500-ml shaker flasks, it produced a chitinolytic activity of 1.4 U ml–1. A slightly higher enzymatic activity of 1.5 U ml–1 was obtained when cultivation was carried out in a 5-liter jar fermentor using a medium containing crystalline chitin as the carbon source. The secretion of the enzyme(s) was stimulated by several organic nitrogenous supplements. Most carbon sources tested (glucose, maltose, N-acetylglucosamine, etc) enhanced cell growth, but they slightly inhibited enzyme secretion. Glucosamine (0.5% w/v) severely inhibited cell growth (16% of the control), but it did not significantly affect enzyme secretion. The production of chitinolytic enzymes was pH sensitive and was enhanced by increasing the concentration of colloidal chitin to 1.5%. The observed chitinolytic activity could be attributed to the presence of -N-acetylglucosaminidase and chitinase. Chitinase was purified by ammonium sulfate fractionation and preparative gel electrophoresis to three major bands on SDS-PAGE. An in-gel enzymatic activity assay indicated that all three bands possessed chitinase activity. Analysis of the enzymatic products indicated that the purified enzyme(s) hydrolyzed colloidal chitin predominantly to N,N-diacetyl-chitobiose and, to a much lesser extent, the mono-, tri, and tetramer of N-acetylglucosamine, suggesting that they are mainly endochitinases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号