首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Synthesis of catalase in Staphylococcus aureus MF-31.   总被引:1,自引:1,他引:1       下载免费PDF全文
During the growth of Staphylococcus aureus MF-31, initial catalase activity dropped to a reduced level at the onset of exponential phase before increasing. When S. aureus was grown at 25, 32, or 37 degrees C, catalase activity was found to decrease by 80 to 90% within 1 h of inoculation. Two catalase-negative mutants and wild-type S. aureus MF-31 cells were exposed to exogenous 20 mM H2O2 for 15 min. For wild-type S. aureus, there was no effect from H2O2 until min 15, at which time a 10% decrease in CFU was observed. Both mutants showed increased sensitivity to the H2O2, with 56 and 71% reductions in the CFU for mutants C3 and C4, respectively, after a 15-min exposure. Cells of mutant and wild-type S. aureus were subjected to sublethal heating at 52 degrees C for 20 min. The lack of catalase activity in the mutants resulted in large decreases in enumeration.  相似文献   

2.
The effects of heat on catalase from Staphylococcus aureus lysates were examined. Catalase activity increased with increasing concentrations of potassium phosphate buffer, when heated at temperatures between 50 and 65 degrees C for 10 min. Inactivation of catalase by NaCl during heating was demonstrated. Extended heating of S. aureus cells at 52 degrees C resulted in a slight decrease in catalase activity of the resultant lysates. This decrease was more pronounced in the presence of salt. Heating at 62 degrees C caused a decrease in catalase activity, but not complete inactivation. These results implicate the combined effects of heat, and NaCl in the inactivation of catalase from S. aureus. The findings are consistent with the hypothesis that H2O2 may accumulate as a result of decreased catalase activity and be responsible for the decreased colony-forming ability of stressed S. aureus.  相似文献   

3.
The effects of heat on catalase from Staphylococcus aureus lysates were examined. Catalase activity increased with increasing concentrations of potassium phosphate buffer, when heated at temperatures between 50 and 65 degrees C for 10 min. Inactivation of catalase by NaCl during heating was demonstrated. Extended heating of S. aureus cells at 52 degrees C resulted in a slight decrease in catalase activity of the resultant lysates. This decrease was more pronounced in the presence of salt. Heating at 62 degrees C caused a decrease in catalase activity, but not complete inactivation. These results implicate the combined effects of heat, and NaCl in the inactivation of catalase from S. aureus. The findings are consistent with the hypothesis that H2O2 may accumulate as a result of decreased catalase activity and be responsible for the decreased colony-forming ability of stressed S. aureus.  相似文献   

4.
Suspensions of Staphylococcus aureus MF-31 injured by heat treatment at 54 C for 15 min produced coagulase during recovery in Trypticase Soy Broth. Coagulase also was produced by injured cells during recovery in a medium that did not support growth. Coagulase synthesis during recovery was independent of the molar strength of the buffer in which the cells were injured, the age of the cells, and the degree of injury. Return of salt tolerance and coagulase production required glucose, amino acids, and phosphate in the recovery medium. Vitamins stimulated coagulase production, but did not affect recovery. Although coagulase production was not necessary for repair of thermal injury to S. aureus MF-31, its detection was interpreted as an indicator of protein synthesis.  相似文献   

5.
Sublethal heating of Staphylococcus aureus produced little loss of catalase activity, but incubation of the injured cells in tryptic soy broth, with or without 10% NaCl added, produced an 85% decrease in catalase activity. Cells recovered in tryptic soy broth demonstrated increases in catalase levels after approximately 5 h, whereas in tryptic soy broth with 10% NaCl the levels remained low for at least 12 h. Thus, the loss of catalase activity during the recovery period was greater than during the heat treatment.  相似文献   

6.
Sublethal heating of Staphylococcus aureus produced little loss of catalase activity, but incubation of the injured cells in tryptic soy broth, with or without 10% NaCl added, produced an 85% decrease in catalase activity. Cells recovered in tryptic soy broth demonstrated increases in catalase levels after approximately 5 h, whereas in tryptic soy broth with 10% NaCl the levels remained low for at least 12 h. Thus, the loss of catalase activity during the recovery period was greater than during the heat treatment.  相似文献   

7.
Superoxide dismutase (SOD) activity was determined during the growth cycle of unheated and heat-injured cells of Staphylococcus aureus MF-31. SOd activity levels dropped in unheated cells during the lag phase, increased during logarithmic phase, and became constant in the stationary phase. Cells which were sublethally heated (52 degrees c, 20 min) in 100 mM phosphate buffer and subsequently allowed to recover in tryptic soy broth demonstrated an 85% decrease in SOD activity upon inoculation into recovery medium. As the injured cells repaired the heat-induced lesions and entered logarithmic growth, SOD levels rapidly increased. Heat-injured cells allowed to recover in tryptic soy broth plus 10% NaCl showed similar decreases in SOD activity levels. However, no subsequent increase was observed when specific activity was calculated based on milligrams of protein.  相似文献   

8.
Exposure of crude cell lysates of Staphylococcus aureus MF-31 to 5 or 10 mM hydrogen peroxide resulted in a linear decrease in superoxide dismutase activity. Approximately 13% of the superoxide dismutase activity was lost after 16 min. Thermally stressed and nonstressed cells were exposed to a photochemically generated exogenous flux of superoxide radicals (O2.-). The death of thermally stressed cells was linear with time. Addition of superoxide dismutase or catalase to the O2.- generating system resulted in protection of thermally stressed and nonstressed cells, with the protective effect being greater for thermally stressed cells. Incorporation of O2-, hydroxyl radical, or singlet oxygen scavengers or antioxidants to tryptic soy agar containing 7.5% NaCl did not increase the enumeration of thermally stressed cells.  相似文献   

9.
Exopenicillinase Synthesis in Staphylococcus aureus   总被引:2,自引:2,他引:2       下载免费PDF全文
In Staphylococcus aureus, penicillinase remaining cell-bound (60 to 75% of original total) after treatment with citrate does not become exopenicillinase. Exopenicillinase in these cells appears only under conditions permitting de novo penicillinase synthesis. By use of (14)C-labeled cells, it was shown that exopenicillinase consists of newly synthesized molecules which have not equilibrated with preformed membrane-bound enzyme.  相似文献   

10.
Park B  Nizet V  Liu GY 《Journal of bacteriology》2008,190(7):2275-2278
Nasal colonization by Staphylococcus aureus is a major predisposing factor for subsequent infection. Recent reports of increased S. aureus colonization among children receiving pneumococcal vaccine implicate Streptococcus pneumoniae as an important competitor for the same niche. Since S. pneumoniae uses H2O2 to kill competing bacteria, we hypothesized that oxidant defense could play a significant role in promoting S. aureus colonization of the nasal mucosa. Using targeted mutagenesis, we showed that S. aureus expression of catalase contributes significantly to the survival of this pathogen in the presence of S. pneumoniae both in vitro and in a murine model of nasal cocolonization.  相似文献   

11.
The dynamics of the level of catalase and superoxidedismutase (SOD) expression by S. aureus isolated in persistent experimental kidney infection is described. A rise in the activity of the staphylococci under study during transition of the infectious process from the alteration to persistence stage. Changes in the expression of SOD and catalase were observed simultaneously with a decrease in hemolytic, fibrinolytic and protease activity, as well as in the presence of more pronounced clumping and an increase in the production of protein A, the antilysozyme and anticomplement activity of staphylococcal clones obtained from kidney tissue. The significance of all above-mentioned phenomena in the persistence of microorganisms is discussed.  相似文献   

12.
A nonhemolytic strain of Staphylococcus aureus was transformed with deoxyribonucleic acid extracted from two hemolytic strains of S. aureus. In each case the hemolysin pattern after transformation was identical to that of the donor strain. However, bacteriophage type, serotypes, and other biological properties of the recipient strain remained unaffected.  相似文献   

13.
Thermally shocked cells of Staphylococcus aureus rapidly synthesized ribonucleic acid (RNA) during the early stages of recovery. During this period, protein synthesis was not observed and occurred only after RNA had reached a maximum level. Even in the absence of coordinated protein synthesis, a large portion of the RNA appeared in newly synthesized ribosomes. Although the 30S subunit was specifically destroyed by the heating process, both ribosomal particles were reassembled during recovery. The addition of chloramphenicol did not inhibit the formation of the ribosomal subunits, nor was the presence of immature chloramphenicol particles detected. Extended recovery with highly prelabeled cells showed that the original ribosomal proteins present before heating are conserved and recycled. Furthermore, the data indicate that the 50S subunit is turned over and used as a source of protein for new ribosome assembly. Kinetic studies of the assembly process by pulse labeling have not revealed the presence of the normally reported precursor particles. Rather, the data suggest that assembly may occur, in this system, in a manner similar to that reported for in vitro assembly of Escherichia coli subunits.  相似文献   

14.
The calculated in vivo polypeptide chain growth rate for Staphylococcus auteus MF-31 grown in nutritionally rich medium assuming all the ribosomes were functional was found to be approximately 16 amino acids/s/ribosome, but decreased to 10.2 amino acids/s/ribosome for cells grown in poor medium. An in vitro analysis revealed that 70S ribosomes isolated from rich medium cells were more active than similar 70S ribosomes derived from cells grown in poor medium. The 30S subunit was found responsible for the increased activity of the rich monosomes, whereas the 50S subunit appeared to be capable of either high or low activity.  相似文献   

15.
Protein Synthesis in a Cell-Free Extract from Staphylococcus aureus   总被引:7,自引:4,他引:3  
Cell-free Staphylococcus aureus extracts have been prepared which actively incorporate amino acids into protein. The requirements for amino acid incorporation of this preparation were strongly suggestive of de novo protein synthesis, since it showed an absolute requirement for ribosomes, 105,000 × g supernatant fluid, energy source, and magnesium ion. The stability of these extracts was greatly improved by use of dithiothreitol instead of mercaptoethanol as a sulfhydryl protecting reagent. Data were presented to show that the binding of aminoacyl-soluble ribonucleic acid to ribosomes did not require guanosine triphosphate and supernatant enzyme. The major characteristic which distinguishes this system from other cell-free systems is the much higher magnesium concentration required to maintain ribosomes intact and to obtain the maximal incorporation of amino acids. Addition of polyuridylic acid, polyadenylic acid, or polycytidylic acid caused about 60-fold, 30-fold, or 4-fold stimulation of the incorporation of phenylalanine, lysine, or proline, respectively. Studies by density gradient sedimentation indicated that radioactive polyuridylic acid or polyadenylic acid was associated with the monosomes. This complex can actively synthesize polypeptides. On the other hand, the nascent protein synthesized under the direction of endogenous messenger ribonucleic acid was associated with both polysomes and monosomes.  相似文献   

16.
The upper limiting temperature of growth of Staphylococcus aureus MF31 in heart infusion broth (HI) was about 44 degrees C but addition of monosodium glutamate (MSG) and soy sauce permitted the organism to grow above this temperature. This effect is similar to that of NaCl. Tomato ketchup, Worcestershire and HP sauces added to HI did not allow growth at the non-permissive temperature of 46 degrees C but death was delayed. Staphylococcus aureus died in unsupplemented chicken meat slurry at 46 degrees C but grew at 48 degrees C in slurry supplemented with 5.8% NaCl and survived incubation for 18 h at 50 degrees C in slurry supplemented with 5.8% NaCl and 5% MSG. Cultures grown at 37 degrees C had a D60 value of 2 min in 50 mmol/l Tris (pH 7.2) buffer. Cultures grown at 46 degrees C in HI containing 5.8% NaCl had a D60 value of 8 min in Tris buffer. Addition of 5.8% NaCl plus 5% MSG to the buffer increased the D60 by a factor of about 7 for both cultures. In storage experiments at room temperature, the culture grown at 37 degrees C and at 46 degrees C plus 5.8% NaCl died at about the same rate in salami. In milk powder, however, the count of 37 degrees C culture decreased from 10% g to 10(6)/g in 5 weeks while the count of 46 degrees C culture remained unchanged. In cottage cheese, freeze-dried rice and macaroni, the 37 degrees C cultures also died more rapidly. It is suggested that cultures grown at 46 degrees C plus 5.8% NaCl may be suitable for experiments with artificially contaminated foods.  相似文献   

17.
The upper limiting temperature of growth of Staphylococcus aureus MF31 in heart infusion broth (HI) was about 44°C but addition of monosodium glutamate (MSG) and soy sauce permitted the organism to grow above this temperature. This effect is similar to that of NaCl. Tomato ketchup, Worcestershire and HP sauces added to HI did not allow growth at the non-permissive temperature of 46°C but death was delayed. Staphylococcus aureus died in unsupplemented chicken meat slurry at 46°C but grew at 48°C in slurry supplemented with 5.8% NaCl and survived incubation for 18 h at 50°C in slurry supplemented with 5.8% NaCl and 5% MSG. Cultures grown at 37°C had a D 60 value of 2 min in 50 mmol/l Tris (pH 7.2) buffer. Cultures grown at 46°C in HI containing 5.8% NaCl had a D 60 value of 8 min in Tris buffer. Addition of 5.8% NaCl plus 5% MSG to the buffer increased the D 60 by a factor of about 7 for both cultures. In storage experiments at room temperature, the culture grown at 37°C and at 46°C plus 5.8% NaCl died at about the same rate in salami. In milk powder, however, the count of 37°C culture decreased from 109/g to 106/g in 5 weeks while the count of 46°C culture remained unchanged. In cottage cheese, freeze-dried rice and macaroni, the 37°C cultures also died more rapidly. It is suggested that cultures grown at 46°C plus 5.8% NaCl may be suitable for experiments with artificially contaminated foods.  相似文献   

18.
High-resolution 31P-NMR and ESR spectroscopies are used to probe the role of manganese in oxygen metabolism, in vivo, by Staphylococcus aureus. The linewidth of the intracellular orthophosphate resonance in the 31P-NMR spectrum and the amplitude of the ESR sextet of signals due to Mn2+ hexaquo ions are found to be sensitive to the oxygenation state of the cells. These results are attributed to changes in the oxidation state of the manganese. It is concluded that manganous ions are oxidized to Mn3+ in oxygenated cells. Mn3+ is in turn reduced to Mn2+ under anaerobic conditions. The Mn2+ is also oxidized to Mn3+ by hydrogen peroxide probably as a result of the disproportionation of H2O2 to H2O and O2 by an active catalase in S. aureus. Addition of mercaptoethanol to a suspension of oxygenated cells results in the reduction of Mn3+ to Mn2+.  相似文献   

19.
Electron-microscopic and biochemical studies on morphological changes in Staphylococcus aureus following exposure to protein synthesis inhibitory agents such as lincomycin (LCM), clindamycin (CLM), erythromycin (EM), and spiramycin (SP) are presented in this paper. It was demonstrated that bacterial cell walls became extremely thickened usually with the formation of multilayers, when exposed to each of the above-mentioned antibiotics. Furthermore, electron density of the cytoplasm was higher in those cells exposed to drugs than in intact control cells. Incorporations of 14C-labeled l-lysine into the cell-wall fraction and the protein fraction were measured for biochemical elucidation of these phenomena. Labeled lysine was selectively incorporated into the cell-wall fraction when the test organism was exposed to the respective antibiotics. Uptake at 15 min after exposure was about twice as large as that of intact control cells. SP and CLM inhibited protein synthesis while they stimulated cell-wall synthesis. The evidences for thickening of, and formation of multilayers in the bacterial cell walls following exposure to drugs were closely related to the stimulating action of these antibiotics on the cell-wall synthesizing system. Morphology of resistant clinical isolates following such antibiotic exposure was also investigated using two staphylococcal strains, one resistant to EM alone and the other completely cross-resistant to all the macrolides.  相似文献   

20.
The effects of the addition of catalase (EC 1.11.1.6) or pyruvate on the enumeration of Staphylococcus aureus in Trypticase soy broth with 10% NaCl were examined using a most-probable-number technique. Addition of catalase or pyruvate to the broth increased enumeration of all heat-stressed S. aureus strains tested. Increases were also observed with nonstressed cells. Catalase and pyruvate were similarly effective when added to Trypticase soy broth-10% NaCl in enumerating staphylococci naturally present in low-temperature-rendered ground-beef samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号