首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Specificity of the Escherichia coli proton ATPase for adenine, guanine, and inosine nucleotides in catalysis and binding was studied. MgADP, CaADP, MgGDP, and MgIDP were each good substrates for oxidative phosphorylation. The corresponding triphosphates were each substrates for hydrolysis and proton pumping. At 1 mM concentration, MgATP, MgGTP, and MgITP drove proton pumping with equal efficiency. At 0.1 mM concentration, MgATP was 4-fold more efficient than MgITP or MgGTP. Nucleotide-depleted soluble F1 could rebind to F1-depleted membranes and block proton conductivity through F0; rebound nucleotide-depleted F1 catalyzed pH gradient formation with MgATP, MgGTP, or MgITP. This showed that the nonexchangeable nucleotide sites on F1 need not be occupied by adenine nucleotide for proton pumping to occur. It was further shown that no nucleotide was tightly bound in the nonexchangeable sites of F1 during proton pumping driven by MgGTP in these reconstituted membranes, whereas adenine nucleotide was tightly bound when MgATP was the substrate. Nucleotide-depleted soluble F1 bound maximally 5.9 ATP, 3.2 GTP, and 3.6 ITP of which half the ATP and almost all of the GTP and ITP exchanged over a period of 30-240 min with medium ADP or ATP. Also, half of the bound ATP exchanged with medium GTP or ITP. These data showed that inosine and guanine nucleotides do not bind to soluble F1 in nonexchangeable fashion, in contrast to adenine nucleotides. Purified alpha-subunit from F1 bound ATP at a single site but showed no binding of GTP nor ITP, supporting previous suggestions that the non-exchangeable sites in intact F1 are on alpha-subunits.  相似文献   

2.
The F1-ATPase from Micrococcus lysodeikticus is isolated in the absence of exogenous nucleotides. After removing loosely bound nucleotides from the isolated enzyme by gel permeation chromatography, analysis for tightly bound nucleotides revealed in 14 experiments 0.4 +/- 0.1 mol ADP, 0.5 +/- 0.2 mol GDP, and 0.8 +/- 0.2 mol ATP per mol of F1. Incubation of the isolated enzyme with Mg2+ or Ca2+ did not alter the endogenous nucleotide composition of the enzyme, indicating that endogenous ATP is not bound to a catalytic site. Incubation of the enzyme with P(i) decreased the amount of tightly bound ADP and GDP but did not effect the ATP content. Hydrolysis of MgATP in the presence of sulfite raised the tightly bound ADP and lowered tightly bound GDP on the enzyme. In the reciprocal experiment, hydrolysis of MgGTP in the presence of sulfite raised tightly bound GDP and lowered tightly bound ADP. Turnover did not affect the content of tightly bound ATP on the enzyme. These results suggest that endogenous ADP and GDP are bound to exchangeable catalytic sites, whereas endogenous ATP is bound to noncatalytic sites which do not exchange. The presence of endogenous GDP on catalytic sites of isolated F1 suggests that the F0F1-ATP synthase of M. lysodeikticus might synthesize both GTP and ATP under physiological conditions. In support of this hypothesis, we have found that plasma membrane vesicles derived from M. lysodeikticus synthesize [32P]GTP from [32P]P(i) using malate as electron donor for oxidative phosphorylation.  相似文献   

3.
The pre-steady-state ATPase activity of nitrogenase has been reinvestigated. The exceptionally high burst in the hydrolysis of MgATP by the nitrogenase from Azotobacter vinelandii communicated by Cordewener et al. (1987) [Cordewener J., ten Asbroek A., Wassink H., Eady R. R., Haaker H. & Veeger C. (1987) Eur. J. Biochem. 162, 265-270] was found to be caused by an apparatus artefact. A second possible artefact in the determination of the stoichiometry of the pre-steady-state ATPase activity of nitrogenase was observed. Acid-quenched mixtures of dithionite-reduced MoFe or Fe protein of Azotobacter vinelandii nitrogenase and MgATP contained phosphate above the background level. It is proposed that due to this reaction, quenched reaction mixtures of nitrogenase and MgATP may contain phosphate in addition to the phosphate released by the ATPase activity of the nitrogenase complex. It was feasible to monitor MgATP-dependent pre-steady-state proton production by the absorbance change at 572 nm of the pH indicator o-cresolsulfonaphthalein in a weakly buffered solution. At 5.6 degrees C, a pre-steady-state phase of H+ production was observed, with a first-order rate constant of 2.2 s-1, whereas electron transfer occurred with a first-order rate constant of 4.9 s-1. At 20.0 degrees C, MgATP-dependent H+ production and electron transfer in the pre-steady-state phase were characterized by observed rate constants of 9.4 s-1 and 104 s-1, respectively. The stopped-flow technique failed to detect a burst in the release of protons by the dye-oxidized nitrogenase complex. It is concluded that the hydrolysis rate of MgATP, as judged by proton release, is lower than the rate of electron transfer from the Fe protein to the MoFe protein.  相似文献   

4.
(1) Mitochondrial ATPase (F1) is influenced by specific nucleotides in its kinetic behavior towards its substrates. In this work, initial hydrolysis rates, as well as continuous reaction progress, were measured by recording proton production (equivalent to triphosphate hydrolysis). (2) After preincubation with ATP, F1 hydrolyzes MgITP partly as if it were MgATP, with respect to temperature dependence and 2,4-dinitrophenol inhibition/stimulation. (3) Acetyl ATP is a competitive inhibitor versus ATP on the F1-ATPase. With F1 which has been freed of ambient ATP by repeated precipitations with ammonium sulfate the Ki of acetyl ATP is 400 nM. (4) F1-ATPase which was depleted of bound nucleotides in the presence of glycerol (Garret, N.E. and Penefsky, H.S. (1975) J. Biol. Chem. 250, 6640-6647) was preincubated with ADP and acetyl ATP. These preparations were assayed for hydrolytic activity with MgITP as substrate. Compared to a nonpreincubated control enzyme, the hydrolysis with these preparations was first stimulated, then inhibited. This stimulation/inhibition effect is most pronounced at 10 degrees C, but is also observed at 20 degrees C. (5) When nucleotide-depleted enzyme is preincubated with acetyl AMP, its ability to hydrolyze MgITP slowly decreases to approx. 50% after 60 min. This effect is reversed by further preincubation with acetyl ATP. It is speculated that under appropriate conditions AMP may exist or arise in a buried position on F1-ATPase, and act there as an inhibitor of MgITP hydrolysis.  相似文献   

5.
The binding of ATP radiolabeled in the adenine ring or in the gamma- or alpha-phosphate to F1-ATPase in complex with the endogenous inhibitor protein was measured in bovine heart submitochondrial particles by filtration in Sephadex centrifuge columns or by Millipore filtration techniques. These particles had 0.44 +/- 0.05 nmol of F1 mg-1 as determined by the method of Ferguson et al. [(1976) Biochem. J. 153, 347]. By incubation of the particles with 50 microM ATP, and low magnesium concentrations (less than 0.1 microM MgATP), it was possible to observe that 3.5 mol of [gamma-32P]ATP was tightly bound per mole of F1 before the completion of one catalytic cycle. With [gamma-32P]ITP, only one tight binding site was detected. Half-maximal binding of adenine nucleotides took place with about 10 microM. All the bound radioactive nucleotides were released from the enzyme after a chase with cold ATP or ADP; 1.5 sites exchanged with a rate constant of 2.8 s-1 and 2 with a rate constant of 0.45 s-1. Only one of the tightly bound adenine nucleotides was released by 1 mM ITP; the rate constant was 3.2 s-1. It was also observed that two of the bound [gamma-32P]ATP were slowly hydrolyzed after removal of medium ATP; when the same experiment was repeated with [alpha-32P]ATP, all the label remained bound to F1, suggesting that ADP remained bound after completion of ATP hydrolysis. Particles in which the natural ATPase inhibitor protein had been released bound tightly only one adenine nucleotide per enzyme.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
The mechanism of inhibition of yeast mitochondrial F(1)-ATPase by its natural regulatory peptide, IF1, was investigated by correlating the rate of inhibition by IF1 with the nucleotide occupancy of the catalytic sites. Nucleotide occupancy of the catalytic sites was probed by fluorescence quenching of a tryptophan, which was engineered in the catalytic site (beta-Y345W). Fluorescence quenching of a beta-Trp(345) indicates that the binding of MgADP to F(1) can be described as 3 binding sites with dissociation constants of K(d)(1) = 10 +/- 2 nm, K(d2) = 0.22 +/- 0.03 microm, and K(d3) = 16.3 +/- 0.2 microm. In addition, the ATPase activity of the beta-Trp(345) enzyme followed simple Michaelis-Menten kinetics with a corresponding K(m) of 55 microm. Values for the K(d) for MgATP were estimated and indicate that the K(m) (55 microm) for ATP hydrolysis corresponds to filling the third catalytic site on F(1). IF1 binds very slowly to F(1)-ATPase depleted of nucleotides and under unisite conditions. The rate of inhibition by IF1 increased with increasing concentration of MgATP to about 50 mum, but decreased thereafter. The rate of inhibition was half-maximal at 5 microm MgATP, which is 10-fold lower than the K(m) for ATPase. The variations of the rate of IF1 binding are related to changes in the conformation of the IF1 binding site during the catalytic reaction cycle of ATP hydrolysis. A model is proposed that suggests that IF1 binds rapidly, but loosely to F(1) with two or three catalytic sites filled, and is then locked in the enzyme during catalytic hydrolysis of ATP.  相似文献   

7.
Inactivation of the isolated ATPase portion of ATP synthase from beef-heart mitochondria (F1) by its natural inhibitor protein (IP) during steady-state ATP hydrolysis is accompanied by a trapping of 1 mol nucleotide/mol F1 in one of the catalytic sites. The trapped nucleotide is not released during incubation of IP-inhibited F1 in the presence of MgATP at pH 8.0 for at least 20 min, indicating a very low turnover rate of the IP.F1 complex. The ATP/ADP ratio of the trapped nucleotides is higher than that found for transitorily bound nucleotides under the same conditions but in the absence of IP. The IP impairs the acceleration of ATP hydrolysis and product release steps that results from the binding of ATP to an alternate catalytic site. It also inhibits ATP hydrolysis by a single catalytic site or shifts the equilibrium toward ATP formation from bound ADP and Pi. At high pH, an active acidic form of the free IP is transformed to the inactive basic one with a half-time of 3-4 s. This process seems to be prevented by IP binding to F1. The inactive basic form of IP does not compete with the active acidic IP for the binding to F1. The data do not favor the existence of a long-lived catalytically active IP.F1 intermediate during IP action on F1. The reactivation of IP-inhibited membrane-bound F1 by energization may be due to a conformational change in the IP.F1 complex allowing the transformation of IP into an inactive basic state that rapidly dissociates.  相似文献   

8.
In crystal structures of bovine MF(1), the side chains of alpha F(357) and beta R(372) are near the adenines of nucleotides bound to noncatalytic sites. To determine if during catalysis these side chains must pass through the different arrangements in which they are present in crystal structures, the catalytic properties of the (alpha F(357)C)(3)(beta R(372)C)(3)gamma subcomplex of the TF(1)-ATPase were characterized before and after cross-linking the introduced cysteines with CuCl(2). The unmodified mutant enzyme hydrolyzes MgATP at 50% the rate exhibited by wild type. Detailed comparison of the catalytic properties of the double mutant enzyme before and after cross-linking with those of the wild-type subcomplex revealed the following. Before cross-linking, the (alpha F(357)C)(3)(beta R(372)C)(3)gamma subcomplex has less tendency than wild type to release inhibitory MgADP entrapped in a catalytic site during turnover when MgATP binds to noncatalytic sites. Following cross-linking, ATPase activity is reduced 5-fold, and inhibitory MgADP entrapped in a catalytic site during turnover does not release under conditions wherein binding of ATP to noncatalytic sites of the wild-type enzyme promotes release of MgADP from the affected catalytic site. When assayed in the presence of lauryldimethylamine oxide, which prevents turnover-dependent entrapment of inhibitory MgADP in a catalytic site, ATPase activity of the cross-linked form is 47% that of the unmodified mutant enzyme. These results suggest that, during catalysis, the side chains of alpha F(357) and beta R(372) do not pass through the extremely different relative positions in which they exist at the three noncatalytic site interfaces in crystal structures.  相似文献   

9.
The kinetics of the SMP-catalyzed Pi-ATP exchange and oxidative phosphorylation was studied at variable [MgATP] + + [MgADP] and [MgATP]/[MgADP]. The existence on F1 of a center with a low affinity was demonstrated (KM = 0.4-2.7 mM). Saturation of this center with the Mg2+-complex of one of the nucleotides is obligatory for H+-ATPase to exhibit its ATP synthetase activity. It was found that with a decrease of [MgATP]/[MgADP] the lag periods, tau, of the reactions and KM(Pi) also show a decrease. Besides, in the Pi-ATP exchange reactions delta microH+ (steady-state) diminishes and SMP coupling is enhanced (the Vhydr/Vsynth ratio is decreased). Preincubation of SMP with MgADP eliminates the lags but does not affect the course of the steady-state reaction. It is concluded that F1 when bound to MgATP or MgADP changes to a "more" or "less coupled" conformational state, thus determining the rate of conversion to the ATP-synthetase functional state (ko = tau-1), the threshold potential of this conversion and the kinetic behaviour of ATP-synthetase (KM for Pi).  相似文献   

10.
It has been reported that shifts in the fluorescence emission spectrum of the introduced tryptophans in the betaF155W mutant of Escherichia coli F(1) (bovine heart mitochondria F(1) residue number) can quantitatively distinguish between the number of catalytic sites occupied with ADP and ATP during steady-state ATP hydrolysis (Weber, J., Bowman, C., and Senior, A. E. (1996) J. Biol. Chem. 271, 18711--18718). In contrast, addition of MgADP, Mg-5'-adenylyl beta,gamma-imidophosphate (MgAMP-PNP), and MgATP in 1:1 ratios to the alpha(3)(betaF155W)(3)gamma subcomplex of thermophilic Bacillus PS3 F(1) (TF(1)) induced nearly identical blue shifts in the fluorescence emission maximum that was accompanied by quenching. Addition of 2 mm MgADP induced a slightly greater blue shift and a slight increase in intensity over those observed with 1:1 MgADP. However, addition of 2 mm MgAMP-PNP or MgATP induced a much greater blue shift and substantially enhanced fluorescence intensity over those observed in the presence of stoichiometric MgADP or MgAMP-PNP. It is clear from these results that the fluorescence spectrum of the introduced tryptophans in the betaF155W mutant of TF(1) does not respond in regular increments at any wavelength as catalytic sites are filled with nucleotides. The fluorescence spectrum observed after entrapping MgADP-fluoroaluminate complexes in two catalytic sites of the betaF155W subcomplex indicates that the fluorescence emission spectrum of the enzyme is maximally perturbed when nucleotides are bound to two catalytic sites. This finding is consistent with accumulating evidence suggesting that only two beta subunits in the alpha(3)beta(3)gamma subcomplex of TF(1) can simultaneously exist in the completely closed conformation.  相似文献   

11.
The experimental conditions for release of the regulatory light chain (RLC) of scallop myosin at 30 degrees C were studied. Substantially all RLC was released from myosin by incubation for 5 min in medium containing buffer and KCl. This release of RLC was inhibited strongly by Ca2+, while the effect of Mg2+ was about 10,000 times weaker than that of Ca2+. Even in the absence of Ca2+, MgATP and MgADP inhibited the release of RLC, while the protective effect of AMPPNP was negligible. Other Mg nucleotides also showed some protective effect, though appreciably less than MgATP. The incubation of scallop myosin with abalone regulatory light chain (LC2) at 30 degrees C for 5 min produced a hybrid myosin. In the presence of 5 mM MgCl2, 1 of the 2 mol of RLC per mol of scallop myosin was exchanged with 1 mol of LC2. In the presence of Ca2+ or MgATP, myosin bound 1 extra mole of LC2 besides the 2 mol each of SH-LC and RLC.  相似文献   

12.
D C Fry  S A Kuby  A S Mildvan 《Biochemistry》1985,24(17):4680-4694
Proton NMR was used to study the interaction of beta,gamma-bidentate Cr3+ATP and MgATP with rabbit muscle adenylate kinase, which has 194 amino acids, and with a synthetic peptide consisting of residues 1-45 of the enzyme, which has previously been shown to bind MgepsilonATP [Hamada, M., Palmieri, R. H., Russell, G. A., & Kuby, S. A. (1979) Arch. Biochem. Biophys. 195, 155-177]. The peptide is globular and binds Cr3+ATP competitively with MgATP with a dissociation constant, KD(Cr3+ATP) = 35 microM, comparable to that of the complete enzyme [KI(Cr3+ATP) = 12 microM]. Time-dependent nuclear Overhauser effects (NOE's) were used to measure interproton distances on enzyme- and peptide-bound MgATP. The correlation time was measured directly for peptide-bound MgATP by studying the frequency dependence of the NOE's at 250 and 500 MHz. The H2' to H1' distance so obtained (3.07 A) was within the range established by X-ray and model-building studies of nucleotides (2.9 +/- 0.2 A). Interproton distances yielded conformations of enzyme- and peptide-bound MgATP with indistinguishable anti-glycosyl torsional angles (chi = 63 +/- 12 degrees) and 3'-endo/O1'-endo ribose puckers (sigma = 96 +/- 12 degrees). Enzyme- and peptide-bound MgATP molecules exhibited different C4'-C5' torsional angles (gamma) of 170 degrees and 50 degrees, respectively. Ten intermolecular NOE's from protons of the enzyme and four such NOE's from protons of the peptide to protons of bound MgATP were detected, which indicated proximity of the adenine ribose moiety to the same residues on both the enzyme and the peptide. Paramagnetic effects of beta,gamma-bidentate Cr3+ATP on the longitudinal relaxation rates of protons of the peptide provided a set of distances to the side chains of five residues, which allowed the location of the bound Cr3+ atom to be uniquely defined. Distances from enzyme-bound Cr3+ATP to the side chains of three residues of the protein agreed with those measured for the peptide. The mutual consistency of interproton and Cr3+ to proton distances obtained in metal-ATP complexes of both the enzyme and the peptide suggests that the conformation of the peptide is very similar to that of residues 1-45 of the enzyme. When this was assumed to be the case and when molecular models and a computer graphics system were used, MgATP could be fit into the X-ray structure of adenylate kinase in a unique manner such that all of the distances determined by NMR were accommodated.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

13.
The Ascaris suum phosphofructokinase exhibits hysteretic transitions in the time course for fructose 6-phosphate (F6P) phosphorylation in addition to allosteric properties when assayed at pH values below 8. Conditions that enhance hysteretic changes also enhance cooperative interactions and thus there appears to be a link between hysteresis and cooperativity. Initiation of reaction with either F6P or phosphofructokinase results in a pronounced lag, while initiation of the reaction with MgATP results in a burst at pH values below 8. Under conditions in which a lag is evident, increasing the concentration of F6P in the assay decreases the lag, while under conditions where a burst is evident, increasing the concentration of MgATP in the assay decreases the burst. The lag is enzyme-dependent going to a limiting value at high enzyme concentration, while the burst is enzyme-independent. As the pH increases, the Hill coefficient for F6P decreases from a pH-independent value of 3 at low pH to a value of 1 above pH 8. Over the same pH range, the burst rate increases to a point that it is too fast to measure at pH 8 (that is, the time course is linear). Finally, at pH 6.9, the saturation curve for F6P becomes more cooperative with the Hill coefficient equal to 3 above 4 mM MgATP. Data are interpreted in terms of the model suggested for the rabbit skeletal muscle phosphofructokinase (Frieden, C., Gilbert, H. R., and Bock, P.E. (1976) J. Biol. Chem. 251, 5644-5647) in which MgATP binds preferably to an inactive tetrameric enzyme form in which a group with a pK of 6.8 is protonated and F6P binds preferably to the unprotonated active tetrameric form.  相似文献   

14.
Choleragen and beta-adrenergic agonists, both of which activate turkey erythrocyte adenylate cyclase, have been reported to accelerate release of bound [3H]guanyl nucleotides from turkey erythrocyte membranes. We have now obtained evidence that choleragen- or isoproterenol-stimulated release reflects a change in the affinity of the regulatory subunit (G/F) of adenylate cyclase for guanyl nucleotides. Solubilized preparations of turkey erythrocytes that had bound radiolabeled GTP were chromatographed on Ultrogel AcA 34. The protein from which guanyl nucleotide was released upon incubation with choleragen or isoproterenol was co-eluted with G/F activity. Furthermore, this protein appears to be the same size as the complex containing the 42,000-dalton peptide, ADP*-ribosylated by choleragen, which is presumably a subunit of G/F. ADP ribosylation of the 42,000-dalton subunit of G/F by choleragen occurred with a half-time of about 5 min, whereas choleragen-stimulated release of guanyl nucleotides was much slower (t1/2 greater than or equal to 60 min). When membranes were treated with choleragen and NAD, the delay in activation of adenylate cyclase by guanylyl imidodiphosphate was decreased but not abolished, a finding consistent with the idea that release of endogenously bound nucleotide (and subsequent binding of the nonhydrolyzable GTP analog) occurs only slowly following ADP ribosylation. In contrast, activation of the adenylate cyclase of either toxin-treated or untreated membranes in the presence of isoproterenol and guanylyl imidodiphosphate was very rapid. These data support the hypothesis that isoproterenol and choleragen may activate adenylate cyclase, at least in part, by increasing the rate of release of guanyl nucleotides from G/F.  相似文献   

15.
Nuclear Overhauser effects were used to determine interproton distances on MgATP bound to rabbit muscle creatine kinase. The internuclear distances were used in a distance geometry program that objectively determines both the conformation of the bound MgATP and its uniqueness. Two classes of structures were found that satisfied the measured interproton distances. Both classes had the same anti glycosidic torsional angle (chi = 78 +/- 10 degrees) but differed in their ribose ring puckers (O1'-endo or C4'-exo). The uniqueness of the glycosidic torsional angle is consistent with the preference of creatine kinase for adenine nucleotides. One of these conformations of MgATP bound to creatine kinase is indistinguishable from the conformation found for Co(NH3)4ATP bound to the catalytic subunit of protein kinase, which also has a high specificity for adenine nucleotides [chi = 78 +/- 10 degrees, O1'-endo; Rosevear, P.R., Bramson, H.N., O'Brian, C., Kaiser, E.T., & Mildvan, A.S. (1983) Biochemistry 22, 3439]. Distance geometry calculations also suggest that upper limit distances, when low enough (less than or equal to 3.4 A), can be used instead of measured distances to define, within experimental error, the glycosidic torsional angle of bound nucleotides. However, this approach does not permit an evaluation of the ribose ring pucker.  相似文献   

16.
Nadanaciva S  Weber J  Senior AE 《Biochemistry》2000,39(31):9583-9590
MgADP in combination with fluoroscandium (ScFx) is shown to form a potently inhibitory, tightly bound, noncovalent complex at the catalytic sites of F(1)-ATPase. The F(1).MgADP.ScFx complex mimics a catalytic transition state. Notably, ScFx caused large enhancement of MgADP binding affinity at both catalytic sites 1 and 2, with little effect at site 3. These results indicate that sites 1 and 2 may form a transition state conformation. A new direct optical probe of F(1)-ATPase catalytic transition state conformation is also reported, namely, substantial enhancement of fluorescence emission of residue beta-Trp-148 observed upon binding of MgADP.ScFx or MgIDP. ScFx. Using this fluorescence signal, titrations were performed with MgIDP.ScFx which demonstrated that catalytic sites 1 and 2 can both form a transition state conformation but site 3 cannot. Supporting data were obtained using MgIDP-fluoroaluminate. Current models of the MgATP hydrolysis mechanism uniformly make the assumption that only one catalytic site hydrolyzes MgATP at any one time. The fluorometal analogues demonstrate that two sites have the capability to form the transition state simultaneously.  相似文献   

17.
Gibson GE  Harris BG  Cook PF 《Biochemistry》2006,45(7):2453-2460
Phosphofructokinase (PFK) catalyzes the phosphorylation of fructose 6-phosphate (F6P) to give fructose 1,6-bisphosphate (FBP) using MgATP as the phosphoryl donor. As the concentration of Mg(2+) increases above the concentration needed to generate the MgATP chelate complex, a 15-fold increase in the initial rate was observed at low MgATP. The effect of Mg(2+) is limited to V/K(MgATP), and initial rate studies indicate an equilibrium-ordered addition of Mg(2+) before MgATP. Isotope partitioning of the dPFK:MgATP complex indicates a random addition of MgATP and F6P at low Mg(2+), with the rate of release of MgATP from the central E:MgATP:F6P complex 4-fold faster than the net rate constant for catalysis. This can be contrasted with the ordered addition of MgATP prior to F6P at high Mg(2+). The addition of fructose 2,6-bisphosphate (F26P(2)) has no effect on the mechanism at low Mg(2+), with the exception of a 4-fold increase in the affinity of the enzyme for F6P. At high Mg(2+), F26P(2) causes the kinetic mechanism to become random with respect to MgATP and F6P and with MgATP released from the central complex half as fast as the net rate constant for catalysis. The latter is in agreement with previous studies [Gibson, G. E., Harris, B. G., and Cook, P. F. (1996) Biochemistry 35, 5451-5457]. The overall effect of Mg(2+) is a decrease in the rate of release of MgATP from the E:MgATP:F6P complex, independent of the concentration of F26P(2).  相似文献   

18.
Tightly bound magnesium was found in soluble, purified ATPase (F1) from beef heart mitochondria in the amount of 1 mol/mol of F1. Iron, zinc, cobalt, manganese, calcium, sodium, copper, and potassium were not tightly bound at stoichiometric levels. Removal of magnesium by chelating agents caused loss of ATPase activity. Removal of tightly bound nucleotide by gel filtration in 50% glycerol- or 60 mM K2SO4-containing buffers did not remove magnesium. Cold dissociation did release magnesium when complete denaturation was accomplished. The results suggest that magnesium is an integral part of F1, that it is required for activity, and that magnesium and nucleotides are tightly bound at separate sites. The idea that the tightly bound nucleotides are not complexed with cations suggests certain structural requirements at their binding sites which might account for the unusual properties of the sites.  相似文献   

19.
ATP hydrolysis and synthesis by the F(0)F(1)-ATP synthase are coupled to proton translocation across the membrane in the presence of magnesium. Calcium is known, however, to disrupt this coupling in the photosynthetic enzyme in a unique way: it does not support ATP synthesis, and CaATP hydrolysis is decoupled from any proton translocation, but the membrane does not become leaky to protons. Understanding the molecular basis of these calcium-dependent effects can shed light on the as yet unclear mechanism of coupling between proton transport and rotational catalysis. We show here, using an actin filament gamma-rotation assay, that CaATP is capable of sustaining rotational motion in a highly active hybrid photosynthetic F(1)-ATPase consisting of alpha and beta subunits from Rhodospirillum rubrum and gamma subunit from spinach chloroplasts (alpha(R)(3)beta(R)(3)gamma(C)). The rotation was found to be similar to that induced by MgATP in Escherichia coli F(1)-ATPase molecules. Our results suggest a possible long range pathway that enables the bound CaATP to induce full rotational motion of gamma but might block transmission of this rotational motion into proton translocation by the F(0) part of the ATP synthase.  相似文献   

20.
Mitochondrial F1-ATPase from beef heart, forms aggregates when it is depleted of loosely bound nucleotides by repeated precipitation in ammonium sulfate. Polyacrylamide gradient gel electrophoresis, in non dissociating conditions shows that the aggregate formed is a dimer (708,000 daltons). The aggregation is attributed to a conformational change of the protein as a consequence of the elimination of the nucleotides from the low affinity binding sites. This structural alteration seems to be reversible because, after addition of ATP, the aggregation is not observed on polyacrylamide gels but the catalytic properties remain unchanged. This conformational change alters the accessibility of protein sulfhydryl groups to 5,5' - dithiobis(2-nitrobenzoic acid). All these observations emphasize the importance of protein nucleotide interactions to the conformation of the mitochondrial F1-ATPase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号