首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To study the physiological responses induced by immersing in cold water various areas of the upper limb, 20 subjects immersed either the index finger (T1), hand (T2) or forearm and hand (T3) for 30 min in 5°C water followed by a 15-min recovery period. Skin temperature of the index finger, skin blood flow (Qsk) measured by laser Doppler flowmetry, as well as heart rate (HR) and mean arterial blood pressure (ˉBPa) were all monitored during the test. Cutaneous vascular conductance (CVC) was calculated as Qsk / ˉBPa. Cold induced vasodilatation (CIVD) indices were calculated from index finger skin temperature and CVC time courses. The results showed that no differences in temperature, CVC or cardiovascular changes were observed between T2 and T3. During T1, CIVD appeared earlier compared to T2 and T3 [5.90 (SEM 0.32) min in T1 vs 7.95 (SEM 0.86) min in T2 and 9.26 (SEM 0.78) min in T3, P < 0.01]. The HR was unchanged in T1 whereas it increased significantly at the beginning of T2 and T3 [+13 (SEM 2) beats · min−1 in T2 and +15 (SEM 3) beats · min−1 in T3, P < 0.01] and then decreased at the end of the immersion [−12 (SEM 3) beats · min−1 in T2, and −15 (SEM 3) beats · min−1 in T3, P < 0.01]. Moreover, ˉBPaincreased at the beginning of T1 but was lower than in T2 and T3 [+9.3 (SEM 2.5) mmHg in T1, P < 0.05;  +20.6 (SEM 2.6) mmHg and 26.5 (SEM 2.8) mmHg in T2 and T3, respectively, P < 0.01]. The rewarming during recovery was faster and higher in T1 compared to T2 and T3. These results showed that general and local physiological responses observed during an upper limb cold water test differed according to the area immersed. Index finger cooling led to earlier and faster CIVD without significant cardiovascular changes, whereas hand or forearm immersion led to a delayed and slower CIVD with a bradycardia at the end of the test. Accepted: 26 November 1996  相似文献   

2.
The effects of slow changes in body position on leg blood flow (LBF) were studied in nine healthy male subjects. Using a tilt table, sitting volunteers were tilted about 60° backwards to a supine position within 40 s. To modify the venous filling in the legs, the tilt manoeuvre was repeated with congestion of the leg veins induced by two thigh cuffs inflated to a subdiastolic pressure of 60 mmHg. Doppler measurements in the femoral artery were used to estimate LBF. Additional Doppler measurements at the aortic root in five of the subjects were taken for the determination of cardiac output. The LBF was influenced by body position. In the control experiment it increased from 500 ml · min−1 in the upright to 780 ml · min–1 after 15 min in the supine position. A mean maximal value of 950 ml · min−1 was observed 20 s after the tilt. Heart rate remained almost constant during the tilt phase, whereas stroke volume increased from 90 ml to 120 ml and it remained at that level after the cessation of the tilt. Congestion of the leg veins had no significant effect on heart rate, stroke volume and mean blood pressure. However, it increased vascular resistance of the leg during and after the tilt. After 15 min in the tilted position LBF amounted to 600 ml · min−1. The results suggest that the filling of the leg veins is inversely related to leg blood flow. The most likely mechanism underlying this observation is a local effect of venous filling on vasomotor tone. Accepted: 20 May 1998  相似文献   

3.
Ten females (25–50 years of age) performed isometric shoulder flexions, holding the right arm straight and in a horizontal position. The subjects were able to see the rectified surface electromyogram (EMG) from either one of two electrode pairs above the upper trapezius muscle and were instructed to keep its amplitude constant for 15 min while gradually unloading the arm against a support. The EMG electrodes were placed at positions representing a “cranial” and a “caudal” region of the muscle suggested previously to possess different functional properties. During the two contractions, recordings were made of: (1) EMG root mean square-amplitude and zero crossing (ZC) frequency from both electrode pairs on the trapezius as well as from the anterior part of the deltoideus, (2) supportive force, (3) heart rate (HR) and mean arterial blood pressure (MAP), and (4) perceived fatigue. The median responses during the cranial isoelectric contraction were small as compared to those reported previously in the literature: changes in exerted glenohumeral torque and ZC rate of the isoelectric EMG signal of −2.81% · min−1 (P = 0.003) and 0.03% · min−1 (P= 0.54), respectively, and increases in HR and MAP of 0.14 beats · min−2 (P= 0.10) and 0.06 mmHg · min−1 (P= 0.33), respectively. During the contraction with constant caudal EMG amplitude, the corresponding median responses were −2.51% · min−1 (torque), 0.01% · min−1 (ZC rate), 0.31 beats · min−2 (HR), and 0.93 mmHg · min−1 (MAP); P=0.001, 0.69, 0.005, and 0.003, respectively. Considerable deviations from the “isoelectric” target amplitude were common for both contractions. Individuals differed markedly in response, and three distinct subgroups of subjects were identified using cluster analysis. These groups are suggested to represent different motor control scenarios, including differential engagement of subdivisions of the upper trapezius, alternating motor unit recruitment and, in one group, a gradual transition towards a greater involvement of type II motor units. The results indicate that prolonged low-level contractions of the shoulder muscles may in general be accomplished with a moderate metabolic stress, but also that neuromuscular adaptation strategies differ significantly between individuals. These results may help to explain why occupational shoulder-neck loads of long duration cause musculoskeletal disorders in some subjects but not in others. Accepted: 1 March 1997  相似文献   

4.
The purposes of this study were to determine whether running economy (RE) is adversely affected following intense interval bouts of 10 × 400-m running, and whether there is an interaction effect between RE and recovery duration during the workouts. Twelve highly trained male endurance athletes [maximal oxygen consumption; O2 max =72.5 (4.3) ml·kg−1·min−1; mean (SD)] performed three interval running workouts of 10 × 400 m with a minimum of 4 days between runs. Recovery duration between the repetitions was randomly assigned at 60, 120 or 180 s. The velocity for each 400-m run was determined from a treadmill O2 max test. The average running velocity was 357.9 (9.0) m · min−1. Following the workout, the rating of perceived exertion (RPE) increased significantly (P < 0.01) as recovery duration between the 400-m repetitions decreased (14.4, 16.1, and 17.7 at 180s, 120s, and 60 s recovery, respectively). Prior to and following each workout, RE was measured at speeds of 200 and 268 m · min−1. Changes in RE from pre- to post-workout, as well as heart rate (HR) and respiratory exchange ratio (R) were similar for the three recovery conditions. When averaged across conditions, oxygen consumption (O2) increased significantly (P < 0.01) from pre- to post-test (from 38.5 to 40.5 ml · kg−1 · min−1 at 200 m · min−1, and from 53.1 to 54.5 ml · kg−1 · min−1 at 268 m · min−1, respectively). HR increased (from 124 to 138, and from 151 to 157 beats · min−1 respectively) and R decreased (from 0.90 to 0.78, and from 0.93 to 0.89, respectively) at 200 and 268 m · min−1, respectively (P < 0.01). This study showed that RE can be perturbed after a high-intensity interval workout and that the changes in O2, HR and R were independent of the recovery duration between the repetitions. Accepted: 23 June 1997  相似文献   

5.
Whereas with advancing age, peak heart rate (HR) and cardiac index (CI) are clearly reduced, peak stroke index (SI) may decrease, remain constant or even increase. The aim of this study was to describe the patterns of HR, SI, CI, arteriovenous difference in oxygen concentration (C a-vO2), mean arterial pressure (MAP), systemic vascular resistance index (SVRI), stroke work index (SWI) and mean systolic ejection rate index (MSERI) in two age groups (A: 20–30 years, n = 20; B: 50–60 years n = 20. After determination of pulmonary function, an incremental bicycle exercise test was performed, with standard gas-exchange measurements and SI assessment using electrical impedance cardiography. The following age-related changes were found: similar submaximal HR response to exercise in both groups and a higher peak HR in A than in B[185 (SD 9) vs 167 (SD 14) beats · min−1, P < 0.0005]; increase in SI with exercise up to 60–90 W and subsequent stabilization in both groups. As SI decreased towards the end of exercise in B, a higher peak SI was found in A [57.5 (SD 14.0) vs 43.6 (SD 7.7) ml · m−2, P < 0.0005]; similar submaximal CI response to exercise, higher peak CI in A [10.6 (SD 2.5) vs 7.2 (SD 1.3) l · min−1 · m−2, P < 0.0005]; no differences in C a-vO2 during exercise; higher MAP at all levels of exercise in B; higher SVRI at all levels of exercise in B; lower SWI in B after recovery; higher MSERI at all levels of exercise in A. The decrease in SI with advancing age would seem to be related to a decrease in myocardial contractility, which can no longer be compensated for by an increase in preload (as during submaximal exercise). Increases in systemic blood pressure may also compromise ventricular function but would seem to be of minor importance. Accepted: 24 September 1996  相似文献   

6.
This study compared the cardiorespiratory responses of eight healthy women (mean age 30.25 years) to submaximal exercise on land (LTm) and water treadmills (WTm) in chest-deep water (Aquaciser). In addition, the effects of two different water temperatures were examined (28 and 36°C). Each exercise test consisted of three consecutive 5-min bouts at 3.5, 4.5 and 5.5 km · h−1. Oxygen consumption (O2) and heart rate (HR), measured using open-circuit spirometry and telemetry, respectively, increased linearly with increasing speed both in water and on land. At 3.5 km · h−1 O2 was similar across procedures [χ = 0.6 (0.05) l · min−1]. At 4.5 and 5.5 km · h−1 O2 was significantly higher in water than on land, but there was no temperature effect (WTm: 0.9 and 1.4, respectively; LTm: 0.8 and 0.9 l · min−1, respectively). HR was significantly higher in WTm at 36°C compared to WTm at 28°C at all speeds, and compared to LTm at 4.5 and 5.5 km · h−1 (P ≤ 0.003). The HR-O2 relationship showed that at a O2 of 0.9 l · min−1, HR was higher in water at 36°C (115 beats · min−1) than either on land (100 beats · min−1) or in water at 28°C (99 beats · min−1). The Borg scale of perceived exertion showed that walking in water at 4.5 and 5.5 km · h−1 was significantly harder than on land (WTm: 11.4 and 14, respectively; LTm: 9.9 and 11, respectively; P ≤ 0.001). These cardiorespiratory changes occurred despite a slower cadence in water (the mean difference at all speeds was 27 steps/min). Thus, walking in chest-deep water yields higher energy costs than walking at similar speeds on land. This data has implications for therapists working in hydrotherapy pools. Accepted: 3 September 1997  相似文献   

7.
The purpose of this study was to compare various methods and criteria used to identify the anaerobic threshold (AT), and to correlate the AT obtained with each other and with running performance. Furthermore, a number of additional points throughout the entire range of lactate concentrations [La] were obtained and correlated with performance. A group of 19 runners [mean age 33.7 (SD 9.6) years, height 173 (SD 6.3) cm, body mass 68.3 (SD 5.4) kg, maximal O2 uptake (O2 max ) 55.2 (SD 5.9) ml · kg−1 · min−1] performed a maximal multistage treadmill test (1 km · h−1 every 3.5 min) with blood sampling at the end of each stage while running. All AT points selected (visual [La], 4 mmol · l−1 [La], 1 mmol · l−1 above baseline, log-log breakpoint, and 45° tangent to the exponential regression) were highly correlated one with another and with performance (r > 0.90) even when there were many differences among the AT (P < 0.05). The additional points (ranging from 3 to 8 mmol · l−1 [La], 1 to 6 mmol · l−1 [La] above the baseline, and 30 to 70° tangent to the exponential curve of [La]) were also highly correlated with performance (r > 0.90). These results failed to demonstrate a distinct AT because many points of the curve provided similar information. Intercorrelations and correlations between AT and performance were, however, reduced when AT were expressed as the percentage of maximal treadmill speed obtained at AT or percentage of O2 max . This would indicate that different attributes of aerobic performance (i.e. maximal aerobic power, running economy and endurance) are measured when manipulating units. Thus, coaches should be aware of these results when they prescribe an intensity for training and concentrate more on the physiological consequences of a chosen [La] rather than on a “threshold”. Accepted: 22 October 1997  相似文献   

8.
The present study investigated the mechanism of diving bradycardia. A group of 14 healthy untrained male subjects were examined during breath-holding either out of the water (30–33°C), in head-out immersion, or in whole-body submersion (27–29°C) in a diving pool. Blood velocity, blood volume flow in the carotid artery, diastolic blood pressure and electrocardiogram were measured and recorded during the experiments. The peak blood velocity increased by 13.6% (P < 0.01) and R-wave amplitude increased by 57.1% (P < 0.005) when the subjects entered water from air. End-diastolic blood velocity in the carotid artery increased significantly during breath-holding, e.g. increased from 0.20 (SD 0.02) m · s−1 at rest to 0.33 (SD 0.04) m · s−1 (P < 0.001) at 50.0 s in breath-hold submersion to a 2.0-m depth. Blood volume flow in the carotid artery increased by 26.6% (P < 0.05) at 30 s and 36.6% (P < 0.001) at 40 s in breath-hold submersion to a 2.0-m depth. Diastolic blood pressure increased by 15.4% (P < 0.01) at 60 s during breath-holding in head-out immersion. Blood volume flow, and diastolic blood pressure increased significantly more and faster during breath-holding in submersion than out of the water. There was a good negative correlation with the heart rate: the root mean square correlation coefficient r was 0.73 (P < 0.001). It was concluded that an increased accumulation of blood in the aorta and arteries at end-diastole and decreased venous return, caused by an increase in systemic peripheral resistance during breath-holding, underlies diving bradycardia. Accepted: 22 November 1996  相似文献   

9.
The present experiment was designed to study the importance of strength and muscle mass as factors limiting maximal oxygen uptake (O2 max ) in wheelchair subjects. Thirteen paraplegic subjects [mean age 29.8 (8.7) years] were studied during continuous incremental exercises until exhaustion on an arm-cranking ergometer (AC), a wheelchair ergometer (WE) and motor-driven treadmill (TM). Lean arm volume (LAV) was estimated using an anthropometric method based upon the measurement of various circumferences of the arm and forearm. Maximal strength (MVF) was measured while pushing on the rim of the wheelchair for three positions of the hand on the rim (−30°, 0° and +30°). The results indicate that paraplegic subjects reached a similar O2 max [1.23 (0.34) l · min−1, 1.25 (0.38) l · min−1, 1.22 (0.18) l · min−1 for AC, TM and WE, respectively] and O2 max /body mass [19.7 (5.2) ml · min−1 · kg−1, 19.5 (6.14) ml · min−1 · kg−1, 19.18 (4.27) ml · min−1 · kg−1 for AC, TM and WE, respectively on the three ergometers. Maximal heart rate f c max during the last minute of AC (173 (17) beats · min−1], TM [168 (14) beats · min−1], and WE [165 (16) beats · min−1], were correlated, but f c max was significantly higher for AC than for TM (P<0.03). There were significant correlations between MVF and LAV (P<0.001) and between the MVF data obtained at different angles of the hand on the rim [311.9 (90.1) N, 313.2 (81.2) N, 257.1 (71) N, at −30°, 0° and +30°, respectively]. There was no correlation between O2 max and LAV or MVF. The relatively low values of f c max suggest that O2 max was, at least in part, limited by local aerobic factors instead of central cardiovascular factors. On the other hand, the lack of a significant correlation between O2 max and MVF or muscle mass was not in favour of muscle strength being the main factor limiting O2 max in our subjects. Accepted: 31 January 1997  相似文献   

10.
To examine the influence of light exercise on cardiac responses during recovery from exercise, we measured heart rate (HR), stroke volume (SV), and cardiac output ( c) in five healthy untrained male subjects in an upright position before, during, and after 10-min steady-state cycle exercise at an exercise intensity of 170 W, corresponding to a mean of 68 (SD 4)% of maximal oxygen uptake. The recovery phase was evaluated separately for three different conditions: 10 min of complete rest (passive recovery), 7 min of pedalling at 20-W exercise intensity followed by 3 min of rest (partially active recovery), and 7 min of pedalling at 40-W exercise intensity followed by 3 min of rest (partially active recovery), on an upright cycle ergometer. The time courses of decreases in HR in the two active recovery phases at different exercise intensities were almost identical to those in the passive recovery phase. However, the subsequent HR reductions during the rest after active recovery at 20 W and at 40 W were mean 7.5 (SD 4.4) and mean 10.0 (SD 3.1) beats · min−1, respectively, both of which were significantly larger (P<0.05 and P<0.005) than the corresponding reduction [1.4 (SD 2.5) beats · min−1] for passive recovery. The SV values at the two exercise intensities during the active recovery periods were maintained at levels similar to that during 170-W steady-state exercise. In contrast, the SV during passive recovery decreased gradually to a level significantly below the initial baseline level at rest before exercise (P<0.05). The resultant time courses of CO values during active recovery were significantly higher (each P<0.05) than that during passive recovery. It was concluded from these findings that light post-exercise physical activity plays an important role in facilitating the venous return from the muscles and in restoring the elevated HR to the pre-exercise resting level. Accepted: 17 September 1997  相似文献   

11.
Microgravity-induced changes in body composition (decrease in muscle mass and increase in fat mass) and energy metabolism were studied in seven healthy male subjects during a 42-day bed-rest in a head-down tilt (HDT) position. Resting energy expenditure (REE), fat and glucose oxidation were estimated by indirect calorimetry on days 0, +8 and +40 of the HDT period. Assessments were performed both in post-absorptive conditions and following two identical test meals given at 3-h intervals. Body composition (dual x-ray absorptiometry) was measured on days 0, +27, +42. Mean post-absorptive lipid oxidation decreased from 53 (SEM 8) mg · min−1 (day 0) to 32 (SEM 10) mg · min−1 (day 8, P=0.04) and 36 (SEM 8) mg · min−1 (day 40, P=0.06). Mean post-absorptive glucose oxidation rose from 126 (SEM 15) mg · min−1 (day 0) to 164 (SEM 14) mg · min−1 (day 8, P=0.04) and 160 (SEM 20) mg · min−1 (day 40, P=0.07). Mean fat-free mass (FFM) decreased between days 0 and 42 [58.0 (SEM 1.8) kg and 55.3 (SEM 1.7) kg, P<0.01] while fat mass increased without reaching statistical significance. The mean REE decreased from 1688 (SEM 50) kcal · day−1 to 1589 (SEM 42) kcal · day−1 (P=0.056). Changes in REE were accounted for by changes in FFM. Mean energy intake decreased from 2532 (SEM 43) kcal · day−1 to 2237 (SEM 50) kcal · day−1 (day 40, P<0.01) with only a minor decrease in the proportion of fat. We concluded that changes in fat oxidation at the whole body level can be found during HDT experiments. These changes were related to the decrease in FFM and could have promoted positive fat balance hence an increase in fat mass. Accepted: 26 March 1998  相似文献   

12.
The effect of gender on left ventricular systolic function and exercise haemodynamics in healthy young subjects was studied during 30-s all-out sudden strenuous dynamic exercise. A group of 22 men [19.3 (SD 1) years] 20 women [19.1 (SD 1) years] volunteered to participate in this study. Two-dimensional direct M-mode and Doppler echocardiograph studies were performed with the subject in the sitting position. The Doppler examination of flow was located with continuous-wave, interrogating ascending aorta measurements. The subjects completed the study without showing any electrocardiograph abnormalities. An interaction effect with stroke volume (P < 0.05) was characterized by a decrease in the men and an increase of stroke volume in the women. Cardiac output rose significantly (P < 0.05) up to 14.5 (SD 6) l · min−1) for the men and 12.1 (SD 4) l · min−1 for the women compared to the rest values [5.8 (SD 0.4) and 4.7 (SD 0.5) l · min−1, respectively]. Flow velocity integral and acceleration time differed significantly between the two groups at rest (P < 0.05). During exercise these differences showed an interaction effect (P < 0.05). These results would indicate that normal men and women respond to sudden strenuous exercise by reducing their left ventricular systolic function, with a significantly greater decrease in women (P < 0.05). The gender differences in the haemodynamic responses during the present study, may, as suggested by others, be attributable to differences in energy metabolism. In addition, changes in Doppler parameters of aortic flow, haemodynamics and blood pressure responses during sudden strenuous exercise differed markedly from those seen before with endurance exercise. Accepted: 8 January 1997  相似文献   

13.
This study was designed to determine how changes in oxygen uptake (O2) and heart rate (HR) during submaximal cycle ergometry were determined by changes in cycle geometry and/or lower-limb kinematics. Fourteen trained cyclists [Mean (SD): age, 25.5 (6.4) years; body mass 74.4 (8.8) kg; peak O2, 4.76 (0.79) l. min−1 peak] were tested at three seat-tube angles (70°, 80°, 90°) at each of three trunk angles (10°, 20°, 30°) using a modified Monark cycle ergometer. All conditions were tested at a power output corresponding to 95% of the O2 at each subject's ventilatory threshold while pedalling at 90 rpm and using aerodynamic handlebars. Sagittal-view kinematics for the hip, knee, and ankle joints were also recorded for all conditions and for the subjects' preferred positioning on their own bicycles. No combination of seat-tube and trunk angle could be considered optimal since many of the nine conditions elicited statistically similar mean O2 and HR values. Mean hip angle (HA) was the only kinematic variable that changed consistently across conditions. A regression relationship was not observed between mean O2 or HR and mean hip angle values (P > 0.45). Significant curvilinear relationships were observed, however, between ΔO2 (O2 − minimum O2) and ΔHA (mean HA − preferred HA) using the data from all subjects (R = 0.45, SEE = 0.13 l . min−1) and using group mean values (R = 0.93, SEE = 0.03 l . min−1). In both cases ΔO2 minimized at ΔHA = 0, which corresponded to the subjects' preferred HA from their own bicycles. Thus, subjects optimized their O2 cost at cycle geometries that elicited similar lower-limb kinematics as the preferred geometries from their own bicycles. Accepted: 3 July 1996  相似文献   

14.
A double-blind paired protocol was used to evaluate, in eight male volunteers, the effects of the endogenous opiate antagonist naloxone (NAL; 0.05 mg· kg–1) on cardiovascular responses to 50° head-up tilt-induced central hypovolaemia. Progressive central hypovolaemia was characterized by a phase of normotensive-tachycardia followed by an episode of hypotensive-bradycardia. The NAL shortened the former from 20 (8–40) to 5 (3–10) min (median and range; (P < 0.02). Control head-up tilt increased the means of thoracic electrical impedance [from 35.8 (SEM 2.1) to 40.0 (SEM 1.8) ; P < 0.01 of heart rate [HR; from 67 (SEM 5) to 96 (SEM 8) beats · min–1, P < 0.02], of total peripheral resistance [TPR; from 25.5 (SEM 3.2) to 50.4 (SEM 10.5)mmHg min 1–1,P < 0.05] and of mean arterial pressure [MAP; from 96 (SEM 2) to 101 (SEM 2)mmHg, P < 0.02]. Decreases were observed in stroke volume [from 65 (SEM 12) to 38 (SEM 9) ml, P < 0.01], in cardiac output [from 3.7 (SEM 0.7) to 2.5 (SEM 0.5) 1 · mint, P < 0.01], in pulse pressure [from 55 (SEM 4) to 37 (SEM 3)mmHg, P < 0.01] and in central venous oxygen saturation [from 73 (SEM 2) to 59 (SEM 4)%, P < 0.01]. During NAL, mean HR increased from 70 (SEM 3); n.s. compared to control) to only 86 (SEM 9) beats · min–1 (P < 0.02 compared to control) and MAP remained stable. The episode of hypotensive-bradycardia appeared as mean control HR decreased to 77 (SEM 7)beats · min–1, TPR to 31.4(SEM 7.7)mmHg · min · 1–1 and MAP to 60 (SEM 5)mmHg (P < 0.01), and the volunteers were tilted supine. Cardiovascular effects of naloxone on central hypovolaemia included a reduced elevation of HR and blood pressures and provocation of the episode of hypotensive-bradycardia.  相似文献   

15.
Cardiac output, blood flow to the coeliac and mesenteric arteries, dorsal aortic blood pressure and heart rate were recorded simultaneously at rest and postprandial for 6 days in a teleost, the red Irish lord (Hemilepidotus hemilepidotus). We anticipated that gastrointestinal blood flow would increase postprandially, supported by an increase in cardiac output. However, we had no predictions for either the exact time-course of this response, or for the regional distribution of blood flow between to the two major arteries comprising the splanchnic circulation. In resting, unfed animals, blood flow to the coeliac artery and mesenteric artery was 4.1 ± 0.6 ml min−1 kg−1 and 4.9 ± 1.3 ml min−1 kg−1, respectively (mean ± SEM, n=7), which together represented 34% of cardiac output. Feeding increased blood flow to the coeliac and mesenteric arteries in a time-dependent manner. The increase in coeliac artery blood flow preceded that in the mesenteric artery, a finding that is consistent with the coeliac artery supplying blood to the liver and stomach, while the mesenteric artery supplies blood to the stomach and intestine. Coeliac blood flow had increased by 84 ± 18% after 1 day and had a peak increase of 112 ± 40% at day 4 postprandial. Mesenteric blood flow was not significantly elevated at day 1, but had increased by 94 ± 19% at day 4 postprandial. Cardiac output also increased progressively, increasing by a maximum of 90 ± 30% at day 4. Because the increase in cardiac output was adequate to meet the postprandial increase in gut blood flow, the postprandial decreases in vascular resistance for the coeliac and mesenteric circulations mirrored the increases in blood flow. Intra-arterial injections of adrenaline and noradrenaline into resting fish more than doubled coeliac and mesenteric vascular resistances, and blood flow decreased proportionately. This adrenergic vasoconstriction was totally abolished by pretreatment with the α-adrenoceptor antagonist phentolamine, which in itself approximately halved coeliac and mesenteric vascular resistances. These observations indicate a significant α-adrenergic tone in the gastrointestinal circulation of the red Irish lord, the loss of which could not entirely account for the postprandial increase in gastrointestinal blood flow. Other control mechanisms are suggested. Accepted: 17 November 1999  相似文献   

16.
The initial responses to cold-water immersion, evoked by stimulation of peripheral cold receptors, include tachycardia, a reflex inspiratory gasp and uncontrollable hyperventilation. When immersed naked, the maximum responses are initiated in water at 10°C, with smaller responses being observed following immersion in water at 15°C. Habituation of the initial responses can be achieved following repeated immersions, but the specificity of this response with regard to water temperature is not known. Thirteen healthy male volunteers were divided into a control (C) group (n = 5) and a habituation (H) group (n = 8). Each subject undertook two 3-min head-out immersions in water at 10°C wearing swimming trunks. These immersions took place at a corresponding time of day with 4 days separating the two immersions. In the intervening period the C group were not exposed to cold water, while the H group undertook another six, 3-min, head-out immersions in water at 15°C. Respiratory rate (f R), inspiratory minute volume ( I) and heart rate (f H) were measured continuously throughout each immersion. Following repeated immersions in water at 15°C, the f R, I and f H responses of the H group over the first 30 s of immersion were reduced (P < 0.01) from 33.3 breaths · min−1, 50.5 l · min−1 and 114 beats · min−1 respectively, to 19.8 breaths · min−1, 26.4 l · min−1 and 98 beats · min−1, respectively. In water at 10°C these responses were reduced (P < 0.01) from 47.3 breaths · min−1, 67.6 l · min−1 and 128 beats · min−1 to 24.0 breaths · min−1, 29.5 l · min−1 and 109 beats · min−1, respectively over a corresponding period of immersion. Similar reductions were observed during the last 2.5 min of immersions. The initial responses of the C group were unchanged. It is concluded that habituation of the cold shock response can be achieved by immersion in warmer water than that for which protection is required. This suggests that repeated submaximal stimulation of the cutaneous cold receptors is sufficient to attenuate the responses to more maximal stimulation. Accepted: 6 February 1998  相似文献   

17.
 The present study was undertaken to determine the haematological and cardiovascular status, at rest and during prolonged (1 h) submaximal exercise (approximately 70% of peak oxygen uptake) in a group (n = 12) of chronic coca users after chewing approximately 50 g of coca leaves. The results were compared to those obtained in a group (n = 12) of nonchewers. At rest, coca chewing was accompanied by a significant increase in heart rate [from 60 (SEM 4) TO 76 (SEM 3) beats · min−1], in haematocrit [from 53.2 (SEM 1.2) to 55.6 (SEM 1.1)%] in haemoglobin concentration, and plasma noradrenaline concentration [from 2.8 (SEM 0.4) to 5.0 (SEM 0.5) μmol · l−1]. It was calculated that coca chewing for 1 h resulted in a significant decrease in blood [−4.3 (SEM 2.2)%] and plasma [−8.7 (SEM 1.2)%] volume. During submaximal exercise, coca chewers displayed a significantly higher heart rate and mean arterial blood pressure. The exercise-induced haemoconcentration was blunted in coca chewers compared to nonchewers. It was concluded that the coca-induced fluid shift observed at rest in these coca chewers was not cumulative with that of exercise, and that the hypovolaemia induced by coca chewing at rest compromised circulatory adjustments during exercise. Accepted: 29 October 1996  相似文献   

18.
The aims of the present study were: (1) to assess aerobic metabolism in paraplegic (P) athletes (spinal lesion level, T4–L3) by means of peak oxygen uptake (O2peak) and ventilatory threshold (VT), and (2) to determine the nature of exercise limitation in these athletes by means of cardioventilatory responses at peak exercise. Eight P athletes underwent conventional spirographic measurements and then performed an incremental wheelchair exercise on an adapted treadmill. Ventilatory data were collected every minute using an automated metabolic system: ventilation (l · min−1), oxygen uptake (O2, l · min−1, ml · min−1 · kg−1), carbon dioxide production (CO2, ml · min−1), respiratory exchange ratio, breathing frequency and tidal volume. Heart rate (HR, beats · min−1) was collected with the aid of a standard electrocardiogram. O2peak was determined using conventional criteria. VT was determined by the breakpoint in the CO2O2 relationship, and is expressed as the absolute VT (O2, ml · min−1 · kg−1) and relative VT (percentage of O2peak). Spirometric values and cardioventilatory responses at rest and at peak exercise allowed the measurement of ventilatory reserve (VR), heart rate reserve (HRr), heart rate response (HRR), and O2 pulse (O2 P). Results showed a O2peak value of 40.6 (2.5) ml · min−1 · kg−1, an absolute VT detected at 23.1 (1.5) ml · min−1 · kg−1 O2 and a relative VT at 56.4 (2.2)% O2peak. HRr [15.8 (3.2) beats · min−1], HRR [48.6 (4.3) beat · l−1], and O2 P [0.23 (0.02) ml · kg−1 · beat−1] were normal, whereas VR at peak exercise [42.7 (2.4)%] was increased. As wheelchair exercise excluded the use of an able-bodied (AB) control group, we compared our O2peak and VT results with those for other P subjects and AB controls reported in the literature, and we compared our cardioventilatory responses with those for respiratory and cardiac patients. The low O2peak values obtained compared with subject values obtained during an arm-crank exercise may be due to a reduced active muscle mass. Absolute VT was somewhat comparable to that of AB subjects, mainly due to the similar muscle mass involved in wheelchair and arm-crank exercise by P and AB subjects, respectively. The increased VR, as reported in patients with chronic heart failure, suggested that P athletes exhibited cardiac limitation at peak exercise, and this contributed to the lower O2peak measured in these subjects. Accepted: 22 April 1997  相似文献   

19.
This study investigated the effects on running economy (RE) of ingesting either no fluid or an electrolyte solution with or without 6% carbohydrate (counterbalanced design) during 60-min running bouts at 80% maximal oxygen consumption (O2max). Tests were undertaken in either a thermoneutral (22–23°C; 56–62% relative humidity, RH) or a hot and humid natural environment (Singapore: 25–35°C; 66–77% RH). The subjects were 15 young adult male Singaporeans [O2max = 55.5 (4.4 SD) ml kg−1 min−1]. The RE was measured at 3 m s−1 [65 (6)% O2max] before (RE1) and after each prolonged run (RE2). Fluids were administered every 2 min, at an individual rate determined from prior tests, to maintain body mass (group mean = 17.4 ml min−1). The O2 during RE2 was higher (P < 0.05) than that during the RE1 test for all treatments, with no differences between treatments (ANOVA). The mean increase in O2 from RE1 to RE2 ranged from 3.4 to 4.7 ml kg−1 min−1 across treatments. In conclusion, the deterioration in RE at 3 m s−1 (65% O2max) after 60 min of running at 80% O2max appears to occur independently of whether fluid is ingested and regardless of whether the fluid contains carbohydrates or electrolytes, in both a thermoneutral and in a hot, humid environment. Accepted: 30 October 1997  相似文献   

20.
The aim of the present study was to examine the physiological and mechanical factors which may be concerned in the increase in energy cost during running in a fatigued state. A group of 15 trained triathletes ran on a treadmill at velocities corresponding to their personal records over 3000m [mean 4.53 (SD 0.28) m · s−1] until they felt exhausted. The energy cost of running (C R) was quantified from the net O2 uptake and the elevation of blood lactate concentration. Gas exchange was measured over 1 min firstly during the 3rd–4th min and secondly during the last minute of the run. Blood samples were collected before and after the completion of the run. Mechanical changes of the centre of mass were quantified using a kinematic arm. A significant mean increase [6.9 (SD 3.5)%, P < 0.001] in C R from a mean of 4.4 (SD 0.4) J · kg−1 · m−1 to a mean of 4.7 (SD 0.4) J · kg−1 · m−1 was observed. The increase in the O2 demand of the respiratory muscles estimated from the increase in ventilation accounted for a considerable proportion [mean 25.2 (SD 10.4)%] of the increase in CR. A mean increase [17.0 (SD 26.0)%, P < 0.05] in the mechanical cost (C M) from a mean of 2.36 (SD 0.23) J · kg−1 · m−1 to a mean of 2.74 (SD 0.55) J · kg−1 · m−1 was also noted. A significant correlation was found between C R and C M in the non-fatigued state (r = 0.68, P < 0.01), but not in the fatigued state (r = 0.25, NS). Furthermore, no correlations were found between the changes (from non-fatigued to fatigued state) in C R and the changes in C M suggesting that the increase in C R is not solely dependent on the external work done per unit of distance. Since step frequency decreased slightly in the fatigued state, the internal work would have tended to decrease slightly which would not be compatible with an increase in C R. A stepwise regressions showed that the changes in C R were linked (r = 0.77, P < 0.01) to the changes in the variability of step frequency and in the variability of potential cost suggesting that a large proportion of the increase in C R was due to an increase in the step variability. The underlying mechanisms of the relationship between C R and step variability remains unclear. Accepted: 15 September 1997  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号